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Josephson Junctions
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Josephson junctions =PrL
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Left: Sketch of a Josephson junction. Top Right: FElectrical symbol.
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Josephson junctions =PFL
Vix)

Y THE DISCOVERY OF TUNNELLING
SUPERCURRENTS

1 £, 2 Nobel Lecture, December 12, 1973

~a +a
2
(¥l
2
°
EoO
°
s
3
3
>
—2
—40 —-20 0 20 40
—a 0 ta Current in microamperes

. . . . Fig. 3. The first published observation of tunnelling between two evaporated-film super-
Figure 8.5 The model potential of the insulator V(x) and the magnitude conductors (Nicol, Shapiro and Smith, reference 6). A zero-voltage supercurrent is
of the wavefunction |¥|. The two superconductors have clearly visible. It was not until the experiments of Anderson and Rowe11 (reference 15)
densities of superconducting electron pairs nj and n3, that such supercurrents could be definitely ascribed to the tunnelling process.
respectively. Furthermore, the phase of the wavefunction 8
can be different for the two superconductors at x = +a.

References: T. Orlando Applied Superconductivity
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Macroscopic Quantum Model for
Josephson junctions

References: T. Orlando Applied Superconductivity, Chapter 5,8
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Reminder: probability current =PrL

Schrédinger equation for a single particle (e.g. an electron) in a potential V(7):

o h2 5
e Vw+V( ).

According to Born's rule, the square of the magnitude of the wavefunction is
interpreted as the probability density of the particle’s position:

@(r’t) = |¢(r’ t)|2 = ¢*(rat)w(rvt)'

This probability density is shown to be conserved by defining a probability current
f, similar to the continuity equation for the case of charge density and electrical
current:

Th—

9%
ot

where the probability current is defined as

=-V-J,,

_ I * *\ *l
Jpz%w Vi — Ve )Re{¢ imv¢}~

Note: The probability current is not a physical quantity and hence not measurable,
in spite of resemblence with the electrical current and the continuity equation.

References: T. Orlando Applied Superconductivity, Chapter 5
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. N el ]
Macroscopic Quantum Model for superconductlwty.:P.-L
Postulates:

@ Existence of carriers that do not scatter (superelectrons)

@ There exists a macroscopic quantum wavefunction, ¥(r,t), that describes
the behavior of the entire ensemble of charge carriers in the superconductor.
Superconductivity is a coherent phenomenon between the electrons. Similar

to a coherent state of photons (laser) that describes a global state of a large
number of photons.

Single particle:

p(r,t) = ¢*(r,t)¢(r,t), ... probability density
/dm/}*(r,t)i/}(r,t) =1— _ s .
Jo =Re {1/) %V@b} . ... probability current
Entire ensemble of particles:
Y*(r,t)¥(r,t) = n"(r,t), ... density of particles
/dv‘F (r,t)¥(r,t) =N" — J.— 9 Re {‘F*EV‘I’}7 . current of charge
m v (physical current)

where N* is the number of particles.

References: T. Orlando Applied Superconductivity, Chapter 5
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Macroscopic Quantum Model =PrL
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Figure 8.5 The model potential of the insulator ¥(x) and the magnitude C C

of the wavefunction |¥|. The two superconductors have

densities of superconducting electron pairs n; and 3,

respectively. Furthermore, the phase of the wavefunction 0

can be different for the two superconductors at x = %a.

References: T. Orlando Applied Superconductivity, Chapter 8
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Macroscopic Quantum Model =PrL
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densities of superconducting electron pairs n; and 13,

respectively. Furthermore, the phase of the wavefunction 6 qublt |5 on the Order Of ~Y 10 nA

can be different for the two superconductors at x = +a.

References: T. Orlando Applied Superconductivity
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Josephson junctions =PrL

Js(r,t) = Je(y, 2,t) sinp(y, 2, t),

where ¢ is known as the gauge-invariant phase difference and is given by

) 2
oy, z,t) = 01(y, 2,t) — O2(y, 2,t) — aﬁ/l A(r,t)-dl
o

opo(y,z,t) 2w [?
. = E(r,t)-dl
ot D, /1 (r?)
The latter equation is known as the Josephson voltage-phase relation.
Consequently,

i=/sing

dp _ 2 -3
dp _ 2
b P,

&

. . T

i = I.sing(t),

The basic Josephson junction as a lumped circuit parameter is
denoted by the crossed symbol in the circuit diagram and is
governed by the two equations shown.

