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Coherent States1

The positive frequency part of the electric field operator introduced by Glauber is given by

Ê(+) (⃗r) = i ∑
k

(
h̄ωk

2ϵ0V

)1/2

âk⃗uk (⃗r)e−iωkt.

The eigenvalue function ε(⃗r) of the operator Ê(+) (⃗r), defined as a solution of the eigenvalue equation

Ê(+) (⃗r) | ⟩ = ε(⃗r) | ⟩, must also satisfy the Maxwell equations, just as the operator Ê(+) (⃗r) does. ε(⃗r)
and Ê(+) (⃗r) therefore possess similar normal mode expansions. Introducing a set of c-number Fourier
coefficients αk we may write

ε(⃗r) = i ∑
k

(
h̄ωk

2ϵ0V

)1/2
αk⃗uk (⃗r)e

−iωkt

1Glauber, Roy J. “Coherent and incoherent states of the radiation field”. Physical Review 131.6 (1963): 2766.APA
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Coherent States2

Since the mode functions u⃗k (⃗r) form an orthogonal
set, it then follows that the eigenstate | ⟩ for the
field Ê(+) (⃗r) obeys the infinite succession of
relations

âk | ⟩ = αk | ⟩ .

2Glauber, Roy J. “Coherent and incoherent states of the radiation field”. Physical Review 131.6 (1963): 2766.APA
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Coherent States

Coherent states

Coherent states |α⟩ are defined as the eigenstates of â with eigenvalue α with the following
properties

â |α⟩ = α |α⟩
⟨α| â |α⟩ = α ⟨α| â† |α⟩ = α∗

⟨α| â†â |α⟩ = |α|2

In order to derive the expression of the coherent state in the Fock basis, we can use the
definition in the following way

⟨n| â |α⟩ =
√

n + 1⟨n + 1 |α⟩ = α⟨n |α⟩〈
n|α

〉
=

αn

(n!)1/2

〈
0|α

〉
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Coherent States
We can then express the coherent state in the basis of Fock states as

|α⟩ =
〈
0|α

〉
∑

αn |n⟩√
n!

.

After normalization, we obtain the expression of a coherent state

Coherent states

|α⟩ = e−|α|2/2 ∑
αn |n⟩√

n!

Note that the coherent states do not form an orthogonal basis, as∣∣∣⟨α ∣∣β〉∣∣∣2 =

∣∣∣∣e− 1
2 (|α|2+|β|2)+αβ∗

∣∣∣∣2 = e−|α−β|2 .

Therefore, they form an over-complete basis:

1
π

∫
|α⟩ ⟨α| d2α = 1.
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Coherent States
The displacement operator3 can also be defined by requiring that D̂ is a function of a complex
parameter α and displaces â according to

D̂−1(α)âD̂(α) = â + α, D̂−1(α)â†D̂(α) = â† + α∗.

With the help of an arbitrary coherent state
∣∣β〉, it can be proven that

âD̂(α)
∣∣β〉 = (α + β)D̂(α)

∣∣β〉 , D̂(−α) |α⟩ = |0⟩

One explicit form of this relation is that D̂(α) |0⟩ = |α⟩ following which D̂(dα) can be
expressed to the first order as D̂(dα) = 1 + â†dα − âdα∗ in order to satisfy the relations
derived above. We consider increments of α of the form dα = αdλ where λ is a real
parameter. Then if we also assume the operators D̂ have the group multiplication property
D̂(α(λ + dλ)) = D̂(αdλ)D̂(αλ), we can solve for the differential equation

d
dλ

D̂(αλ) = (αâ† − α∗â)D̂(αλ), D̂(α)
λ=1
= eαâ†−α∗ â

3Glauber, Roy J. “Coherent and incoherent states of the radiation field”. Physical Review 131.6 (1963): 2766.APA
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Coherent States
The displacement operator can thus be defined as D̂(α) ≡ eαâ†−α∗ â with the following
properties

Properties of the displacement operator

|α⟩ = D̂(α) |0⟩ ,
∣∣α + β

〉
= D̂(β) |α⟩

D̂†(α) = D̂−1(α) = D̂(−α)

A useful theorem for operator calculations

Baker-Campbell-Hausdorff formula

eÂ+B̂ = eÂeB̂e−[Â,B̂]/2e(2[B̂,[Â,B̂]]+[Â,[Â,B̂]])/6 . . .

which gives the other expression of the displacement operator

D(α) = e−|α|2/2eαâ†
e−α∗ â.
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Properties of Coherent States
Dynamics is introduced by Schrödinger’s equation which determines the time evolution of any
state |A, t⟩, and takes the well known form

Ĥ |A, t⟩ = ih̄∂t |A, t⟩ .

