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Hong-Ou-Mandel effect
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Hong-Ou-Mandel effect

Quantum mechanical calculation:
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Beam Splitter and Indistinguishable Photons
By injecting indistinguishable single photons to each port of the beam splitter, we will have a

pair of photons in the output ports. The state |1),|1), does not appear!
|1/)>1n - |1 |1>2 = ﬁ.{ﬁ;|0>1|0>2
1)

3\ L 1 1 m
4 V2 \ -1 1 > i
and the fact that the vacuum state is the same before and after BS: )
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Hong-Ou-Mandel effect with differently polarized photons

Output state

Consider the case where two single photon states with orthogonal polarization (H, V) enter a
50:50 lossless beamsplitter from port 1 and port 2 individually. The output joint state in port
3 and port 4 can be written as:

[W)out = 128 y10)1[0): 1)
2 (@ + it ) iy +)]0)1[0) @)
%(% iy + 8 sy — 04 Bl + i) ol )]0)1]0)2 (3)
= JGILH)S|L V)s + [LH)s|L V) — [LV)s[LH)s +ilLHYIL V) (9)
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Wigner Function (E. Wigner, Phys.Rev. 40, 1932)

JUNE 1, 1932 PHYSICAL REVIEW VOLUME 40

On the Quantum Correction For Thermodynamic Equilibrium

By E. WiGNur
Department of Physics, Princeton University
(Received March 14, 1932)

The probability of a configuration is given in classical theory by the Boltzmann
formula exp [— V/AT] where Vis the potential energy of this configuration. For high
temperatures this of course also holds in quantum theory. For lower temperatures,
however, a correction term has to be introduced, which can be developed into a power
series of h. The formula is developed for this correction by means of a probability func-
tion and the result discussed.
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transformations, one can choose any matrix or operator-representation for
the Q and H. In building the exponential of H one must, of course, take into
account the non-commutability of the different parts of H.

2

It does not seem to be easy to make explicit calculations with the form
(4) of the mean value. One may resort therefore to the following method.

If a wave function ¥(x; - - - x,) is given one may build the following
expression?

Py, -y @i p1s - 5 Pa)
I\ po
=(;) .L’-"fdyx“-dyn\b(x1+y1-..xn+yn)"

Y(H1 = 1+ - X — Ya)ediwetekpam [k (5)
and call it the probability-function of the simultaneous values of x; - - - x,
for the coordinates and p; - - - p, for the momenta. In (5), as throughout
this paper, & is the Planck constant divided by 27 and the integration with
respect to the y has to be carried out from —o to . Expression (5) is,
real, but not everywhere positive. It has the property, that it gives, when
integrated with respect to the p, the correct probabilities |W(w: - - - %) |2
for the different values of the coordinates and also it gives, when integrated
with respect to the x, the correct quantum mechanical probabilities

f - f Yy - - - e iaret b gy - dig,

2

for the momenta py, - « -, p.. The first fact follows simply from the theorem
about the Fourier integral and one gets the second by introducing xx+y:
=uy; xr—Yr=0xinto (5).
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Wigner Function®
Wigner function, the phase-space quasi-probability density
R _ L 1 LN i g
Wa(q,p) = 2n/_oo <6/+2q q 2q>e dq

This function uniquely defines the state and directly relates to the quadrature histograms
measured experimentally via

A

P

Pr(qe,0) = /_ Wiet(gg cos 0 — pp sin 6, g sin 6 + py cos 0)dpy.

mo,pP)

The experimentally measured probability density
Pr(qe,0) is the integral projection of the Wigner

function W;(g,p) onto a vertical plane defined by the
phase of the local oscillator.

lLvovsky, Alexander |., and Michael G. Raymer. " Continuous-variable optical quantum-state tomography.” Reviews of Modern Physics 81.1 (2009): 299.
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Quantum State Tomography

W(p,q) is a joint probability function for the p and § operators:

Marginals
Pr(gy) = <’7¢‘ P ’Q¢> = [* W(p,q)dpy, where
G = fcos(¢) +psin(¢), Py = —qsin(¢) +pcos(¢)
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Quantum State Tomography