References: T. Orlando Applied Superconductivity
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Josephson junctions =P

TUNNEL
BARRIER

Fig. 2. (a) A Josephson tunnel junction can be modelled as a Josephson tunnel element (cross) in
parallel with a capacitor. (b) Current-flux relation of the Josephson element. The dashed line is the
current-flux relation of a linear inductance whose value is equal to the effective inductance of the
junction.

Relation between phase and flux:
Dy do

t
_ _ N 4l _
0 =27d /Py, (D—/_OOVJ (t)dt, Vi o At

References: Quantum Fluctuations, Les Houches, Devoret 1997
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Josephson junctions switching energy =P

SUPER-

to
rone, ‘:\J> Wiy = / Tvdt
RIER 0
i
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Fig. 2. (a) A Josephson tunnel junction can be modelled as a Josephson tunnel element (cross) in

27 dt
parallel with a capacitor. (b) Current-flux relation of the Josephson element. The dashed line is the
current-flux relation of a linear inductance whose value is equal to the effective inductance of the
Jjunction.

dt

Wio = Dol./27

D1
W;=Wjy,— 20 € cosg

Typical value for W, = 2.067-1071°.5.1078 /27 = 1.65- 10723 J.

References: T. Orlando Applied Superconductivity
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The AC Josephson effect =PrL

+

i=l‘ sin ¢
' 0 de o
] i p(t) = ¢(0) + Vot
[0

The basic Josephson junction as a lumped circuit parameter is
denoted by the crossed symbol in the circuit diagram and is
governed by the two equations shown.

2
i = I,sin {aﬂvot + go(O)] = I.sin [27f 5t + ¢(0)]
o

develops across the junction. This effect is known as the AC Josephson effect and
f7 is the Josephson frequency, given by
V. 2
fr =22 = 2y, = 483.6 x 1012V}, (Hz).
D, h
For a constant driving voltage of 10 1V, the current will oscillate at about 5 GHz.
Because a few microvolts is typical of the lower voltage range applied

References: T. Orlando Applied Superconductivity
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Current-voltage characteristics of a JJ =PrL
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Figure 9.1 Current-voltage characteristic for a constant-current source
driving the Josephson junction at a temperature of absolute
zero. The voltage is time averaged. Curve (a) is for an
increasing driving current and curve (b) is for a decreasing
driving current. Source: Courtesy of D. A. Rudman.

References: T. Orlando Applied Superconductivity
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Generalized Junction Model

A model of a generalized Josephson junction showing the
three parallel channels.

i = I.sing +vG(v) —l—C%

t
. . (Dod@ q)onQO T = —
= lesing +Glo) g mar + O T q>U1
. . 1 ®,dy <I>Od230 _ o
=7 —_—er Rl el 4 TJ
P desinet po T Y a2 2m I

i dy d%p
I, T smet s T A

References: T. Orlando Applied Superconductivity
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Nonlinear Josephson Inductance =P

A model of a generalized Josephson junction showing the
three parallel channels.

i(t) = Lsino(t) + 2.

kinetic inductance L(¢) and Josephson inductance L are given by

® I
2wl cosp  cosp

L(p) =

References: T. Orlando Applied Superconductivity
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SQUID =P

t=1y tij, +ir, tiRr,

=Ilsln<P1+IlSln902+R—1+R—2

. 7"'CI)ext q)ext 1 1
=27 _ t
i C1cos( >, >sm(cp1+ o, )+<R1+R2>v()

TP
I. = 21 cos (T(:Ct)
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Quantizing electrical circuits — basics

References: Steven Girvin Quantum Machines Les Houches
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Quantum LC oscillator EPFL