The orthonormality property means that we can expand any state in terms of the energy
eigenstates |n⟩,

|A, t⟩ = ∑
n
|n⟩

〈
n|A, t

〉
and hence, ih̄∂t |A, t⟩ = ih̄ ∑

n
|n⟩ ∂t

〈
n|A, t

〉
= ∑

n
Ĥ |n⟩

〈
n|A, t

〉
= ∑

n
(nnn +

1
2
)h̄ω |n⟩

〈
n|A, t

〉
so that

〈
n|A, t

〉
= e−iEnt/h̄ 〈n|A, 0

〉
= e−i(nnn+1/2)ωt 〈n|A, 0

〉
.

A Fock state |n⟩ thus evolves in time as |n, t⟩ = e−i(nnn+ 1
2 )ωt |n⟩. The 1

2 is usually ignored.
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Properties of Coherent States
Recall the time evolution of the Fock states:

Fock state evolution

|1, t⟩ = |1⟩ e−iωt or |n, t⟩ = |n⟩ e−inωt

This property is useful in the context of quantum metrologyab, since it shows that |n⟩ state exhibits a
de Broglie wavelength of λ/nλ/nλ/n where λ is the vacuum wavelength.

aMitchell, Morgan W., Jeff S. Lundeen, and Aephraem M. Steinberg. “Super-resolving phase measurements with a multiphoton entangled state.” Nature
429.6988 (2004): 161.

bWalther, Philip, et al. “De Broglie wavelength of a non-local four-photon state.” Nature 429.6988 (2004): 158.

It then follows for a coherent state:

Coherent state evolution

|α, t⟩ = e−|α|2/2 ∑
n

αn
√

n!
|n⟩ e−innnωt︸ ︷︷ ︸

|n,t⟩

= e−|α|2/2 ∑
n

1√
n!

(
αe−iωt

)n
|n⟩ =

∣∣∣αe−iωt−iωt−iωt
〉

despite the individual Fock state components evolving at e−inωt.
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Properties of Coherent States4

4Mitchell, Morgan W., Jeff S. Lundeen, and Aephraem M. Steinberg. “Super-resolving phase measurements with a multiphoton entangled state.” Nature
429.6988 (2004): 161.
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Properties of Coherent States5

5Walther, Philip, et al. “De Broglie wavelength of a non-local four-photon state.” Nature 429.6988 (2004): 158.
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Polarization Entangled Photons Generation6

Parametric down-conversion

In a nonlinear crystal (beta-barium borate or BBO) a photon of a laser
pump spontaneously splits into two photons, that have to satisfy (1)
energy conservation:

ωp = ω1 + ω2

and (2) momentum conservation (or phase matching):

k⃗p = k⃗1 + k⃗2

When a pump is at an angle to the BBO crystal optical axis (cf. fig
(a)), the phase matching for two ortogonal polarizations of
downconverted photons is satisfied on two intersecting cones. At the
intersection points 1 and 2 the state one gets is∣∣ψ〉 = 1√

2
(|H1, V2⟩+ eiα |V1, H2⟩)

6Kwiat, Paul, et al. “New High-Intensity Source of Polarization-Entangled Photon Pairs.” Phys. Rev. Lett. 75, 4337 (1995)
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Properties of Coherent States

Normally ordered operators

: â†ââ† : =∧ â†â†â

note that

⟨α| â†ââ† ∣∣β〉 = ⟨α| â†(â†â + 1)
∣∣β〉

= ⟨α| â†â†â︸ ︷︷ ︸
normally ordered

+â† ∣∣β〉 = (α∗α∗β + α∗)⟨α
∣∣β〉 .

Normal ordering is important e.g. for expressing photodetection current operator ⟨Î⟩ ∝ ⟨â†â⟩. 7

Generally, while a non-empty product of creation and annihilation operators Ô may satisfy
⟨0| Ô |0⟩ ̸= 0,

the normal ordered version of it : Ô : always satisfies

⟨0| : Ô : |0⟩ = 0.
7An otherwise ordered current operator would yield ⟨0| Î |0⟩ ∝ ⟨0| ââ† |0⟩ = ⟨0| â† â + 1 |0⟩ = 1 for the vacuum state of a field!
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Properties of Coherent States

Statistical properties

Pα(n) = |⟨n |α⟩ |2 =

∣∣∣∣∣e−|α|2/2 αn
√

n!

