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Quantum measurements and measurement back-action

Free-particle Hamiltonian: Ĥ0 = p̂2

2m .
First measurement at time t = 0, yields x̂(0) and p̂(0). Variances of these quantities
∆x̂2 = 〈x̂2〉 − 〈x̂〉2 follow Heisenberg uncertainty:

∆p̂(0)∆x̂(0) ≥ h̄
2

Time-evolution for small time τ:

dx̂
dt

= − i
h̄
[x̂, Ĥ] = p̂/m =⇒ x̂(τ) = x̂(0) +

p̂(0)τ
m

Measurement at time τ will have the uncertainty:

∆x̂(τ)2 = ∆x̂(0)2 +
∆p̂(0)2τ2

m2 + (〈x̂(0)p̂(0) + p̂(0)x̂(0)〉 − 2〈p̂(0)〉〈x̂(0)〉) τ

m
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Quantum measurements and measurement back-action
Assume that position and momentum are not correlated. Thus we have for the uncertainty at
time τ:

∆x̂(τ)2 = ∆x̂(0)2 +
h̄2τ2

4m2∆x̂(0)2 .

First measurement at t = 0 introduces an uncertainty for the second measurement at t = τ.
This is referred to as the measurement back-action. The minimum possible uncertainty due to
measurement back-action is called the standard quantum limit (SQL)

Standard Quantum Limit (SQL)

∆x̂(τ)2 =
h̄τ

m

Consider the case of gravitational wave detection1, where τ ∼ 1 ms and m = 4 kg. These
parameters give ∆x̂(τ)SQL ∼ 10−18 m.

1Ref. Ch. 14 Quantum Optics GJ Milburn, DF Walls
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Harmonic oscillator quantum limit

Consider harmonic oscillator Hamiltonian: Ĥ0 = P̂2

2m + mΩ2
mx̂2

2 , the dynamics follows

x̂(τ) = x̂(0) cos(Ωmτ) +
p̂(0)
mΩm

sin(Ωmτ)

[x̂(0), x̂(τ)] =
ih̄

mΩm
sin(Ωmτ), ∆x̂(0)2∆p̂(0)2 ≥ h̄2

4
.

When measuring at a later time, at half-period (when Ωmτ = π/2):

Limit for periodic measurement√
∆x̂(τ)2 ≥

√
h̄

2mΩm
≡ zero-point motion

Velocity and position cannot be determined simultaneously due to the uncertainty principle.
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Optomechanics
Dispersive coupling of the mass to the cavity field:

ωc,m = m
cπ

L
ωc,m(x) = m

cπ

L + x

= ωc,m

(
1− x

L

)
.

We consider the fundamental mode that m = 1. Hamiltonian of the mass-cavity system is
thus modified:

Ĥ = h̄ωc

(
1− x̂

L

)
â†â + h̄Ωmb̂†b̂.

The interaction part of the Hamiltonian arises from the changing cavity frequency:

Ĥint = −h̄
ωc

L
xzpfâ†â

(
b̂ + b̂†

)
.
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Optomechanics

Reflection from the cavity at resonance
(ω = ωc):

r[ω] =
ω−ωc(x)− iκ/2
ω−ωc(x) + iκ/2

=
ωcx/L− iκ/2
ωcx/L + iκ/2

.

Phase shift around resonance of the reflected
field

θ ∼ 2
x
L

ωc

h̄
∝ x
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Quantum Langevin equations
Recall : Coupling between system and bath

ĤB =
∫

dω h̄ωb̂†[ω]b̂[ω] and ĤSB =
∫

dω h̄g[ω]
(

âb̂†[ω] + â†b̂[ω]
)

.

Time-evolution of the operators in the Heisenberg picture includes a dissipation term and a
fluctuation term:

dâ
dt

= − i
h̄
[â, Ĥsys]−

κ

2
â +
√

κâin.

For the optomechanical Hamiltonian, Ĥ = h̄ωc

(
1− x̂

L

)
â†â + h̄Ωmb̂†b̂, we get the following

equations of motion with drive:

dâ
dt

= −iωcâ + i
ωc

L
xzpfâ

(
b̂ + b̂†

)
− κ

2
â +
√

κ(âin + āineiωLt),

db̂
dt

= −iΩmb̂ + i
ωc

L
xzpfâ†â− Γm

2
b̂ +
√

Γmb̂in.
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Quantum Langevin equations
We transfer to a rotating frame, â→ âeiωLt. We consider the case when the cavity is
resonantly driven, i.e. ωL = ωc. Next we assume that the fields are strong, so they can be
represented as a sum of a mean value and small fluctuations:

â→ ᾱ + δâ and b̂→ β̄ + δb̂.

