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Semiclassical atom light interaction: Maxwell-Schrodinger equations *

uantum statistical Maxwecll’s
E(r, ¢ 9 e —— P{r —_—— s E (5, ¢
( )mcchamcs < >summatxon r,0) E'(r, 1)

equations

self-consistency

Atomic polarization : bridging quantum mechanical and classical descriptions
The medium is described by its susceptibility x(7)

P(z,t) = ¢ /_t x(t—1)E(z, T)dt

On the other hand P(z,t) = N(p) where p = gt and N is the density of dipoles. For a state
|p) = c1]1) 4 2 |2), we denote the dipole matrix element (1| g#|2) = p12 = p3;. Note that ¢
is actually a measure of distance (not position), hence the diagonal elements are p;; = 0.

v

LLaser physics; Sargent, Scully, Lamb
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Semiclassical atom light interaction: Maxwell-Schrodinger equations

uantum statistical Maxwecll’s
E(r, ¢ 9 — - P ——— E'(r, ¢
( )mechamcs < >summauon_' ®0 equations Er, 1)

self-consistency

Atomic polarization : bridging quantum mechanical and classical descriptions

We compute p = gt using |¢) = c1 1) + 2 |2) and (1] g% |2) = p12 = p3;.
(at) = Tr{pp} = (¥

with density matrix

P

‘P> = ciCop12 + C3C1P21 = P21P12 + P12P21

5 _ _ (P11 P12} _ e e
p=ly) (¥l (.021 Pzz) <CT02 |2

2
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Semiclassical atom light interaction: Maxwell-Schrodinger equations 3

quantum < statistical Maxwcll’s

E(r, ¢ —— - P(r :
{r. )mcchamcs M cummation ® 0 equations

E' (1, 1)

self-consistency

Helmholtz equation : semi-classical evolution

Propagation of electromagnetic waves in a medium is governed by the Helmholtz equation:

0’E 1 0°E 0*P
- - — e
2 2 or Koo
—————
Homogeneous part describing plane waves Interaction with the medium

The quantum mechanical part enters in the polarization.

3Laser physics; Sargent, Scully, Lamb
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Evolution of density matrix
Von Neumann equation

A i
P = E[H'P]

To derive a realistic refractive index and susceptibility, we need to account for the physical
dissipation. This dissipation can be introduced with a spontaneous emission model, which at
this stage corresponds to the addition of an "ad-hoc” decay of the density matrix (formally
through the master equation).

1 4(4)3‘1)12’
4mey  3hc3
is the rate of spontaneous emission (derived later in the lecture) and we have the

Ip=A;=

Master equation in Linblad form

d, ionr o o 1. . .
P = .l + T <0p£7+ =5 {p, @a})
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Evolution of density matrix

Projecting the master equation onto the states |1),|2), with H = "4, + gt - E in the rotating
frame with detuning A = w1 — w, we obtain the

Optical Bloch equations

d i
g;l _ —ﬁ(Pl2 -E)p12 + c.c. + T2p2
d i sn
giz = +E(P1z “E)p1p +cc. —Tippn = — gil
dp12

. 1 T
5 = —iAp12 + ﬁ(PlZ -E)(p11 — p22) — %Pu

We can extract the polarization in the steady-state p;; = 0 from p12(w) (recall
pi2 = (1g2[2) = — (1] et 2))

Zp12E

p2(w) = o JFZA(Pn—Pzz)
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Evolution of density matrix

In the Fourier domain, using py1 = pj, and for N atoms,

P(w) = cox(@)E = N(p) = Nplpral(ew) +cc. — L NP1lE )
12 i Tin + iA

thus we obtain for the susceptibility x = Xko + iX]m

p2ff A

/
_N I S
XRe el T2, 1 2 (P11 — p22)
"o |plZ|2 rlz .
T =N T a2 (P11 — p22)
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Semiclassical model : derivation®

Plane wave solution

Considering light linearly polarized along € and introducing slowly varying amplitudes £(z, t)

and P(z,t) with phase ¢(z,t) ,
E(z,t) = € (z, t)e (@k+0EN) | ¢ o = €E(z,f)

P(z,t) = €P(z,t)e {(We+9E) | o = eP(z,f)
P(z,t) = eo€x(w) = &€ (XRe + iXim)

We assume slowly varying amplitudes and phase, i.e.

