
Quantum Electrodynamics and Quantum Optics:
Lecture 6

Fall 2024



Superconducting circuits

Josephson Junctions
▶ Current phase relationship
▶ AC Josephson effect

The cooper pair box (CPB)
▶ Hamiltonian
▶ Eigen-energies
▶ Mathieu equation
▶ Josephson Junctions Phase and Cooper pair box Number operator

Cooper pair box and Transmon
▶ Charge dispersion as a ratio of EJ and EC
▶ Anharmonicity

Quantizing electrical circuits
▶ Normal modes
▶ Harmonic oscillator approximation

References: Implementatin of a superconducting qubit, Cottet, PhD Thesis
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Josephson junctions
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Josephson junctions

References: T. Orlando Applied Superconductivity
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Macroscopic Quantum Model for
Josephson junctions

References: T. Orlando Applied Superconductivity, Chapter 5,8

Fall 2024 Quantum Electrodynamics and Quantum Optics: Lecture 6 6 / 44



Reminder: probability current
Schrödinger equation for a single particle (e.g. an electron) in a potential V (r):

i h̄
∂ψ

∂t
= − h̄2

2m∇2ψ+ V (r)ψ.

According to Born’s rule, the square of the magnitude of the wavefunction is
interpreted as the probability density of the particle’s position:

℘(r, t) ≡ |ψ(r, t)|2 = ψ∗(r, t)ψ(r, t).

This probability density is shown to be conserved by defining a probability current
f , similar to the continuity equation for the case of charge density and electrical
current:

∂℘

∂t
= −∇ · J℘,

where the probability current is defined as

J℘ ≡ h̄

2im (ψ∗∇ψ−ψ∇ψ∗) = Re
{
ψ∗ h̄

im
∇ψ
}

.

Note: The probability current is not a physical quantity and hence not measurable,
in spite of resemblence with the electrical current and the continuity equation.

References: T. Orlando Applied Superconductivity, Chapter 5
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Macroscopic Quantum Model for superconductivity
Postulates:

1 Existence of carriers that do not scatter (superelectrons)
2 There exists a macroscopic quantum wavefunction, Ψ(r, t), that describes

the behavior of the entire ensemble of charge carriers in the superconductor.
Superconductivity is a coherent phenomenon between the electrons. Similar
to a coherent state of photons (laser) that describes a global state of a large
number of photons.

Single particle:∫
dvψ∗(r, t)ψ(r, t) = 1 →

{
℘(r, t) ≡ ψ∗(r, t)ψ(r, t), . . . probability density
J℘ ≡ Re

{
ψ∗ h

im∇ψ
}

. . . . probability current

Entire ensemble of particles:∫
dvΨ∗(r, t)Ψ(r, t) = N∗ →

 Ψ∗(r, t)Ψ(r, t) = n∗(r, t), . . . density of particles

Js =
q⋆

m∗ Re
{

Ψ∗ h̄
i ∇Ψ

}
, . . .

current of charge
(physical current)

where N∗ is the number of particles.

References: T. Orlando Applied Superconductivity, Chapter 5
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Macroscopic Quantum Model

Js =
q⋆

m⋆
Re
{

Ψ∗ h̄

i
∇Ψ

}
,

Ψ(+a) =
√
n⋆

2e
iθ2 ,

Ψ(−a) =
√
n⋆

1e
iθ1 ,

ζ ≡

√
h̄2

2m⋆ (Vo − Eo)
,

Ψ(x) = C1 cosh x
ζ
+C2 sinh x

ζ
.

References: T. Orlando Applied Superconductivity, Chapter 8
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Macroscopic Quantum Model

Js = Jc sin (θ1 − θ2) ,

Jc = − q⋆ h̄

m∗ζ

√
n∗

1n
∗
2

2 sinh(a/ζ) cosh(a/ζ)
=

=
e h̄

√
n1n2

2mζ sinh(2a/ζ)
,

sinh 2a/ζ ≈ e2a/ζ/2.

