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QuTiP1

QuTiP is an open-source software for simulating the dynamics
of open quantum system. QuTiP aims to provide user-friendly
and efficient numerical simulations of a wide variety of
Hamiltonians, including those with arbitrary time-dependence,
commonly found in a wide range of physics applications such
as quantum optics, trapped ions, superconducting circuits,
and quantum nanomechanical resonators.

1Refer to http://qutip.org
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QuTiP2

2Refer to http://qutip.org
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Squeezed States Review3

Squeezing operator

Ŝ(ξ) = e
1
2 (ξ
∗ â2−ξâ†2)

We can also re-express ξ = reiθ in terms of µ = cosh r and ν = eiθ sinh r. Without giving full
operator “disentangling” calculation, this is equal to the following normally ordered expression

Ŝ(ξ) = e−
ν

2µ â†2

(
1
µ

)n̂+ 1
2

e
ν∗
2µ â2

.

Hence, the vacuum squeezed state can be expressed as

|ξ, 0〉 = 1
√

µ
e−

ν
2µ â†2
|0〉

which is also called two photon coherent state.

3Quantum Optics W. Vogel Chapter 3
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Squeezed States Review

Squeezing operator : position / momentum basis

Starting from the transformation of the quadrature under the squeezing operator :

Ŝ†(ξ)(Ŷ1 + iŶ2)Ŝ(ξ) = Ŷ1e−r + iŶ2er,

we can derive the transformation of the x̂ and p̂ in the Heisenberg picture. Indeed

x̂sq = Ŝ†(ξ)x̂Ŝ(ξ) = e−rx̂

p̂sq = Ŝ†(ξ)p̂Ŝ(ξ) = erp̂.

Now in the Schrödinger picture, this leads to rescaled coordinates

ψsq(x) = 〈x|Ŝ(ξ)|ψ〉 = er/2ψ(erx)

ψ̃sq(p) = 〈p|Ŝ(ξ)|ψ〉 = e−r/2ψ̃(e−rp),

where ψ̃ is the Fourier Transform of ψ.
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Squeezed States Review

Squeezing operator : position / momentum basis

This last step is straightforward using the resolution of identity 1 =
∫

dx |x〉 〈x|,

〈x̂〉sq = 〈ψsq|x̂|ψsq〉 =
∫

dx x
∣∣∣ψsq(x)

∣∣∣2 = 〈ψ|Ŝ†(ξ)x̂Ŝ(ξ)|ψ〉 = e−r 〈x̂〉

= e−r 〈ψ|x̂|ψ〉 =
∫

dy ye−r ∣∣ψ(y)∣∣2 =
∫

dx xer ∣∣ψ(erx)
∣∣2 =

∫
dx x

∣∣∣er/2ψ(erx)
∣∣∣2 ,

where we used y = erx.

Squeezing operator : Fock states

Since even Fock states are...even ψ2n(x) = ψ2n(−x) and odd Fock states are odd
ψ2n(x) = −ψ2n(−x), and the squeezing operator is actually a scaling operator for the
coordinates (does not modify the parity), odd component of a squeezed vacuum state vanish
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Photon Number Distribution of a Squeezed State
The photon number distribution

pn = 〈n| Ŝ(ξ) |0〉 (1)

In position representation

pn =

∞∫
−∞

〈n|x〉 · 〈x| Ŝ(ξ) |0〉 dx = (2)

=

∞∫
−∞

ψn(x) · er/2ψ0(erx)dx (3)

Since ψn(x) is even (i.e. symmetric
ψ(x) = ψ(−x)) for even n (including n = 0),
pn vanishes for odd n.
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Quadrature Representation

Optical quadratures

X̂1 =
1
2
(â + â†)

X̂2 =
1
2i
(â− â†) [X̂1, X̂2] =

i
2

or more generally

X̂ϕ = âeiϕ + â†e−iϕ [X̂ϕ, X̂ϕ+ π
2
] = 2i

The fluctuations of the quadraturea X̂ϕ are
〈

∆X̂2
ϕ

〉
≡
〈

X̂2
ϕ

〉
−
〈

X̂ϕ

〉2
, and without proof:

〈
β, ξ
∣∣∆X̂2

ϕ

∣∣β, ξ
〉
= |µeiϕ − νe−iϕ|2 = |µ− |ν|e2iϕ+θξ |2

anote that different definitions exist e.g. 1
2 ; 1√

2
; 1.
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Quadrature Representation

〈
β, ξ
∣∣∆X̂2

ϕ

∣∣β, ξ
〉
= e2r enhanced fluctuations〈

β, ξ
∣∣∆X̂2

ϕ+ π
2

∣∣β, ξ
〉
= e−2r supressed fluctuations

Can be measured using homodyne detection
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Fall 2024 Quantum Electrodynamics and Quantum Optics: Lecture 3 9 / 17



Homodyne Detection4

Ê1(r, t) = i
(

h̄ω

2Vε0

)1/2

(âe−i(kr+ωt) − â†ei(kr+ωt))

The beamsplitter output operator obeys ĉ =
√

ηâ +
√

1− ηb̂. The photodetection current in

the output mode Ic ∝ 〈N̂〉 = 〈ĉ†ĉ〉 can then be calculated as:

Ic ∝
〈

ĉ†ĉ
〉

∝ η
〈

â†â
〉
+ (1− η)

〈
b̂†b̂
〉
+
√

η(1− η)(〈â〉〈b̂†〉 − 〈â†〉〈b〉).