{%«wé‘, P <wP, ¥<w
e 1S P 4
%€ ke, L <kP, L<ik

We will derive the corrections to the linear dispersion relation w ~ ck

4Scu|ly, M.O., Zubairy, M.S. " Quantum optics” (1999). Chapter 5, Section 4
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Semiclassical model : derivation
Consider the Helmholtz equation
d 10 d 1090 02
(E + E&) (_E —+ E&) E = —}lOﬁP(Z,t)

Applying the slowly varying envelope approximation on the first part with w = ck yields :

0 190 . o ..0¢p 185
(—E + E&) E ~ —2ikE + <—£ +i€E—+- +

—i(wt—kz+¢(z,t))

thus the total left-hand side is

o (9 19N o (06 198 [ w d¢ 1d¢ —i(wt—kz+(z1))
sz(a + 8t>E_ 2zk<a + at-l—z(k c )5)6

Fall 2024 Quantum Electrodynamics and Quantum Optics: Lecture 8 9 /25



Semiclassical model : derivation

Applying the same slowly varying envelope approximation for the right-hand side of Helmholtz
equation yields

82P 1 a . aP —i(wt—kz+
e — — — i 4 ¢(zt))
Hoan eoc? of ( sz+%f§) e
il Ciwp s O 99D pitwtketgt) — W pitwt—kapla)
goc? ot goc?

Overall, if we simplify the phase we arrive to

2
LT R L P

)
ZkSOCZP - Z?OCP

Note that we do not use the linear dispersion on the “k — %" term to allow us to derive the
corrections to this relation.
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Semiclassical model :

. effects of complex susceptibility

Taking the real and imaginary part (P is complex in general) and using
P =eo€x(w) = €0€ (Xke + iXn) Gives

Physical meaning of the real and imaginary parts of susceptibility

o€

(absorption/gain) : 3

(dispersion) : 3—4)

19 k ko,

cot T 2P T AmE

19¢ w  w ReP ARe
cot KT T £ KT (” 2

S

The term g(w) = —5

relation when we assume a constant phase ¢ :

_ Xre | @
k_(HZ)C
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Semiclassical model : complex refractive index

If we consider a complex refractive index given by n?(w) = 1+ x, up to first order
approximation we have:

!/ /
R ~ XRe | :AIm
n(w)=n"+in —\/1+7((w)~1+—2 —{—1—2

1 1
Hence n’ ~ 1+ 7% and n” ~ 7% Coming back to the dispersion relation, we see that the
real part of the refractive complex index corresponds to the classical refractive index which

/
1’l’:<1—f—X_Re):C£:£
2 w Up

We recover the classical connection between the refractive index and the ratio of the speed of
light in vacuum c to the phase velocity v, = ¢ in the medium.
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Semiclassical model : complex susceptibility

Solving the Bloch equations gives us 08 i S
Susceptibility

p)> A

Ceoh T2+ 42 P11 F2)

Xi{e =N

|Pl2|2 FlZ (Pll . P22) _0'6—2.5 2-15-1-050 05 1 15 2 25

X” _ 12
i Soh I‘%2—|—A2 Ay

Flgu '€ Real and imaginary part of the susceptibility

Generalization : Susceptibility of multilevel atoms

P 2
X= - = o (p12P21 + p13pa1) e

iwot
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Slow and Fast light

Dispersion relation w = w(k) and assuming |xk.(w)| > |xjr, (w)] such that the refractive
index is n(w) ~ n'(w) = £ = <&,

b w

Phase velocity : v, =

, do  (dk\7
Group velocity : vg = — =

dk — \dw

&

Eliminate k and rewrite group velocity in terms of refractive index

d
vy = nc_g' where 1, = n(w) + w% is the " Group Index”

Now, we go back to the definition of polarizability

P(@) = et@)E = @) = |17 xhaleo) 1+ Kol

By modifying x(w), you can modify n(w) and the group velocity of the light in the medium.

