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Description of atom-field interaction

Semi-classical

E(t, r), ψ(t, r) E is a vector

Quantum

Ê(t, r), ψ(t, r) Ê is an Operator

Quantum model predicts all effects e.g., Wigner-Weisskopf model of spontaneous emission,
Lamb shift.

Semi-Classical model

Schrodinger equation: Ĥψj =
(
− h̄2∇2

2m + V(r)
)

ψj = ih̄ ∂
∂t ψj

The action of EM field is given by the Lorentz force F = q(E+ v×B), which modifies the
Hamlitonian as

Ĥ =
1

2m
(p̂− qA)2 + qU(r, t) + V(r)

where A is the vector potential and U is the Coulomb potential
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Gauge transform

Hamiltonian can be rewritten from local (phase) gauge invariance:

ψ′(r, t) = eiχ(r,t)ψ(r, t)

A′ ← A+
h̄
e
∇χ, U′ ← U− h̄

e
∂tχ

In the Coulomb gauge, the free field U will vanish, leaving only the static Coulomb potential
V of the atom.
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Dipole approximation and r.E Hamiltonian

(
− h̄2

2m
(∇− ieA(r, t)

h̄
)2 + V(r)

)
ψ = ih̄∂tψ

Note that |ψ(r)|2 is localised around a0 (Bohr radius) and a0 ≪ λ. Therefore we have:

A(r + r0, t) = A(0, t)eik·(r+r0) ≈ A(0, t)eik·r0

Applying the approximation:(
− h̄2

2m
(∇− ieA(r0, t)

h̄
)2 + V(r)

)
ψ(r) = ih̄∂tψ(r)

Fall 2024 Quantum Electrodynamics and Quantum Optics: Lecture 7 4 / 17



Light-matter interaction Hamiltonian

Local gauge transformation

Consider gauge transform of a wavefunction: ψ(r, t) = ϕ(r, t)eiχ(r,t), which does not affect the
probability, i.e. |ψ|2 = |ϕ|2.
We choose gauge χ(r, t) = q/h̄A(r0, t) · r in such a way that inserting the wavefunction ψ(r, t)
in Schrödinger equation yields:

ih̄
(

iq
h̄

)
∂tA(r0, t)︸ ︷︷ ︸

E(r0,t)

·rϕ(r, t) + ∂tϕ(r, t) =

(
p̂2

2m
+ V(r)

)
︸ ︷︷ ︸

H0

ϕ(r, t),

which leads to a new form of total Hamiltonian:

Ĥ = Ĥ0 + Ĥint,

where Hint = qr̂ · E(r0, t) is the rE-interaction term
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Light-matter interaction Hamiltonian

p ·A Hamiltonian

Upon transformation p→ p− qA(r0, t), one can obtain:

Ĥ =
1

2m
[
ih̄∇− qA(r0, t)

]2
+ V(r) = Ĥ0 + Ĥ1 + Ĥ2,

where

Ĥ0 = − h̄2∇2

2m
+ V(r) is a free-electron Hamiltonian,

Ĥ1 =
ih̄∇
m
· qA(r0, t) ∝ p̂ ·A is a ”pA”-interaction term, and

Ĥ2 ∝ [qA(r0, t)]2/2m is a kinetic energy of electron induced by a field

We obtain two terms in the Hamiltonian:

ĤrE
int = qr · E(r0, t) and ĤpA

int = p ·A(r0, t)/2m
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Dipole approximation of two-level atomic system
Consider a two-level atom:

Ĥ |1⟩ = h̄ω1 |1⟩ , Ĥ |2⟩ = h̄ω2 |2⟩

We can calculate matrix elements on light-matter interaction Hamiltonian:

⟨1| Ĥint |1⟩ =
∫∫
⟨1| r⟩ ⟨r| Ĥint

∣∣r′〉 ⟨r′ |1⟩ d3rd3r′ (1)

=
∫

ϕ∗1(r)ϕ1(r)︸ ︷︷ ︸
even

q r︸︷︷︸
odd

·E(r0, t)d3r ≈ 0 (2)

⟨2| Ĥint |2⟩ = 0 (3)

⟨1| Ĥint |2⟩ =
∫

ϕ∗1(r) ϕ2(r) q r d3r︸ ︷︷ ︸
P12− matrix element of dipole moment

·E(r0, t) (4)

ϕ1(r) and ϕ2(r) are wave functions with different spatial parity
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Ladder operators for fermions

Two-level systems obey the fermionic anti-commutation relations:

{â, â†} = 1

{â, â} = {â†, â†} = 0

The ladder operator for the transitions between two fermionic levels σ̂+ = â1â†
2 and σ̂− = â†

1â2
will thus obey the same anti-commutation relations

Two-level system:

σ̂+ |1, 0⟩ = |0, 1⟩ = |e⟩

σ̂− |0, 1⟩ = |1, 0⟩ =
∣∣g〉
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Ladder operators for fermions