‘lumped element’ limit where the physical size of the LC oscillator is much smaller
than than the wavelength of electromagnetic waves at the frequency

of the oscillator 1 162 L 1
L=-pr2—-L 22 - 2
2 2C 2 2C
EuIer—Lagrange equation of motion: Conjugate to charge — flux:
§=-wiq, wo=1/VLC CDI%:LQZLI.
Corresponding Hamiltonian
e 1,
H=&¢—- L= 5T + 207
Hamilton's equation of motion:
i— OH & y a) b)
oo L . _ b9
8H q [CI)’ Q] = —ih LQ
= 8(1 —6 = L CTQ|V
And we can write the Hamiltonian: 3
h h
H= =2 (ala+aat) = =2 (2ala+1)

References: T. Orlando Applied Superconductivity
Fall 2024
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Quantum LC oscillator EP

Hamiltonian of an LC oscillator with charge ¢ and flux ®

2 2

q D
H=—"—+—

2C+

Operators of flux and charge

& — % (a+a*) [a,a*} —1

Hamiltonian

References: T. Orlando Applied Superconductivity
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The Cooper Pair Box

References: Impl ion of a superconducting qubit, Cottet, PhD Thesis
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Josephson Junctions =PrL
q)EKI
"3 9 HER ¢ X
L
a) b) c)
(2e)?

) is the charging energy of the island of the box

HereEC:z(CJ—+Cg
IRYARYARYE
E

and Ny = Q, + CyU /2e.

2-
< /M
S 1
N = '\/\_/\/
island o E,
L
01 Eo
Josephson 0 05 1 15 2 25 3
junction

ng=Cng/2€

References: Implementation of a superconducting qubit, Cottet, PhD Thesis
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Josephson Junctions =PrL

Voltage
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Superconducting
Electrode reservoir

/

Superconducting

4 m I I _% Island
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Figure 1.1: The Cooper pair box. Top: Schematic representation of the Cooper pair box and
of its biasing circuit, showing the Josephson junction with energy E; and capacitance Cy,

the superconducting island, the gate, and the gate voltage source V. Bottom: Corresponding
electrical scheme.

References: Implementation of a superconducting qubit, Cottet, PhD Thesis
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Cooper Pair Box (CPB)

Gate Gate
Voltage Electrode

Source
J/

Superconducting
reservoir

Superconducting
l Island
EyCy /
Pair Coulomb energy:
(2€)?
E =
C 202 )

where

Cy=Cy+0Cy

is the total capacitance of the island?.

References: |

Fall 2024

ation of a superconducting qubit, Cottet, PhD Thesis

Charge representation

Let 1 be the operator associated
to the number of Cooper pairs
in excess from neutrality

in the metallic island (more
commonly called “the number
of excess Cooper pairs”).

The eigenstates |n) of 11 verify:

ﬁel = EC (ﬁ— ng)Q,

CyVy
2e

ngz
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Cooper pair box (CPB) =P-L

Charge representation

Gate Gate Superconducting
Voltage Electrode reservoir

Source
/

nn) =nn),n € Z,

~ EJ
Superconducting H‘] - _7 Z |n><n + 1| + |n + 1><n| ’
Y Island nez
XA
g B > ~ 2 Y,
¢ HeleC(n_ng) s Nng = 9°9

2e

() = 3 [Eo (a=m)* el = 2 mhtn +11+ I+ 1(a)
neZ

The spectrum associated to this hamiltonian is discrete and periodic in ny . Let
us call |k) the energy eigenstates and E}, their associated energies:

H (ng) |K) = Exlk).

References: Impl ation of a superconducting qubit, Cottet, PhD Thesis
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Cooper Pair Box (CPB) =PrL

H(ng)=3" [EC (n—ng)? o) (] — 2 (I} (n + 1 + |n+1><n|>}
nez

Figure 1.2: Full lines: FEigenenergies of a Cooper pair box with Eqc = Ej, calculated by diag-
onalizing the hamiltonian B in the charge representation, in a subspace of 10 charge states.
Dotted lines: Electrostatic energies of the charge states. Note that the degeneracies between the

energies of neighbouring charge states occurring at ng = % [mod 1] are lifted by the Josephson
coupling.

