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Coherent States!

The positive frequency part of the electric field operator introduced by Glauber is given by

1/2
EN@) =i} ( fico ) Ayl (F)e ",
X 2€0V

The eigenvalue function &(7) of the operator E(*)(7), defined as a solution of the eigenvalue equation
EG)(#) | ) =e(7)] ), must also satisfy the Maxwell equations, just as the operator E(*) (7) does. ¢(7)

and E(H)(7) therefore possess similar normal mode expansions. Introducing a set of c-number Fourier
coefficients & we may write

1/2 )
1’) = lz (26 V) “kﬁk(7)e_IWkt

LGlauber, Roy J. “Coherent and incoherent states of the radiation field”. Physical Review 131.6 (1963): 2766.APA
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Coherent States?

The positive frequency part of the electric field
operator is thus given, according to (2.10), by

ES (1)=i T () B (reior.  (2.19)
k

The eigenvalue functions &(rf) defined by Eq. (2.2)
must clearly satisfy the Maxwell equations, just as the
operator E(rf) does. They therefore possess an
expansion in normal modes similar to Eq. (2.19). In
other words we may introduce a set of ¢-number Fourier
coefficients a;; which permit us to write the eigenvalue
function as

Smcte the mode functions uk(.r) form an orthogonal B =i Y (hwn) Peme(rer.  (2.20)
set, it then follows that the eigenstate | ) for the ;
field E(+) (?) obeys the infinite succession of Since the mode functions u(r) form an orthogonal set,
. it then follows that the eigenstate | ) for the field obeys
relations the infinite succession of relations
Al ) =kl ). ar| Y=ai| ), (2.21)

for all modes k. To find the states which satisfy these
relations we seek states, |ax)s, of the individual modes
which individually obey the relations

arleyr=ar|api. (2.22)
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Coherent States

Coherent states
Coherent states |a) are defined as the eigenstates of 4 with eigenvalue a with the following
properties
i) = ala)
(a|afe) =a (a|d"|a) =a”

(] a'a|a) = |af?

In order to derive the expression of the coherent state in the Fock basis, we can use the
definition in the following way

(n|ala)y =vn+1(n+1a) =an|a)
Dcl’l

(nla) = CIe ey
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Coherent States
We can then express the coherent state in the basis of Fock states as
«" [n)
) = (0fa) ) )
vn!
After normalization, we obtain the expression of a coherent state

Coherent states

@) = elal?/2 ZL\/@
n!

Note that the coherent states do not form an orthogonal basis, as

2
‘(M@’Z = |e 2 (Il +1B)+ap | o—la—pl?,
Therefore, they form an over-complete basis:
1
= [ |a) (a| d®a = 1.
~ [ 1) (a
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Coherent States

The displacement operator3 can also be defined by requiring that D is a function of a complex
parameter « and displaces & according to

Dl waD(a) =a+a, D' a)a'D(n) =at +a".

With the help of an arbitrary coherent state |,B> it can be proven that

A

a) |B) = («+B)D(a) |B), D(-a)|x)=10)
One explicit form of this relation is that D(oc) |0) = |a) following which D(da) can be
expressed to the first order as D(da) = 1+ a*da — ada* in order to satisfy the relations
derived above. We consider increments of « of the form da = adA where A is a real
parameter. Then if we also assume the operators D have the group multiplication property
D(a(A +dA)) = D(adA)D(aA), we can solve for the differential equation
d

D)) = (ai* —a')D(a),  Dla) ASt gu' —a'

3Glauber, Roy J. “Coherent and incoherent states of the radiation field”. Physical Review 131.6 (1963): 2766.APA
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Coherent States

The displacement operator can thus be defined as D(x) = ' =28 ith the following
properties

Properties of the displacement operator

@) = ()|0>, \“+/5>= D(p) |a)
D*(a) = D~ () = D(~a)

A useful theorem for operator calculations

Baker-Campbell-Hausdorff formula

AB — AB—[AB/2,IBABIHAAB] /6

which gives the other expression of the displacement operator

D(a) = o |a?/2p08" o=t
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Properties of Coherent States

Dynamics is introduced by Schrodinger's equation which determines the time evolution of any
state |A,t), and takes the well known form

HI|A,t) = iho; |A,t).
The orthonormality property means that we can expand any state in terms of the energy
eigenstates |n),

|A, t) = E!n (n|A,t)

and hence, iho; |A, t) = E!n )0 (n]A, t)

=] <n|A )

=) (n+ hw In) (n|A,t)
n

so that (n|A,t) = e Et/N ()4, 0> —int1/2)0t (] A,0) .