Typical critical current JC of a
Josephson junction in a superconducting
qubit is on the order of ∼ 10 nA

References: T. Orlando Applied Superconductivity
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Josephson junctions

Js(r, t) = Jc(y, z, t) sinφ(y, z, t),

where φ is known as the gauge-invariant phase difference and is given by

φ(y, z, t) = θ1(y, z, t) − θ2(y, z, t) − 2π
Φo

∫ 2

1
A(r, t) · dl.

∂φ(y, z, t)
∂t

=
2π
Φo

∫ 2

1
E(r, t) · dl

The latter equation is known as the Josephson voltage-phase relation.
Consequently,

i = Ic sinφ(t), dφ

dt
=

2π
Φo

v

References: T. Orlando Applied Superconductivity
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Josephson junctions

Relation between phase and flux:

δ = 2πΦ/Φ0, Φ =

∫ t

−∞
VJ

(
t′
)
dt′, VJ =

Φ0
2π

dδ
dt

References: Quantum Fluctuations, Les Houches, Devoret 1997
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Josephson junctions switching energy

WJo = ΦoIc/2π

WJ =

∫ to

0
ivdt

WJ =

∫ to

0

(
Ic sinφ′)(Φo

2π
dφ′

dt

)
dt

WJ =
ΦoIc

2π

∫ φ

0
sinφ′dφ′

WJ = WJo − ΦoIc

2π cosφ

Typical value for WJ0 = 2.067 · 10−15 · 5 · 10−8/2π = 1.65 · 10−23 J.

References: T. Orlando Applied Superconductivity
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The AC Josephson effect

φ(t) = φ(0) + 2π
Φo

Vot

i = Ic sin
[

2π
Φo

Vot+ φ(0)
]
= Ic sin

[
2πfJ t+ φ(0)

]
develops across the junction. This effect is known as the AC Josephson effect and
fJ is the Josephson frequency, given by

fJ =
Vo

Φp
=

2e
h
Vo = 483.6 × 1012Vo (Hz).

For a constant driving voltage of 10 µV, the current will oscillate at about 5 GHz.
Because a few microvolts is typical of the lower voltage range applied

References: T. Orlando Applied Superconductivity
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Current-voltage characteristics of a JJ

References: T. Orlando Applied Superconductivity
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Generalized Junction Model

i = Ic sinφ+ vG(v) +C
dv

dt

i = Ic sinφ+G(v)
Φo

2π
dφ

dt
+C

Φo

2π
d2φ

dt2

i = Ic sinφ+
1
R

Φo

2π
dφ

dt
+C

Φo

2π
d2φ

dt2

i

Ic
= sinφ+

dφ

dτ̃
+ βc

d2φ

dτ̃2

τ̃ =
t

τJ

τJ =
Φo

2π
1
IcR

References: T. Orlando Applied Superconductivity
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Nonlinear Josephson Inductance

i(t) = Ic sinφ(t) + v(t)

R
,

d

dt
i(t) =

[
2πIc

Φo
cosφ(t)

]
v(t) +

1
R

d

dt
v(t).

kinetic inductance L(φ) and Josephson inductance LJ are given by

L(φ) =
Φ0

2πIc cosφ =
LJ

cosφ .

References: T. Orlando Applied Superconductivity
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SQUID

i = iJ1 + iJ2 + iR1 + iR2

= Ic1 sinφ1 + Ic1 sinφ2 +
v

R1
+

v

R2

i = 2Ic1 cos
(
πΦext

Φo

)
sin
(
φ1 +

πΦext
Φo

)
+

(
1
R1

+
1
R2

)
v(t)

Ic = 2Ic1 cos
(
πΦext

Φo

)
References: T. Orlando Applied Superconductivity
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Quantizing electrical circuits – basics

References: Steven Girvin Quantum Machines Les Houches
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Quantum LC oscillator
‘lumped element’ limit where the physical size of the LC oscillator is much smaller
than than the wavelength of electromagnetic waves at the frequency
of the oscillator

L =
1
2LI

2 − 1
2
q2

C
=
L

2 q̇
2 − 1

2C q
2.

Euler-Lagrange equation of motion:
q̈ = −ω2

0q, ω0 = 1/
√
LC.

Conjugate to charge – flux:
Φ = δL

δq̇ = Lq̇ = LI.

Corresponding Hamiltonian

H = Φq̇− L =
Φ2

2L +
1

2C q
2.