References: Implementation of a superconducting qubit, Cottet, PhD Thesis
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Cooper Pair Box (CPB) =PrL
Phase representation

Conjugate of a 2e-quantized charge

According to the BCS theory, the conjugate of the number N of Cooper pairs in an electrode is
the superconducting phase 9 of the electrode. The conjugate of the number N of Cooper pairs
having passed through a Josephson junction, is the superconducting phase difference ) through
the junction. Let us note |#) the eigenstates of 9

810y =010) ,

with 6 € R . In the BCS theory, the discreteness of N causes that |6) and |6 + 27) have the
same physical meaning. As a consequence, in order to describe the states of the node or branch,
it is enough to work on the basis {|6),6 € [0, 2x[} .

Quantized charge case

In the case of a quantized number of charge 1, the relations (1.82) must include the charge
@ = 2en . The relationship between the superconducting phase ) conjugated to fi and the flux
@ included in the Equations (1.83) and (1.84) is:

= 5/(,00 [mod 27] . (1.85)

References: Implementation of a superconducting qubit, Cottet, PhD Thesis (Chapter 1)
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Quantum fluctuations in a Josephson junction =PrL

The superconducting tunnel junction can be modeled by a capacitor in parallel with a
pure tunneling element, the Josephson junction. The Cooper pairs that tunnel through
the junction can be expressed in the charge basis

Qs(t) = —2eN(t), N =3, NIN)NI.

Josephson junction Phase operator

+ iNG§ 1 [2m —iN§ T .
|0) = N‘fioo e"V°|N), |N)= ﬁfo dée=*°08), [6,N] =1
2w
: . ; 1 ;
Introducing the operator: ¢i|N) = Z/ dpei?| ) (6| N)
8 1 2m iS5 02
7 7 g
= — dde”|6) (6 1 i i
© = om J, W0 - 2—/ a6e?|6) 3 e~ M (MIN)
™ 0 ;
Yields: G
o~ _ L ip —iM$s
PNy = [N —1) = Q,T/O daeitlg) Y e iMoo
Note, in contrast to quantum optics, o M
where no phase operator can be 1

- dgei®eN?|g)

defined, phase and n umber operator o o
are here canonically conjugate o
operators as N can be negative. _ 1 dge— i (N=1d|gy — N —1)
21
References: Les Houches 1997 Quantum Fluctuations, Devoret 0
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Hamiltonian Description of the Josephson Junction =PrL

Hamiltonian of the Josephson tunnel Junction using the phase operator
= ~ 1h

HJZ—EJCOS5, EJ:—_2GtA,

e

where A is the superconducting gap and Gy the tunnel conductance in the normal.

Re-expressing the Hamiltonian in the charge Basis of cooper pairs (N) that tunnel
through the junction.

~ E; 1 [27 ) )
Hy = ——J—/ do [e’5+e_“1 |6)(6],
0

2 27
~ ~ 1 [
Ny =[N —1), P =_— [ dée?5)(d],
2 0
. E; ¥
Hy=-—~ > UNNN + 1] +|N +1)(N]].
N=—00

References: Les Houches 1997 Quantum Fluctuations, Devoret
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The phase representation

Properties of conjugate variables

Because of the circular topology of the phase space associated to ?, physical expressions can
only contain @ through trigonometric expressions. The analog of formulas (1.72) are the Fourier
transforms between the eigenstates {|n),n € Z} of i and the eigenstates {|8) ,0 € [0, 2x[} of &

[51):
L L 2
0) = —— ) exp(ifif) n) & n) = — [ dfexp(—ind) |0) . 1.74
0= /5 S ewad) n) & ) m/ xp(—i) [0) @
This relation ensures the validity of some fundamental properties likes the translational rela-
tions:
exp(ipf) [n) = |n+p) (1.75)
and
exp(—ifon) |0) = |6 — ) , (1.76)
with p € N and 6, € R . It also infers that i can be expressed in the phase space as:
~ 10
B=s55 (L.77)
and that 8 can be expressed in the charge space as:
s_.0
9= [ (1.78)
Eventually, for any observable A, N
PPN A
[A, H] = ih% , (1.79)
2.1 04
[A, ] =i, (1.80)
and: N
o L0A
[ ,9] =i - (1.81)
References: Impl ation of a superconducting qubit, Cottet, PhD Thesis (Chapter 1)
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Contrast with phase operator in quantum optics =P L

For a harmonic oscillator (in particular the electromagnetic field) with the
Hamiltonian B = hw (dT& + %) , it is possible to define a “phase operator”
in analogy with the classical case:

a = eV,

at = Vae ™,

with 2 = afa and @ being the hypothetical Hermitian phase operator.