∣∣∣∣∣
2

= e−|α|2 |α|2n

n!

Therefore the photon number distribution of a coherent state obeys the Poisson distribution.

⟨n̂⟩ =
〈

â†â
〉
=
∧ ⟨α| â†â |α⟩ = |α|2〈

n̂2
〉
= ⟨α| â†ââ†â |α⟩ = ⟨α| â†â†ââ + â†â |α⟩

= |α|4 + |α|2

Therefore,

∆n̂2 ≡
〈
(n̂ − ⟨n̂⟩)2

〉
=

〈
n̂2
〉
− ⟨n̂⟩2 = |α|2 = ⟨n̂⟩
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Properties of Coherent States
Recall that the wave function of the ground state |0⟩ of a particle with mass m = 1 is

ψ0(x) =
(

ω
πh̄

) 1
4 e−

ω
2h̄ x2

, which is a minimum uncertainty state. Following a procedure similar

to how we obtained ψ0(x), we can get the wave function of a coherent state:8

Coherent state wave function

ψ(x, t = 0) =
(

ω

πh̄

)1/4

e−
ω
2h̄ (x−A)2

and the time evolution is given by:

|ψ(x, t)|2 =

(
ω

πh̄

)1/2

e−
ω
h̄ (x−A cos ωt)2

.

This evolution describes a harmonic oscillation of the wavepacket displacement around 0 with
amplitude A.

8Scully, M.O., Zubairy, M.S. ”Quantum optics” (1999). Chapter 2

Fall 2024 Quantum Electrodynamics and Quantum Optics: Lecture 2 15 / 25



Properties of Coherent States

Although coherent state has a nonzero average photon occupancy ⟨n̂⟩ = |α|2, it remains a
minimum uncertainty state, as

Uncertainty relation for a coherent state

∆x̂ · ∆p̂ =
h̄
2

where ∆x̂2 ≡
〈
(x̂ − ⟨x̂⟩)2

〉
and ∆p̂2 ≡

〈
(p̂ −

〈
p̂
〉
)2
〉
with

x̂ =

√
h̄

2mω
(â + â†) and p̂ = i

√
mωh̄

2
(â† − â).

This is particularly intuitive as coherent state is simply a displaced ground state.

Fall 2024 Quantum Electrodynamics and Quantum Optics: Lecture 2 16 / 25



Squeezed States

Quadratures9

We define quadratures X̂1, X̂2 as

X̂1 =
â + â†

2
and X̂2 =

â − â†

2i

with [X̂1, X̂2] =
i
2 . For a coherent state ∆X̂2

1 = ∆X̂2
2 = 1

4 such that ∆X̂2
1 · ∆X̂2

2 = 1
16 which corresponds

to the minimum uncertainty.

The quadratures can be visualized in the optical phase space (cf.
figure). The quadrature at an arbitrary angle can also be defined
as:

Ŷ1 + iŶ2 = (X̂1 + iX̂2)e−iθ/2 = âe−iθ/2,

where θ/2 is defined as the rotation angle of the quadrature basis.
Generally we use −θ/2 = iωt to cancel the time evolution.

9Scully, M.O., Zubairy, M.S. ”Quantum optics” (1999). Chapter 2
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Squeezed States

Squeezing operator

Ŝ(ξ) = e
1
2 ξ∗ â2− 1

2 ξâ†2

where ξ = reiθ is an arbitrary complex numbera. It has some useful unitary transformation propertiesb

Ŝ†(ξ)âŜ(ξ) = â cosh r − â†eiθ sinh r

Ŝ†(ξ)â†Ŝ(ξ) = â† cosh r − âe−iθ sinh r.

It’s then straight forward to see its operation on quadrature operators Ŷ(θ)
i

Ŝ†(ξ)(Ŷ1 + iŶ2)Ŝ(ξ) = Ŷ1e−r + iŶ2er

which maintains the minimum uncertainty as

∆Ŷ2
1 =

1
4

e−2r and ∆Ŷ2
2 =

1
4

e2r

aSome books also use the 2θ convention instead of θ.

bIt is useful to define u = cosh r and v = eiθ sinh r to simplify the expressions. Refer to slides 24 25 for derivation.