A Fock state |n) thus evolves in time as |n,t) = eilnty)wt In). The 3 is usually ignored.
8/25



Properties of Coherent States
Recall the time evolution of the Fock states:

Fock state evolution
I1,8) = [1) e ™ or |nt) = |n)e Mt

This property is useful in the context of quantum metrology??, since it shows that |n) state exhibits a
de Broglie wavelength of A/n where A is the vacuum wavelength.

?Mitchell, Morgan W., Jeff S. Lundeen, and Aephraem M. Steinberg. “Super-resolving phase measurements with a multiphoton entangled state.” Nature
429.6988 (2004): 161.

bWalther, Philip, et al. “De Broglie wavelength of a non-local four-photon state.” Nature 429.6988 (2004): 158.

It then follows for a coherent state:
Coherent state evolution

i g 1 g n 5
w,t) = e 122y B |y gminat — p=la?/2 (“eilm> n)= ’“e_uut>
e ;vnhﬁf—/' i ;\/n! i

nt)

despite the individual Fock state components evolving at s
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Properties of Coherent States*

Super-resolving phase

measurements with a
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4Mitchell, Morgan W., Jeff S. Lundeen, and Aephraem M. Steinberg. “Super-resolving phase measurements with a multiphoton entangled state.” Nature

429.6088 (2004): 161.
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Properties of Coherent States®
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SWalther, Philip, et al. “De Broglie wavelength of a non-local four-photon state.” Nature 429.6988 (2004): 158.
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Polarization Entangled Photons Generation®

Parametric down-conversion

cxtraorjinary

Entangled-state
emission directions

In a nonlinear crystal (beta-barium borate or BBO) a photon of a laser
T pump spontaneously splits into two photons, that have to satisfy (1)
energy conservation:

Wp = w1 + wp
and (2) momentum conservation (or phase matching):
Ep = El + Ez
When a pump is at an angle to the BBO crystal optical axis (cf. fig
(a)), the phase matching for two ortogonal polarizations of

downconverted photons is satisfied on two intersecting cones. At the
intersection points 1 and 2 the state one gets is

) = f (|H1, Vo) + €™ |V, Hy))

SKwiat, Paul, et al. “New High-Intensity Source of Polarization-Entangled Photon Pairs.” Phys. Rev. Lett. 75, 4337 (1995)
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Properties of Coherent States

Normally ordered operators

note that
(a|a’an® |B) = (a|a" (a%a+ 1) |B)
_ atata At _
= (« gaa  +a 1B) = (a*a*B+a*)(x|B).
normally ordered

Normal ordering is important e.g. for expressing photodetection current operator (I) o (aa). 7

Generally, while a non-empty product of creation and annihilation operators O may satisfy
(0]O]0) # 0,

the normal ordered version of it :O: always satisfies
(0]:0:10) = 0.

7An otherwise ordered current operator would yield (0|1|0) « (0]aa* |0) = (0|a%a 4 1|0) = 1 for the vacuum state of a field!
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Properties of Coherent States

Statistical properties

2
2
_ a2 la™
n!

n
e_lalz/zlx_

Pu(n) = |(n o) [* = .

Therefore the photon number distribution of a coherent state obeys the Poisson distribution.

Therefore,
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Properties of Coherent States
Recall that the wave function of the ground state |0) of a particle with mass m =1 is

1
1 2 L . . : .
Po(x) = (%) e~ 2% which is a minimum uncertainty state. Following a procedure similar

to how we obtained (x), we can get the wave function of a coherent state:®

Coherent state wave function

w L w 2
Pt =0) = (E) o504

and the time evolution is given by:

2 _ [ W 12 — @ (x—A cos wt)?
pienp = (2) e .