Notice that 〈âb̂†〉 = 〈â〉 〈b̂†〉, assuming the states associated with â and b̂ are uncorrelated.

Let input mode b̂ be in a relatively large coherent state
∣∣β〉 = ∣∣∣|β|eiϕ

〉
compared to Ê1, one

can measure arbitrary quadrature X̂ϕ:

⇒
〈

ĉ†ĉ
〉
= (1− η)|β|2 + |β|

√
η(1− η)

〈
âe−iϕ + â†eiϕ

〉
︸ ︷︷ ︸

∝〈X̂ϕ〉

4Scully, M.O., Zubairy, M.S. ”Quantum optics” (1999). Chapter 4
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Noise Properties of Squeezed State5,6

5Quantum Optics - Marlan O. Scully, M. Suhail Zubairy - Chapter 2

6Breitenbach, G., Schiller, S. & Mlynek, J. Measurement of the quantum states of squeezed light. Nature 387, 471–475 (1997).
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Intensity autocorrelation7, 8

In photodectection one can also measure the intensity
autocorrelation function〈

: Î(t + τ)Î(t) :
〉
=
〈

â†(t)â†(t + τ)â(t + τ)â(t)
〉

.
It is utilized in the Hanbury-Brown-Twiss interferometer
to retrieve phase information by beating photocurrents.

7Quantum Optics - Marlan O. Scully, M. Suhail Zubairy - Chapter 4

8Hanbury Brown, R.; Twiss, Dr R.Q. (1956). ”A Test Of A New Type Of Stellar Interferometer On Sirius”. Nature. 178: 1046–1048.
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Review of Density Matrix9

Density matrix and probabilities

For a pure state
〈

M̂
〉
=
〈
ψ
∣∣ M̂

∣∣ψ〉, ρ̂ ≡ ∑i p(i)
∣∣ψi
〉 〈

ψi
∣∣

For a mixed state
〈

M̂
〉
= ∑i p(i)

〈
ψ
∣∣ M̂

∣∣ψ〉 = Tr(ρ̂M̂).

Tr(ρ̂M̂) = ∑
n

∑
i

p(i)
〈
n|ψi

〉 〈
ψi|M̂|n

〉
= ∑

n
∑

i
p(i)

〈
ψi
∣∣ M̂ |n〉 〈n|ψi〉︸ ︷︷ ︸

ψi

= ∑ p(i)
〈

ψi|M̂|ψi

〉
=
〈

M̂
〉

.

9Stochastic Methods Gardiner Chapter 10
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Review of Density Matrix

Density matrix and probabilities

Properties: Tr(ÂB̂Ĉ) = Tr(ĈÂB̂) cyclic
(i) Trρ̂ = 1 for ∑i p(i)

〈
ψi|ψi

〉
= ∑ p(i) = 1

(ii) Pure state ρ̂2 = ρ̂
Time evolution:

ih̄∂tρ̂ = [Ĥ, ρ̂] von Neumann Equation

ρ̂(t) = e−iĤt/h̄ρ̂(0)eiĤt/h̄

We can express the density matrix in Fock states basis

ρ̂ = ∑
n,m

ρn,m |n〉 〈m| = ∑ 〈n| ρ̂ |m〉 |n〉 〈m| .
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Phase Space10

Alternatively, one can express it in coherent state basis by inserting 1 = 1
π

∫
|α〉 〈α| d2α, thus

ρ = 1
π2

∫∫
d2αd2βρ(α, β) |α〉

〈
β
∣∣, where 〈α| ρ

∣∣β〉 = ρ(α, β) and for a normally ordered

function f̂ (â, â†) we have〈
f̂ (â, â†)

〉
=

1
π3

∫∫∫
d2αd2βd2γ〈γ

1︷ ︸︸ ︷
|α〉 〈α| ρ

∣∣β〉 〈β
∣∣ f̂ (â, â†) |γ〉

γ→α
=

1
π2

∫∫
d2αd2βρ(α, β)f (α, β∗)

R-representation

R(α∗, β) = 〈α| ρ
∣∣β〉 e

1
2 (|α|

2+|β|2) = ∑n,m
〈n|ρ|m〉√

n!m!
α∗nβm, thus:

ρ =
∫∫ 1

π2 d2αd2β |α〉
〈

β
∣∣R(α∗, β)e−

1
2 (|α|

2+|β|2)

〈n| ρ |m〉 = 1
π2

∫
R(α∗, β)

√
n!m!

−1
αnβ∗ne−|α|

2−|β|2d2αd2β

10Glauber, Roy J. “Coherent and incoherent states of the radiation field”. Physical Review 131.6 (1963): 2766.APA
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Paper for next week
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Questions to be addressed by the presenter

1 How are the correlated-two-photon state defined? Can they be separated into a product
of two single photon states?

2 Which element enables precise tuning of delay between pulses? In this setting, does the
detector’s timing resolution impose any limitation?

3 How to define coincidence in detection? How to describe the propagation of optical field
in Heisenberg picture? How displacement of the BS appears as a delay in the field
expression at the detectors?

4 What’s the spatial coherence extent of the optical pulses and how they are determined
from IF filters? What is the width of the dip feature in coincidence measurement, is it
consistent with the spatial coherence length?

5 What are the physical mechanisms that result in lower interference visibility? (Photon
Flux rate? Detector resolution? Detector noise (dark count)?)
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