Pseudo-spin operators

â1â†
2 = σ̂+ annihilates electron 1, creates electron 2 ≡ excitation

â†
1â2 = σ̂− annihilates electron 2, creates electron 1 ≡ de-excitation

1
2

(
â†

2â2 − â†
1â1

)
= σ̂z ≡ population inversion

Pseudo-spin operators in |1⟩,|2⟩-basis

σ̂+ = |2⟩ ⟨1|

σ̂− = |1⟩ ⟨2|

σ̂z =
1
2
(|2⟩ ⟨2| − |1⟩ ⟨1|)
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Density matrix for two-level systems

Density matrix formalism

ρ̂ =

(
ρ11 ρ12
ρ21 ρ22

)
is a density matrix of two-level system

ρ22 − ρ11 = 2⟨σ̂z⟩ is the population inversion

ρ12 = ⟨σ̂+⟩ and ρ21 = ⟨σ̂−⟩ are coherences
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Light-matter interaction: Semiclassical dynamics

Schrödinger equation for two-level atom

State of a system (Schrödinger picture)
∣∣ψ(t)〉 = C1(t) |1⟩+ C2(t) |2⟩ evolves in time as

follows:
ih̄∂t

∣∣ψ(t)〉 = (Ĥ0 + Ĥint

) ∣∣ψ(t)〉 ,

where Ĥ0 = h̄ω1 |1⟩ ⟨1|+ h̄ω2 |2⟩ ⟨2| and Ĥint = qr̂ · e|E| cos (ωLt) (e and |E| are field
polarization and amplitude).
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Light-matter interaction: Semiclassical dynamics

Schrödinger equation for two-level atom

Multiplying both sides by ⟨1|, defining Rabi frequency ΩR = P12|E|/h̄, and applying
transform C1,2 = C̃1,2e−iω21t, we get:

dC̃1
dt = C̃2

iΩR
2

[
e+i∆t + e+i(ω21+ωL)t

]
dC̃2
dt = C̃1

iΩR
2

[
e−i∆t + e−i(ω21+ωL)t

]
,

where ω21 = E2−E1
h̄ , and ∆ = ω21 −ωL is the detuning of laser field from atomic resonance
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Light-matter interaction: Semiclassical dynamics

Rotating wave approximation (RWA)

When the laser field is close to atomic resonance:

∆ ≈ 0, which corresponds to e±i∆t being an almost stationary term in the equation for
population dynamics

ωL + ω21 ≫ ∆, which makes e±i(ωL+ω21)t a fast-oscillating term that does not affect
averaged dynamics

Thus we can neglect fast-rotating terms in equations.

General solution of Rabi problem in terms of population inversion

|C1|2 − |C2|2 =

(
∆2 −Ω2

R
Ω2

)
sin2

(
Ωt
2

)
+ cos2

(
Ωt
2

)
,

where Ω =
√

Ω2
R + ∆2 is the detuning-dependent ”generalized Rabi frequency”
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Light-matter interaction: Semiclassical dynamics

Rabi oscillations

Figure: 1Excited state population Pe = |C2(t)|2 dynamics for various detunings ∆

1Gerry, Christopher and Knight, Peter. Introductory quantum optics. Cambridge university press, 2005
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Dipole moment
Considering atomic polarization p̂:

⟨p̂⟩ = e
〈
Ψ(t)

∣∣ r̂
∣∣Ψ(t)

〉
= ec1c∗2 ⟨1| r̂ |2⟩︸ ︷︷ ︸

p12/e

+ec∗1c2 ⟨2| r̂ |1⟩

Recall that in original frame (2 rotations) we have: (∆ = 0)

c1(t) = c1(0) cos
(

Ωt
2

)
e−i E1

h̄ t + c2(0) sin
(

Ωt
2

)
ei E2

h̄ t sin
(

Ωt
2

)
ei E2

h̄ t

Dipole moment

⟨p̂⟩ = c1(t)c∗2(t)ep12 + c∗1(t)c2(t)ep21

for ∆ = 0:
⟨p̂⟩ = Re(i

p12

2
sin(Ωt)eiωt)
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Paper for next week’s presentation
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Questions for next week’s presentation

Explain the excitation swapping between qubit and the resonator shown in Fig.1c,d?

Describe the set of operations (Q,S,Z) used on qubit and resonator based on Eq(1)?

How is the sequence designed to synthesize an arbitrary state, how are complex state
coefficients constructed?

How to do Wigner tomography on the synthesized state, how is the parity measurement
performed?

What’s the difference between |0⟩+ |3⟩ and |0⟩+ eiϕ|3⟩ in terms of Wigner function,
why does the relative phase of Fock states correspond to a global rotation of the Wigner
function?

How are phases of Fock state superposition (density matrix) measured?
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