This evolution describes a harmonic oscillation of the wavepacket displacement around 0 with
amplitude A.

8Scully, M.O., Zubairy, M.S. " Quantum optics” (1999). Chapter 2
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Properties of Coherent States

Although coherent state has a nonzero average photon occupancy (1) = |a|?, it remains a
minimum uncertainty state, as

Uncertainty relation for a coherent state

A% - Ap =

N St

where A%2 = <(5c - (5c>)2> and AP? = <(p . <f)>)2> with

This is particularly intuitive as coherent state is simply a displaced ground state.

Fall 2024
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Squeezed States

Quadratures®

We define quadratures Xy, X, as

. a+at o a—af
= and Xp; = :
2i

with [Xq, Xo] = % For a coherent state AX? = Af(% = }1 such that Af(% . Af(% = % which corresponds
to the minimum uncertainty.

v

The quadratures can be visualized in the optical phase space (cf. ",
figure). The quadrature at an arbitrary angle can also be defined
as:

Y] + i?z = (Xl + in)e_lg/z = de—19/2,
where /2 is defined as the rotation angle of the quadrature basis. an
Generally we use —6/2 = iwt to cancel the time evolution.

QScuIIy, M.O., Zubairy, M.S. " Quantum optics” (1999). Chapter 2
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Squeezed States
Squeezing operator

§(é’) _ e%é*ﬁ27%§ﬁ+2

where & = re'” is an arbitrary complex number?. It has some useful unitary transformation properties?

§7(¢)a8(¢) = acoshr —a'e® sinhr
H(&)at5(¢) = at coshr — ae~® sinhr.
It's then straight forward to see its operation on quadrature operators ?}9)

SHE) (T +i12)8(8) = Tae ™" +i¥ae’
which maintains the minimum uncertainty as

o L o 1
AV = —e % AY] =~
1° and 2=4°

2Some books also use the 26 convention instead of 6.

bit is useful to define u = coshr and v = ¢ sinh 7 to simplify the expressions. Refer to slides 24 25 for derivation.
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Squeezed States

Squeezed coherent state
|#,&) = D(@)5(¢) |0)
with the statistical properties
(,&| 7|2, &) = (1) = (a"a) = |a]? + sinh’r
(a, E| (A — (1))? |a, &) = |acoshr — a*e® sinh 7|% + 2 cosh? rsinh?

Notice that for a squeezed vacuum state |0, {) the mean photon occupancy is non-zero as
only the |0) is the quantum ground state.

Note that the operators D(a) and 5(&) are noncommuting, but they follow the rule

D(a)5(&) = S(&)D(B) B = acoshr + a*e sinhr.
There are alternative definitions in different books e.g. some use |a, &) = S(&)D(a) |0) which
is a less intuitive one.
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Two Photon Coherent States!®

Bogoliubov mode

Consider the operator b = ua + va* where |u|? — |v|2 = 1 or equivalently u = coshr and
v = e sinhr. Then b obeys the commutation relation [b,b'] = 1 and it has eigenstates
(Bogoliubov mode)

b|B), = B|B), = D(@)5(2) |0)

which are actually a set of particular squeezed coherent states or in other words the
two-photon coherent states with relation « = u8 — v*. Note that under this relation between
« and B, we have an equivalent definition

b|g), = 5(&)D(B) |0).

This state is referred as the two-photon coherent states because the squeezing operation
involved here is a photon-pair operation.

10walls D. F., Milburn G. J. - Quantum Optics - Chapter 2
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Two Photon Coherent States!!12

Fig. 2.7

Error contours and
the corresponding
graphs of electric
field versus time for
(a) a coherent state,
(b) a squeezed state
with reduced nosie in
Xy, and (c) a
squeezed state with
reduced noise in X>.
(From C. Caves,
Phys. Rev. D 23,1693
(1981).)