Hamilton’s equation of motion:

q̇ =
∂H

∂Φ
=

Φ
L

= I,

Φ̇ = −∂H

∂q
= − q

C
= V .

[Φ̂, q̂] = −i h̄

And we can write the Hamiltonian:
H =

h̄ω0
2

(
â†â+ ââ†

)
=

h̄ω0
2

(
2â†â+ 1

)
References: T. Orlando Applied Superconductivity
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Quantum LC oscillator

Hamiltonian of an LC oscillator with charge q and flux Φ

H =
q2

2C +
Φ2

2L

Operators of flux and charge

Φ̂ =

√
h̄Z0
2

(
â+ â†

) [
â, â†

]
= 1

q̂ =
1
i

√
h̄

2Z0

(
â− â†

)
Hamiltonian

Ĥ =
h̄ω0
2

(
â†â+ ââ†

)
=

h̄ω0
2

(
2â†â+ 1

)

References: T. Orlando Applied Superconductivity
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The Cooper Pair Box

References: Implementation of a superconducting qubit, Cottet, PhD Thesis
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Josephson Junctions

Here EC = (2e)2

2(CJ+Cg)
is the charging energy of the island of the box

and Ng = Qr +CgU/2e.

References: Implementation of a superconducting qubit, Cottet, PhD Thesis
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Josephson Junctions

References: Implementation of a superconducting qubit, Cottet, PhD Thesis
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Cooper Pair Box (CPB)

Pair Coulomb energy:

EC =
(2e)2

2CΣ
,

where
CΣ = Cg + CJ

is the total capacitance of the island1.

Charge representation
Let n̂ be the operator associated
to the number of Cooper pairs
in excess from neutrality
in the metallic island (more
commonly called “the number
of excess Cooper pairs”).
The eigenstates |n⟩ of n̂ verify:

Ĥel = EC

(
n̂− ng

)2 ,

ng =
CgVg

2e

References: Implementation of a superconducting qubit, Cottet, PhD Thesis
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Cooper pair box (CPB)
Charge representation

n̂|n⟩ = n|n⟩, n ∈ Z,

ĤJ = −EJ

2

∑
n∈Z

|n⟩⟨n + 1| + |n + 1⟩⟨n|

 ,

Ĥel = EC

(
n̂ − ng

)2 , ng =
CgVg

2e

Ĥ
(
ng

)
=
∑
n∈Z

[
EC

(
n − ng

)2 |n⟩⟨n| − EJ

2 (|n⟩⟨n + 1| + |n + 1⟩⟨n|)
]

The spectrum associated to this hamiltonian is discrete and periodic in ng . Let
us call |k⟩ the energy eigenstates and Ek their associated energies:

Ĥ
(
ng

)
|k⟩ = Ek|k⟩.

References: Implementation of a superconducting qubit, Cottet, PhD Thesis
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Cooper Pair Box (CPB)

Ĥ (ng) =
∑
n∈Z

[
EC (n − ng)

2 |n⟩⟨n| − EJ

2 (|n⟩⟨n + 1| + |n + 1⟩⟨n|)
]

References: Implementation of a superconducting qubit, Cottet, PhD Thesis
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Cooper Pair Box (CPB)
Phase representation

References: Implementation of a superconducting qubit, Cottet, PhD Thesis (Chapter 1)
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Quantum fluctuations in a Josephson junction
The superconducting tunnel junction can be modeled by a capacitor in parallel with a
pure tunneling element, the Josephson junction. The Cooper pairs that tunnel through
the junction can be expressed in the charge basis

QJ (t) = −2eN(t), N̂ =
∑

N N |N⟩⟨N |.

Josephson junction Phase operator

|δ⟩ =
∑+∞

N=−∞ eiNδ|N⟩, |N⟩ = 1
2π

∫ 2π

0 dδe−iNδ|δ⟩, [δ̂, N̂ ] = i

Introducing the operator:

eiδ̂ =
1

2π

∫ 2π

0
dδeiδ|δ⟩⟨δ|

Yields:
eiδ̂|N⟩ = |N − 1⟩

Note, in contrast to quantum optics,
where no phase operator can be
defined, phase and n umber operator
are here canonically conjugate
operators as N can be negative.