This operator satisfies many identities similar to the previously defined
superconducting phase operator 0, namely [ﬁ,é] = 1, But careful calculation
reveals that it is in fact not a well definAed Hermitian operator. For example it is
easy to show the commutator [¢’?, e~*] is not equal to zero (see the exercise),
which is a sign of inconsistency. This inconsistency in fact arises dew to fact that
the Hilbert space for the harmonic oscillator is given by n € IN. In the case

of the superconducting phase the Hilbert space of the Cooper pares also extends
to negative values, allowing the well defined phase operator.

References: [1] P. A. M. Dirac, The Quantum Theory of the Emission and Absorption of Radiation, Proc. R. Soc. Lond., A 114 (1927), 243. [2] Quantum
Optics, D.F. Walls, Gerard J. Milburn Chapter (2)
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Cooper pair box (CPB)

Phase representation

016) = 0l6) 0) = 16+ 2r)
exp(:l:ié)|n> =|n+1) h= %%

Hamiltonian in the phase representation

19 2
H (ng) = Ec (I% —ng> — Ejcos(0)

¥ (0) = (0lF)

2
Ec (1 0 —”g) Yi(0) — Eycos(0)¥r(0) = Ep¥i(0)

i00
‘Fk(a) = “Pk(g + 27T)

References: Implementation of a superconducting qubit, Cottet, PhD Thesis (Chapter 1)
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Cooper pair box (CPB) =P~

the function
©r(0) = exp(—ingd) ¥x(0)

is a solution of the equation:

B 2 0) — By cos0)pul0) = Bion(0). (118)
The equation (1.18) takes the form of a Mathieu equation:
BZ(;) —2gcos(22)y(z) = —ay(z) , z € |—00,+o0[ , (1.19)
with
0 =2z, y(z) = ¢r(22), g = —2E;/Ec, a=4E,/Ec . (1.20)

The solutions of this equation are analytically known [44]. The Mathieu functions® M¢(a,g,2)
and Mg(a,g,2), are the textbook solutions of (1.19) respectively even and odd in z . Note that
when ¢ = 0, these Mathieu functions are simply:

Mc(a,0,2) = cos(v/az)
Ms(a,0,2) = sin(v/az) .

(1.21)

References: Implementation of a superconducting qubit, Cottet, PhD Thesis (Chapter 1)
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Cooper pair box (CPB) =P
N =12
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Fig. 3. Eigenenergies (middle panels) and wavefunctions of the |0) and |1) states in the charge
and phase representations, for Ny = 0 (left panels) and for N, = 1/2 (right panels), and for
E;/E¢ ratios equal to 0.1 (top panels) and 1 (bottom panels). The ¥, (V') eigenvectors are directly
represented since they can be chosen real, whereas the ¥, (6) wavefunctions are represented by their
modulus squared.

References: JOSEPHSON QUANTUM BITS BASED ON A COOPER PAIR BOX, Denis Vion
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Josephson junctions =PrL
y ld(pA)

Te=2ns
: T gAY W
) S | :
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Coherent control of
macroscopic quantum states
in a single-Cooper-pair box

Y. Nakamura®, Yu. A. Pashkint & J. S. Tsai*

* NEC Fundamental Research Laboratories, Tsukuba, Tbaraki 305-8051, Japan
+ CREST, Japan Science and Technology Corporation (JST), Kawaguchi,
Saitama 332-0012, Japan

Figure 4: Coherent manipulation of the quantum state of a Cooper pair boz, in the experiment
of Y. Nakamura et al. [19]. Left panel: Simplified electrical scheme of the experiment. A fast
voltage pulse is applied to the gate to bring the system at the charge degeneracy point n,= 1/2.
The sudden change of the hamiltonian induces Rabi oscillations between the |0) and |1) states

during the pulse duration 7. Right panel: Oscillations of the occupation probability of state |1)
are revealed by oscillations of the current probe 14 with 7.