Fall 2024 Quantum Electrodynamics and Quantum Optics: Lecture 2 18 / 25



Squeezed States

Squeezed coherent state

|α, ξ⟩ = D̂(α)Ŝ(ξ) |0⟩

with the statistical properties

⟨α, ξ| n̂ |α, ξ⟩ = ⟨n̂⟩ =
〈

â†â
〉
= |α|2 + sinh2 r

⟨α, ξ| (n̂ − ⟨n̂⟩)2 |α, ξ⟩ = |α cosh r − α∗eiθ sinh r|2 + 2 cosh2 r sinh2 r

Notice that for a squeezed vacuum state |0, ξ⟩ the mean photon occupancy is non-zero as
only the |0⟩ is the quantum ground state.

Note that the operators D̂(α) and Ŝ(ξ) are noncommuting, but they follow the rule

D̂(α)Ŝ(ξ) = Ŝ(ξ)D̂(β) β = α cosh r + α∗eiθ sinh r.

There are alternative definitions in different books e.g. some use |α, ξ⟩ = Ŝ(ξ)D̂(α) |0⟩ which
is a less intuitive one.
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Two Photon Coherent States10

Bogoliubov mode

Consider the operator b̂ = µâ + νâ†b̂ = µâ + νâ†b̂ = µâ + νâ† where |µ|2 − |ν|2 = 1 or equivalently µ = cosh r and
ν = eiθ sinh r. Then b̂ obeys the commutation relation [b̂, b̂†] = 1 and it has eigenstates
(Bogoliubov mode)

b̂
∣∣β〉g = β

∣∣β〉g = D̂(α)Ŝ(ξ) |0⟩

which are actually a set of particular squeezed coherent states or in other words the
two-photon coherent states with relation α = µβ − νβ∗. Note that under this relation between
α and β, we have an equivalent definition

b̂
∣∣β〉g = Ŝ(ξ)D̂(β) |0⟩ .

This state is referred as the two-photon coherent states because the squeezing operation
involved here is a photon-pair operation.

10Walls D. F., Milburn G. J. - Quantum Optics - Chapter 2
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Two Photon Coherent States11,12

11Scully, M.O., Zubairy, M.S. ”Quantum optics” (1999). Chapter 2

12Breitenbach, G., Schiller, S. & Mlynek, J. Measurement of the quantum states of squeezed light. Nature 387, 471–475 (1997).
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QuTiP13

QuTiP is an open-source software for simulating the dynamics
of open quantum system. QuTiP aims to provide user-friendly
and efficient numerical simulations of a wide variety of
Hamiltonians, including those with arbitrary time-dependence,
commonly found in a wide range of physics applications such
as quantum optics, trapped ions, superconducting circuits,
and quantum nanomechanical resonators.

13Refer to http://qutip.org
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QuTiP14

14Refer to http://qutip.org
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Squeezed States∗

Squeezing operator

One useful equation

eÂB̂e−Â = B̂ + [Â, B̂] +
1
2
[Â, [Â, B̂]] + . . .

1
n!
[

n Âs︷ ︸︸ ︷
Â, [Â, . . . [Â, B̂] . . . ] + . . .

which can be applied to S†(ξ)âS(ξ) as

S†(ξ)âS(ξ) = â − ξâ† +
1
2!
|ξ2|â − 1

3!
|ξ|2ξâ† + . . .

= â(1 +
r2

2!
+

r4

4!
+ . . . )− â†eiθ(r +

1
3!

r3 +
1
5!

r5 + . . . )

= â cosh r − â†eiθ sinh r
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Squeezed States∗

Squeezing operator

To prove the first equation we used, we need to define an operator function
F̂(x) = exÂB̂e−xÂ = ∑∞

0
1
n! F̂nxn so that we can further derive

d
dx

F̂(x) = [Â, F̂(x)].

By plugging the definition into this relation we obtain

∞

∑
1

F̂n
1

(n − 1)!
xn−1 =

∞

∑
0

1
n!
[Â, F̂n]xn

from which we find F̂n+1 = [Â, F̂n]. Since it’s easy to find F̂0 = B̂, we have

eÂB̂e−Â = F̂(1) = B̂ + [Â, B̂] +
1
2
[Â, [Â, B̂]] + . . .

1
n!
[

n Âs︷ ︸︸ ︷
Â, [Â, . . . [Â, B̂] . . . ] + . . .
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