eiϕ|N⟩ =
1

2π

∫ 2π

0
dϕeiϕ|ϕ⟩⟨ϕ|N⟩

=
1

2π

∫ 2π

0
dϕeiϕ|ϕ⟩

∑
M

e−iMϕ⟨M |N⟩

=
1

2π

∫ 2π

0
dϕeiϕ|ϕ⟩

∑
M

e−iMϕδMN

=
1

2π

∫ 2π

0
dϕeiϕe−iNϕ|ϕ⟩

=
1

2π

∫ 2π

0
dϕe−i(N−1)ϕ|ϕ⟩ = |N − 1⟩

References: Les Houches 1997 Quantum Fluctuations, Devoret
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Hamiltonian Description of the Josephson Junction
Hamiltonian of the Josephson tunnel Junction using the phase operator

ĤJ = −EJ cos δ̂, EJ =
1
8
h

e2Gt∆,

where ∆ is the superconducting gap and Gt the tunnel conductance in the normal.

Re-expressing the Hamiltonian in the charge Basis of cooper pairs (N) that tunnel
through the junction.

ĤJ = −EJ

2
1

2π

∫ 2π

0
dδ
[
eiδ + e−iδ

]
|δ⟩⟨δ|,

eiδ̂|N⟩ = |N − 1⟩, eiδ̂ =
1

2π

∫ 2π

0
dδeiδ|δ⟩⟨δ|,

ĤJ = −EJ

2

+∞∑
N=−∞

[|N⟩⟨N + 1| + |N + 1⟩⟨N |].

References: Les Houches 1997 Quantum Fluctuations, Devoret
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The phase representation

References: Implementation of a superconducting qubit, Cottet, PhD Thesis (Chapter 1)
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Contrast with phase operator in quantum optics
For a harmonic oscillator (in particular the electromagnetic field) with the
Hamiltonian Ĥ = h̄ω

(
â†â+ 1

2

)
, it is possible to define a “phase operator”

in analogy with the classical case:
â = eiϕ̂

√
n̂,

â† =
√
n̂e−iϕ̂,

with n̂ = â†â and ϕ̂ being the hypothetical Hermitian phase operator.

This operator satisfies many identities similar to the previously defined
superconducting phase operator θ̂, namely [n̂, θ̂] = i, But careful calculation
reveals that it is in fact not a well defined Hermitian operator. For example it is
easy to show the commutator [eiϕ̂, e−iϕ̂] is not equal to zero (see the exercise),
which is a sign of inconsistency. This inconsistency in fact arises dew to fact that
the Hilbert space for the harmonic oscillator is given by n ∈ N. In the case
of the superconducting phase the Hilbert space of the Cooper pares also extends
to negative values, allowing the well defined phase operator.

References: [1] P. A. M. Dirac, The Quantum Theory of the Emission and Absorption of Radiation, Proc. R. Soc. Lond., A 114 (1927), 243. [2] Quantum
Optics, D.F. Walls, Gerard J. Milburn Chapter (2)
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Cooper pair box (CPB)
Phase representation

θ̂|θ⟩ = θ|θ⟩

exp
(

±iθ̂
)

|n⟩ = |n ± 1⟩

|θ⟩ ≡ |θ+ 2π⟩

n̂ =
1
i
∂

∂θ

Hamiltonian in the phase representation

H
(
ng

)
= EC

(
1
i
∂

∂θ
− ng

)2
−EJ cos(θ)

Ψk(θ) = ⟨θ|k⟩

EC

(
1
i
∂

∂θ
− ng

)2
Ψk(θ) −EJ cos(θ)Ψk(θ) = EkΨk(θ)

Ψk(θ) = Ψk(θ+ 2π)

References: Implementation of a superconducting qubit, Cottet, PhD Thesis (Chapter 1)
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Cooper pair box (CPB)

References: Implementation of a superconducting qubit, Cottet, PhD Thesis (Chapter 1)
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Cooper pair box (CPB)

References: JOSEPHSON QUANTUM BITS BASED ON A COOPER PAIR BOX, Denis Vion
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Josephson junctions

References: Nakamura Science
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Josephson junctions

References: Implementation of a superconducting qubit, Cottet, PhD Thesis
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Josephson junctions

References: D. Vion, et al. Science
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The transmon qubit
Transmon: a transmission-line shunted plasma oscillation qubit