Fall 2024
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Slow and Fast light
We can engineer the x(w) of the system such that the group velocity is-
° v, K¢ - “Slow light”, Eg. EIT® gives® v, ~ 17 m/s
@ vy > corvy <0- “Fast or Advanced light”, Anomalous Dispersion by two Raman gain
resonances '

08 :
v

1006 | o N e
> 1004 04 : / :\ / f\ ! 2108
2 1.002 Gain \\ | \ N ] 2
< 0.2 | | . Jos &
2 1.000 8z [N : %
§ 0998 g ° f ‘ 0 g
s e g | | indexchange 1 8
& 0.996 S 0 I T an (o) —:-o.5<§

25 i
3 04 > f z 44 2
0% - AN oz
-30 20 -10 0 10 20 30 g 06 i S5

Probe detuning (MHz) 08l e

Probe detuning (MHz)

FlgU F€. Refractive index profile. The steepness of the slope at resonance is inversely

proportional to the group velocity of transmitted light FIgU €. Measured refractive index and gain coefficient.

5Substitute numerical values in HW7.5 from Ch. 5 of Fast light, slow light and Left-Handed light, PW Milonni, 2005
SHau, L. et al. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594-508 (1999)

7 Gain-assisted superluminal light propagation, L. J. Wang, A. Kuzmich & A. Dogariu, Nature 406 (2000
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Slow and Fast light

What about causality?®
@ Phase velocity: v, > c allowed
@ Group velocity: vy > ¢ allowed. Not the same as velocity of information travel. Can be
explained by Classical theory of wave propagation.
@ Velocity of energy transfer: vg = |S(w)|/u(w), where S is the Poynting vector and u the
Energy density. One can show that vr < c¢. More interpretive than measurable. )

8Fast light, slow light and Left-Handed light, PW Milonni, 2005
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Quantum theory of atom-field interaction
The quantized electic field is

E(r, t) — ngZPF <flke_lw0t+lk'r + a}te-i-zwot—zk-r) ,

where ezpg = szgjll}k and & is the polarization
Hint =et- E =et- 5](8213}: (flke_iwot—i_ik'r + fl;€+iw0t_ik'r>
et = ellil = e(|1) (1] +[2) (2])2(]1) (1] + [2) (2])
=e(1]#]2) |2) (1 +e (1] #]1) [2) (1] +e(2[2[1) [1) (2|
—— —— —— N —

P12 ot zero P21=P12 e

Atom-field interaction

A 2 A A —iwot 1 At it
Hine = (p120™ + p210™) - Exezpr (ﬂke ol e )

ota|Ln)y=12,n—-1) , ¢ &l2,n)=|,n—-1) , AE=h(wi+ wy)
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Quantum theory of atom-field interaction

Rotating wave approximation

H hwlz +h2gk5' ar +(A7_ﬁ]t)

_Pu-&ezer _ o [ w1
N h - Pw gk 2€0th

Rabi frequency becomes photon-number dependent in the quantum mechanical atom-field
interaction. - o o+
(1,n| hgio~af |12,n — 1) = (1167 [2) (n] &} |n — 1) hgy = h/ng

(2,n+ 1| hgeo oy |1,n) = (2|07 1) (n — 1| &g |n) hge = h/ngy
However ﬁﬂi; and 0~y do not conserve excitation :

oFal|1,n) = /n|2,n+1) thus AE = —h(w + wry)
0 |2,n) = /n|1,n—1) thus AE = +hi(w + w1y)
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Quantum theory of atom-field interaction : state evolution

Consider the manifold spanned by {|1) |n+1),|2) |n)} and wy as laser frequency,
E1 = hwq, Ey = hwy, where a generic state in this subspace can be written as:

[¥(6)) = c1(t) [1) [n+1) + ca(t) [2) |m)

dor = —igy/n+ Teye(womewn)t

As for the semi-classical case, we have Rabi oscillations, but now with a frequency :

{%Cl = —ig\/n + Legetilwo—wnt

O = A’ +4¢*(n+1)

Now, we will perform a change of frame into the interaction picture, using
Baker-Campbell-Hausdorff formula

AR A o B +a[A, B + a?[A, [A, B]] /2!