Motivation

To reconstruct a quantum state of light, we cannot directly measure p,, with a photo-detector
but we can measure Pr(Xjy) and reconstruct the full Wigner function. For rotationally
symmetric states e.g. Fock states the reconstruction becomes Abel transform?:

X = (Xol p|Xo) = (X| UjpUp |X)

Pr(Xy) = / W (po, qe)dpe

_ 1 edPr(qp) 5 5 ap
WO == [ =g =) g,

2Vogel, W., Welsch, D.G. " Quantum Optics” (2001). Chapter 7
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Wigner Function and Parity Operator

Alternative expression for the Wigner
function3

Wigner function as the expectation value of a parity operator

Wirp) = 5 [ ak [ase 5 (ple i |y)

2 a
— _ <lp ‘ | Ii’p ‘ lp> Centre de Recherches Mathématiques, Université de Montréal, Montréal H3C 3J7, Canada

(Received 30 August 1976)

) It is pointed out that the Wigner function f(r, p) is 2/h times the expectation value of the parity operator that
performs reflections about the phase-space point r, p. Thus f(r, p) is proportional to the overlap of the wave

function § with its mirror image about r, p; this is clearly a measure of how much s is centered about r, p, and

Wh ere Hrp — D ( r, p)H D—l ( 1", p) | s a dl S pl ace d the Wigner distribution function now appears phyrically more meaningful and natural than it did previously.
parity operator 11, which acts as follows

>

- =
I

—R

—-pP

= =

p

3Moyal JE. Quantum mechanics as a statistical theory. Mathematical Proceedings of the Cambridge Philosophical Society. 1949;45(1):99-124.
doi:10.1017/50305004100000487
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State Reconstruction

Inverse Radon transformation
1 7T 0 .
Waet(q,p) = ﬁ/o L Pr(ge,0) x K(qcos + psin® — gq)dged6

with the integration kernel K(x) = 3 [ |Z[e®®*dg. The density matrix can then be
reconstructed using the pattern function method.

Maximum likelihood reconstruction
L = HiPI“@(qi, 91)

is the likelihood function given the measured data set {(g;,6;)} where g is the density matrix
to be optimized.

Fall 2024 Quantum Electrodynamics and Quantum Optics: Lecture 5 11 /21



State Reconstruction

6 8 10 12 14 0 2 4 6 8 10 12 14
n n
Quantum optical state estimation from a set of 14152 experimental homodyne
measurements by means of (a) the inverse Radon tranformation and the pattern-function
method and (b) the likelihood maximization algorithm. The Wigner function and the
diagonal elements of the reconstructed density matrix are shown.

Fall 202

The original Radon transformation paper in German.
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State Reconstruction Experiment*

pr(X)
pr(P)
1 2 X
FIG. 1. Theoretical phase space quasiprobability density

(Wigner function) of the single-photon state |1): W(X,P) =
2[4(X2 + P2) — 1]e720+P) X = (a + a')/y/2 and P =
(a — ilf)/\/ii are normalized noncommuting electric field
quadrature observables. Single-quadrature probability densities
(marginal distributions) are also displayed.

FIG. 3. Effect of the nonperfect measurement efficiency n on
the marginal distribution (a) and the reconstructed WF (b). For
the WF, cross sections by the plane P = 0 are shown. Negative
values require > 0.5.

4Lvovsky, Alexander |, et al. "Quantum state reconstruction of the single-photon Fock state.” Physical Review Letters 87.5 (2001): 050402.
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State Reconstruction Experiment

pulsed laser

trigger beam (a) Orawsdata13ar2p|es 5(x1os1)0 (;,)0 = o
10> 1> 05
doubler . S |
+
- down SPatlafl“ tseprec::tral .
\\tonverter
trigger

local oscillator

\ ‘ detector
N

M «\\ FIG. 4. Experimental results: (a) raw quantum noise data for

signal beam

\ the vacuum (left) and Fock (right) states along with their his-
homOdy ne tograms corresponding to the phase-randomized marginal distri-
detector butions; (b) diagonal elements of the density matrix of the state

measured; (c) reconstructed WF which is negative near the ori-
gin point. The measurement efficiency is 55%.