1 Large ratio of Josephson energy to charge energy
EJ /EC

2 More insensitive to charge noise
3 Longer dephasing times

References: Physical Review A, 76,042319
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Circuit Quantization and anharmonicity
Hamiltonian of transmon qubit:

H = 4ECn
2 −EJ cos δ, cos δ ≈ 1 − δ2

2!
+
δ4

4!
+ · · ·

To lowest order, we have the harmonic oscillator Hamiltonian:

H ≈ 4ECn
2 +EJ

δ2

2 =
√

8EJEC

(
a†a+

1
2

)
Where n, δ is the conjugate pair of position and momentum:

δ =

(
2EC

EJ

)1/4 (
a+ a†

)
,

n = −i
(
EJ

8EC

)1/4 1√
2

(
a− a†

)
.

So the Hamiltonian keeping up to the fourth order of δ is:

H ≈ 4ECn
2 +

EJδ
2

2 − δ4

24 =
√

8EJEC

(
a†a+

1
2

)
− EC

12EJ

(
a+ a†

)4

References: Physical Review A, 76,042319
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Circuit Quantization and anharmonicity
Correct the quartic term for each energy level:

∆Em = ⟨m| − EJ
δ4

24 |m⟩

= −EC

12 ⟨m|
(

a + a†
)4

|m⟩

= −EC

12

(
6m2 + 6m + 3

)
.

Corrected energy level for transmon qubit:
Em = m

√
8EJ EC − EC

12

(
6m2 + 6m + 3

)
.

Lowest energy of transmon qubit,
E10 = E1 − E0 =

√
8EJ EC − EC ,

Anharmonicity:
η = ω21 − ω10 = (E21 − E10) / h̄ = −EC / h̄.

The relative anharmonicity ηr ≡ η
E10

≈ −( 8EJ
EC

)− 1
2 decrease algebraically with EJ /EC .

Charge dispersion decrease exponentially with EJ /EC : (in large EJ /EC approximation)
Em (ng) ≃ Em (ng = 1/4) − ϵm

2 cos (2πng) ,
where ϵm ≡ Em (ng = 1/2)− Em (ng = 0) ϵm ≃ (−1)mEC

24m+5

m!

√
2
π

(
EJ

2EC

)m
2 + 3

4
e−

√
8EJ /EC ,

Exploiting these facts, transmon qubit operates on EJ
EC

≫ 1 (transmon regime).

References: Exploring Quantum Dynamics and Thermodynamics in Superconducting Qubit, M. Naghiloo, PhD Thesis
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Josephson junctions
In the absence of junction nonlinearity, one can solve the normal modes
of the electrical circuit: ∑

m

h̄ωmâ
†
mâm.

Introducing the Bosonic operators for the Josephson phase:

φ̂m,j = φzpf,m,j
(
âm + â†

m

)
,

φzpf,m,j =
1
ϕ0

√
h̄

2ωmCm
.

Introducing the Bosonic operators for the Josephson phase, and Taylor expanding
leads to the expression (note that the quadratic part of the cosine potential gives
rise to the normal modes and is therefore removed from the expansion below).

Ĥ =
∑
m

h̄ωmâ
†
mâm +

∑
j

∑
n≥2

Ej
(−1)n+1

(2n)! φ̂2n
j ,

Ĥ =
∑
m

h̄ωmâ
†
mâm +Ej

[
1 − cos φ̂j −

φ̂2
j

2

]
.
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Paper for next week’s lecture
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Paper for next week’s lecture

What is the Jaynes-Cummings (JC) model between a two-level system and
quantized photons? What is the difference between JC and the semi-classical
atom-light interaction?
How does the physical system studied in the paper map to the JC model
(what are the ”atom” and ”photon cavity”)?
How is the frequency of the ”atom” tuned to match that of the ”cavity”?
How does the measured response change?
What is the definition of the strong coupling regime?
What is the Hamiltonian in the dispersive limit ∆ ≫ g? Describe the
transformation from the JC model to the dispersive limit?
What is the physical meaning of the κ and γ parameters, how are they
related to the measured cavity transmission and phase response in figure 2?
Why is it important to achieve strong coupling regime?
Which of the measurement results indicates the onset of strong coupling?
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