References: Nakamura Science

Fall 2024 Quantum Electrodynamics and Quantum Optics: Lecture 6 36 / 44



Josephson junctions =P~

Energy
=

Figure 5: Spectroscopy of the Cooper pair boz. The energy difference between states |0) and |1)
is measured by applying to the gate continuous radiofrequency signals at different frequencies
and by sweeping the gate charge ny. Top panel: A resonant increase of the current I; through
the probe junction (see text) is observed when ng is such that the energy difference matches
the applied frequency. Bottom panel: Energy diagram illustrating the ezcitation of the box by
radiofrequency irradiation. Solid lines represent eigenenergies of the box whereas dashed lines

show the electrostatic energy of charge states.

References: Implementation of a superconducting qubit, Cottet, PhD Thesis
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Josephson junctions

Manipulating the Quantum
State of an Electrical Circuit

D. Vion,* A. Aassime, A. Cottet, P. Joyez, H. Pothier,
C. Urbina,t D. Esteve, M. H. Devoret}

We have designed and operated a superconducting tunnel junction circuit that
behaves as a two-level atom: the "q ." An arbitrary ion of its
quantum state can be programmed with a series of microwave pulses, and a
projective measurement of the state can be performed by a pulsed readout
subcircuit. The measured quality factor of quantum coherence Q_ = 25,000 is
sufficiently high that a solid-state quantum processor based on this type of
circuit can be envisioned.

References: D. Vion, et al. Science

antum Electrodynamics and Quantum Optics: Lecture 6

A
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1 2By 2C
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Fig. 1. (A) Idealized circuit diagram of the quantronium, a quantum-coherent circuit with its tuning,
preparation, and readout blocks. The circuit consists of a Cooper pair box island (black node)
delimited by two small Josephson junctions (crossed boxes) in a superconducting loop. The loop
also includes a third, much larger Josephson junction shunted by a capacitance C. The Josephson
energies of the box and the large junction are £, and ,.. The Cooper pair number N and the phases
5 and v are the degrees of freedom of the circuit. A d¢ voltage U applied to the gate capacitance
€, and a dc current I, applied to a coil producing a flux & in the circuit loop tune the quantum
energy levels. Microwave pulses u(t) applied to the gate prepare arbitrary quantum states of the
circuit. The states are read out by applying a current pulse /,(t) to the large junction and by

monitoring the voltage V(t) across it. (B) Scanning electron micrograph of a sample. (C) Signals
involved in quantum state manipulation and measurement. Top: Microwave voltage pulses u(t ) are
applied to the gate for state manipulation. Middle: A readout current pulse /,(t ) with amplitude /,
is applied to the large junction t, after the last microwave pulse. Bottom: Voltage V(t) across thé
junction. The occurrence of a pulse depends on the occupation probabilities of the energy
eigenstates. A discriminator with threshold V,,, converts V(t) into a boolean output for statistical
analysis.
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The transmon qubit =PrL

Transmon: a transmission-line shunted plasma oscillation qubit
(b) E;/Ec =5.0
A2 Lyffe =00

E;/Ec=1.0
@ I 100 |(a)| = T
- I er
in) C 3
) g
@ L. C. Cp—— o
2 B o ' 2 =3 Bl o 1 2
I(c) |E']./E? = 10‘.0 . ,(d)‘EJ./EF . 50[‘0 i
AT F <
ey
o' ‘ Y
i ~8E;Ec A
0 ' 0 Y
2 1 0 1 2 2 1 0 1 2
Tg g

@ Large ratio of Josephson energy to charge energy
E;/Ec

@ More insensitive to charge noise

© Longer dephasing times

References: Physical Review A, 76,042319
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Circuit Quantization and anharmonicity