FIG. 2. Simplified scheme of the experimental setup.
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Two Mode Squeezed Vacuum State

A ot _rab
Stwo-mode =e" b =rib

¥) = o L (k)" o)

n=0

Wave-function associated with the state:

(QuQuf%) = —=exp(~3¢¥(Q1— Q2 — 3 ¥ (@1 + Qo))

(P1, P,[Y) =

1 1 1
ﬁ exp (—Zezr(Pl — P2)2 — Ze_zr(Pl aF P2)2>
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Two mode squeezed vacuum state

X,
—4 4 4 —4
—4 -4
b) X3 Py
4 4
2
XA
—4 2 4 4
-4 -4
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Covariance matrix

Since squeezed states are Gaussian states (with Gaussian statistics), 4 numbers characterize
their full state: {Viy, Vi, Vi, Vi }

Definition of covariance matrix
(5(17 + ?5() = 2(5() (Y)
2AX2

vac

ny =

From covariance matrix one can determine the amount of entanglement (" Logarithmic
negativity” : The logarithmic negativity is an entanglement measure which is easily
computable and an upper bound to the distillable entanglement).
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Indistinguishable Photons From a Single-Photon Device®

a a
3
s
z
%
g
E
Dot 1: 89 ps
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b Time after pulse (ns)
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T=t,~t; (ns) Path-length difference (ns)

5Santori, C., Fattal, D., Vugkovi¢, J. et al. Indistinguishable photons from a single-photon device. Nature 419, 594-597 (2002)
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Indistinguishable Photons From a Single-Photon Device

a Photon counters 0.50

Nonpolarizing
g beam splitter 025l

2ns / 2ns+ At

1 J

Single-mode
fibre

Dot 1: 80 ps

0.50 %

N =

N Retroreflectors
0.25

Dot 2: 187 ps

Opposite output probability

0.50

0.25

Dot 3: 378 ps
-0.4 -0.2 0 0.2 0.4
Delay offset (ns)

T=t,~t; (ns)
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Paper for next week

PHYSICAL REVIEW A 76, 042319 (2007)

Charge-insensitive qubit design derived from the Cooper pair box

Jens Koch,1 Terri M. Yu,1 Jay Gamhena A. A Houck D. 1 Schuster J. Majer,l Alexandre Blais,2 M. H. Devm‘el,l
S. M. Girvin,' and R. J. Schoelkopf"
lDepaﬂments of Physics and Applied Physics, Yale University, New Haven, Connecticut 06520, USA
2Dé)mrtement de Physique et Regroupement Québécois sur les Matériaux de Pointe, Université de Sherbrooke, Sherbrooke, Québec,
Canada JIK 2R1
(Received 22 May 2007; published 12 October 2007)

Short dephasing times pose one of the main challenges in realizing a quantum computer. Different ap-
proaches have been devised to cure this problem for superconducting qubits, a prime example being the
operation of such devices at optimal working points, so-called “sweet spots.” This latter approach led to
slgmﬁcant improvement of T, times in Cooper pair box qubits [D. Vion et al., Science 296, 836 (2002)]. Here,
we i duce a new type of sup d qubit called the “transmon.” Unlike the charge qubit, the transmon
is designed to operate in a regime of significantly increased ratio of Josephson energy and charging energy
E,;/Ec. The transmon benefits from the fact that its charge dispersi ially with E,/Ec,
while its loss in anharmonicity is described by a weak power law. As a result, we predlct a drastic reduction in
sensitivity to charge noise relative to the Cooper pair box and an increase in the qubit-photon coupling, while
maintaining sufficient anharmonicity for selective qubit control. Our detailed analysis of the full system shows
that this gain is not compromised by increased noise in other known channels.

DOI: 10.1103/PhysRevA.76.042319 PACS number(s): 03.67.Lx, 74.50.+r, 32.80.—t
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Questions for this week's paper

What's the expression for Wigner function the authors use?
What measurement data is taken and how is it used to reconstruct the Wigner function?
How does measurement efficiency impact the result?

How does signal-LO mode-matching influence efficiency in homodyne detection?

Why do they use a doubler and down-converter as a source of single photons?

°

°

°

°

@ Why a single laser is used for both the local-oscillator and the signal?
°

@ How does the spatial-temporal pulse shape of single photon match LO?
°

How is the density matrix reconstructed? What is the physical meaning of the
off-diagonal values of the density-operator?
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