Fall 2024 Quantum Electrodynamics and Quantum Optics: Lecture 8 19 /25



Quantum theory of atom-field interaction : interaction picture
The time evolution of [¥) under the bare Hamiltonian Hy

iho: [¥) = Ho |'¥) , [¥(£)) = [¥(0))e ot/

Moving to interaction picture, we remove this time evolution from the state and put it on
the operators instead

<\IJ‘| Hint |‘F> _ <‘P0| e+iH0t/thntefiH0t/h |TO>
The operators now transform as the Hamiltonian (¥|a[¥) = (¥ et ot/ tge—iHot/h g )

ae—lef
6—4’6*1‘(4}121'

R Coatar i ata
a —y plwod at 4 e~ iwod at
a—+ - eiwlzﬁzt/z (’7‘-+ efiwu{rzt/Z
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Quantum theory of atom-field interaction : dressed states

The Hamiltonian in the interaction picture is for A = wg — w1y

Interaction Hamiltonian in rotating frame

_ hg (@’+fle_lAt + fr—a'l'e—l—zAt)

Dressed states of atom-field interaction

o) = %<rn,z>+\n+1,1>>

|®7) = (|" 2) = n+1,1))

%I
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Spontaneous emission: Wigner-Weisskopf Theory
Assume that

[p(t=0)) = Zk:|0k/2>
t)) =Y c1l0,2) + Y okl 1)
% %

—_————
all possible modes k of the field
Thus we obtain

{Cl = —i L grel Wiy

62 K = igkefi((‘]u*wk)tcl

Eliminating cox = —igk(r0) ft dt’e~ilwn—wite (¢):

&=Ll [ aretement-og )
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Spontaneous emission: Wigner-Weisskopf Theory

Next we introduce the density of states (note that w = k- ¢ and the factor 2 due to
polarizations):

y 2(; / dgb/ dosin® [ dk- I

k
—2L/ d / desine/dw  w?
- 78733 Jo ¢ 0 ke k

Note that |g(7)|*> = ;f;;’%‘/\pu]z cos? 0 where 0 is the angle between & and pip. Hence one

e o) = _Alpnl® / dwyw? /dt (wi2—w) (=) 0, ()
( 271 26h€0C3 Kk
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Spontaneous emission: Wigner-Weisskopf Theory

Note that [ dewye i(@n—@)(t=t) = 275(t — '), and fOt(S(t —#')dt’ = ], we have:

. . 1 4w3|p12|2 1
Cl(t)__lélnso 3hic3 Ecl(t)

Spontaneous emission rate

1 4w3|p12|2
Iy = — 35—
4meg  3hc
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Paper for next

Fall 20:

week's presentation

PHYSICAL REVIEW A 92, 012325 (2015)

Quantum theory of a bandpass Purcell filter for qubit readout

Eyob A. Sete,!"” John M. Martinis,> and Alexander N. Korotkov'
"Departnent of Electrical and Computer Engi ing, University of California, Riverside, California 92521, USA
2Dej of Physics, University of California, Santa Barbara, California 93106, USA
lGongle Inc., Santa Barbara, California, USA
(Received 22 April 2015: published 21 July 2015)

The fidelity of sup ducti and Xmon qubits is partially limited by the qubit
energy relaxation through the resonator into the transmission line, which is also known as the Purcell effect. One
way to suppress this energy relaxation is to employ a filter which impedes microwave propagation at the qubit
frequency. We present semiclassical and q analyses for the bandpass Purcell filter realized by E. Jeffrey
et al. [Phys. Rev. Lett. 112, 190504 (2014)]. For typical experimental parameters, the bandpass filter suppresses
the qubit relaxation rate by up to two orders of itude while maintaining the same rate. We
also show that in the presence of a microwave drive the qubit relaxation rate further decreases with increasing
drive strength.

DOI: 10.1103/PhysRevA.92.012325 PACS number(s): 03.67.Lx, 85.25.—j,03.65.Yz
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