Hamiltonian of transmon qubit:
R
H = 4Ecn® — Ejcosd, cos6~1——-|- Tt

To lowest order, we have the harmonic oscillator Hamlltonlan:

62 1
H =~ 4E0n2 +EJ3 =+/8EjFE¢ (aTa—l— 5)

Where n, § is the conjugate pair of position and momentum:
260\ 4
o= (%) (o).

i) )

So the Hamiltonian keeping up to the fourth order of § is:

4
H~4Fcn —I—@—é— \/8EJEC<aTa+%)

24

__Ec (a+a1)4

12E,

References: Physical Review A, 76,042319
Fall 2024 Quantum Electrodynamics and Quantum Optics: Lecture 6 40 / 44



Circuit Quantization and anharmomuty .:P.-L

57
Correct the quartic term for4each energy level: X — E,(1coso)
— E¥2-Ep24 |

1)
BBy = (m| — By S|m) ‘
E 4 S 3l
— =S ml (a+al) jm) N\
E &2
=-== (6m +6m + 3) NS P
12 1t Harmor Transmon -
Corrected energy level for transmon qubit: oscillator EE =40
E . )
Em =ma/8E;Ec — —< <6m2+6m+3> . 0-3 2 -1 0 1 2 3
12 3 (Rad)
Lowest energy of transmon qubit, Anharmonicity:

Ev=FE1—Ey=+/8EjEc —Ec, mn=wy —wip=(FE2n—F)/h=—-Ec/h.

1
The relative anharmonicity 7, = Fnﬁ ~ —(STECL)_E decrease algebraically with E;/E¢o.

Charge dispersion decrease exponentially with E;/E¢: (in large E;/Ec approximation)

Em (ng) = Em (ng = 1/4) — < COS(Z“”Q) m 24'+5 s (B, \2 _sEBG
where € = Em (ng = 1/2) — Emp (ng = 0) em = (-1)"Eo \/;(QEC) ¢ ’

Exploiting these facts, transmon qubit operates on %CL > 1 (transmon regime).

References: Exploring Quantum Dynamics and Thermodynamics in Superconducting Qubit, M. Naghiloo, PhD Thesis
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Josephson junctions =PrL

In the absence of junction nonlinearity, one can solve the normal modes

of the electrical circuit:
> hewmal, .
m

Introducing the Bosonic operators for the Josephson phase:

@m,j = Pzpf,m,j (&m + a;rn) s

1 [ &
Peplimij = ¢0 2wm, m.

Introducing the Bosonic operators for the Josephson phase, and Taylor expanding
leads to the expression (note that the quadratic part of the cosine potential gives
rise to the normal modes and is therefore removed from the expansion below).

n+1

o= Zhwma am+ZZE A2n7

j n>2

A=Y hwpa,am + E;

2
1—cospj— %] .
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Paper for next week's lecture =P~

Strong coupling of a single photon
to a superconducting qubit using
circuit quantum electrodynamics

A. Wallraff', D. 1. Schuster’, A. Blais', L. Frunzio', R.- S. Huang'?,
J. Majer', S. Kumar', S. M. Girvin' & R. J. Schoelkopf'

' Departments of Applied Physics and Physics, Yale University, New Haven,
Connecticut 06520, USA
2Department of Physics, Indiana University, Bloomington, Indiana 47405, USA
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Paper for next week's lecture =Pr-L

@ What is the Jaynes-Cummings (JC) model between a two-level system and
quantized photons? What is the difference between JC and the semi-classical
atom-light interaction?

@ How does the physical system studied in the paper map to the JC model
(what are the "atom” and "photon cavity")?

@ How is the frequency of the "atom” tuned to match that of the "cavity"?
How does the measured response change?

@ What is the definition of the strong coupling regime?

@ What is the Hamiltonian in the dispersive limit A > g7 Describe the
transformation from the JC model to the dispersive limit?

@ What is the physical meaning of the x and  parameters, how are they
related to the measured cavity transmission and phase response in figure 27

@ Why is it important to achieve strong coupling regime?
@ Which of the measurement results indicates the onset of strong coupling?
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