E(1)

X,

A A
\/

E(1)

(a)

@

11Scully, M.O., Zubairy, M.S. " Quantum optics” (1999). Chapter 2
12Breitenbach, G., Schiller, S. & Mlynek, J. Measurement of the quantum states of squeezed light. Nature 387, 471-475 (1997).
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Figure 2 Noise traces in /o) (If), quadrature distrioutions P, (centre), and four states, whereas for the squeezed vacuum (belonging to a different set of
feconstructed Wigner functions (right) of generated quantum states. From the

be ihe time evolution of wave packets (position probabily den-

functon of time show the electric fields'oscillation n a 4x inerval for the upper o  interval suffices.
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QuTiP®3
QuTiP

Quantum Toolbox in Python

plt.figure(figsize=(10, 8))
plt.contourf (xvec,xvec, W_even, cmap='RdBu', levels=np.linspace(-1,
1, 20))

QuTiP is an open-source software for simulating the dynamics Tit wiabel (s Res(\alpha)s' fontaisenlabel_size), widehe"300"

plt.ylabel(r'In$(\alpha)$', fontsize=label size)

of open quantum system. QuTiP aims to provide user-friendly o et =D G CERHHIFy (it =Eii S
and efficient numerical simulations of a wide variety of . First state: even cat-like
Hamiltonians, including those with arbitrary time-dependence, , 0300
commonly found in a wide range of physics applications such . e
. . . . . - 0474
as quantum optics, trapped ions, superconducting circuits, : o
and quantum nanomechanical resonators. 3, \ o0
’E —0.158
-1
—0.368
-2
—0.579
-3 ~0.789
—474 ) ] 3 1 —1.000
Re(a)

13Refer to http://qutip.org
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QuTiP"

In a finite Hilbert space of Fock states one can A number operator éfﬁ — |n> (n|
define operators and immediatly obtain their matrix form,

in Hilbert space [0) , ... ,[99)
e.g. annihilation operator d

& = destroy(100)

a = destroy(s) n = a.dag()*a
. " Quantum object: dims = [[100], [100]], shape = (100, 100), type = oper, isherm = True
creation operator a 00 00 00 00 00 - 00 0.0 00 00 00
00 10 00 00 00 - 00 0.0 00 00 00
o=l 00 00 20 00 00 - 00 0.0 00 00 00
Quantum object: dims = [[5], [5]], shape = (5. 5), type = oper, isherm = False 00 00 00 3000 00 - 0.0 0.0 0.0 00 00
00 00 00 00 00
0 00 00 00 00 00 00 00 00 40 - 00 0.0 00 00 00
00 1414 00 00 00 H : HERS : : : : :
00 00 1732 00 00 00 00 00 00 00 -- 95000 0.0 00 00 00
00 00 00 20 00 00 00 00 00 00 - 00 96000 00 00 00
00 00 00 00 00 0.0 00  97.000 00 00
e 00 00 00 00 00 - 00 0.0 00 980 00
and compute the commutators [a, a*]
00 00 00 00 00 - 00 0.0 00 00 990
commutator(a, a.dag())
Oqag‘m?)c(';)JEC[Odz)ms :é[%]‘ [5% Znape:m 5). type = oper, isherm = True and its expectation value in a coherent state

00 1O 00 00 00
0.0 00 1000 00 00
00 00 00 10 00
00 00 00 00 —40

alpha = coherent (100, 2 + 3 * 1j)
xpect (n, alpha))

12.999999999995998

14Refer to http://qutip.org
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Squeezed States*

Squeezing operator
One useful equation
n As
i A s tasr 1o g s 17—,
e 'Be =B+ [A B+ S[AAB]+... S[A[A. . [AB]...]+

which can be applied to ST(&)aS(¢&) as

1 1
$'(5)as(g) =a—ga't + —,|§2|ﬁ— —,|(§|2§ffr +...
2 4 1 1
—a(1+ = +4'+ N —ate?(r+ P+ =r+...)

3! 51
= acoshr —ate? sinh 7
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Squeezed States*

Squeezing operator

To prove the first equation we used, we need to define an operator function
F(x) = eBe~A = Y 1 F,x" so that we can further derive

T pe) = AR
By plugging the definition into this relation we obtain
b = Ll
1 ! 0 ”'
from which we find F,,,1 = [A, F,]. Since it's easy to find Fy = B, we have
n As

A P 1., -

S ,B]]+...n![A,[A,...[A,B]...]+...
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