The interaction Hamiltonian Ĥint = h̄ ωc
L xzpfâ†â

(
b̂† + b̂

)
is thus linearized :

â†â = (ᾱ∗ + δâ†)(ᾱ + δâ)→ ᾱ
(

δâ + δâ†
)

Redefining δâ as â, we get linearized quantum Langevin equations:

dâ
dt

= i
ωc

L
xzpfᾱ

(
b̂ + b̂†

)
− κ

2
â +
√

κâin,

db̂
dt

= −iΩmb̂ + i
ωc

L
ᾱ(â + â†)− Γm

2
b̂ +
√

Γmb̂in.
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Quadratures

Next we consider the fluctuations in amplitude and phase quadratures:

X̂ ≡ 1√
2

(
â + â†

)
and Ŷ ≡ i√

2

(
â† − â

)
.

The Langevin equations for the optical field can be expressed as

dX̂
dt

= −κ

2
X̂ +
√

κX̂in

dŶ
dt

= i
√

2xzpf
ωc

L
ᾱ(b̂ + b̂†)− κ

2
Ŷ +
√

κŶin

Position of the mechanical oscillator is only imprinted on the phase of the optical field
=⇒ We can infer position using homodyne detection.
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Input-output relations

The input-output relation for fields also applies to the quadratures:

âout = −âin +
√

κâ =⇒ Ŷout = −Ŷin +
√

κŶ.

Taking the Fourier transform Ŷ[ω] =
∫ ∞
−∞ eiωtŶ(t)dt, and redefining q̂ = x̂ = xzpf

(
b̂ + b̂†

)
for

readability yields

−iωŶ[ω] = i
√

2
ωc

L
ᾱq̂[ω]− κ

2
Ŷ[ω] +

√
κŶin[ω].

After substitution, we assume so-called bad-cavity limit κ � Ωm and derive the output phase
quadrature:

Ŷout[ω] = Ŷin[ω] + i
ᾱωc

L

√
8
κ

q̂[ω].
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Spectral densities
We can find spectral densities by Wiener-Khinchin theorem:

SŶŶ[ω] = lim
τ→∞

1
τ
〈Ŷ†

τ[ω]Ŷτ[ω]〉

=
∫

dτ e−iωτ〈Ŷ†(τ)Ŷ(0)〉 =
∫ ∞

∞
dω ′〈Ŷ†[−ω]Ŷ[ω′]〉

The input noise and mechanical motion are not correlated: 〈Ŷin(ω)q̂(ω)〉 = 0, and using the
relations:

〈Ŷin(t)Ŷ†
in(t
′)〉 = (n̄ + 1)δ(t− t′), 〈Ŷ†

in(t)Ŷin(t′)〉 = n̄δ(t− t′)

Spectral density of the output noise is given by

SŶoutŶout
[ω] = 1︸︷︷︸

Shot noise SŶinŶin

+
8ω2

c ᾱ2

κL2 Sq̂q̂[ω]︸ ︷︷ ︸
signal
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SQL and Heisenberg uncertainty
The weakest signal Simp

q̂q̂ that can be measured is when the signal-to-noise ratio is equal to 1:

Simp
q̂q̂ =

(
κL2

8ω2
c ᾱ2

)
SŶinŶin

Force acting on the mechanical oscillator is F̂ = −∂Ĥ/∂q̂. Assuming ˙̂X = 0,

F̂ =
√

2h̄
ωc

L
X̂ =⇒ F̂ =

√
8
κ

h̄
ωc

L
X̂in

=⇒ SF̂F̂[ω] =
8
κ

(
h̄

ωc

L
ᾱ

)2

SX̂inX̂in
[ω]

From these two expressions, it can be seen that

SF̂F̂[ω]Simp
q̂q̂ = h̄2SŶinYin

SX̂inX̂in
=

h̄2

4
.
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Spectrum of position fluctuations

We write a second order differential equation for position:

¨̂q = −Ω2
mq̂− 2i

ωc

L
ᾱxzpfX̂− Γm ˙̂q +

√
Γmq̂in.

Taking the Fourier transform as q̂[ω] =
∫ ∞
−∞ dt eiωtq̂(t), we get:

q̂[ω] = χ[ω]

[
−2i

ωc

L
ᾱxzpfX̂[ω] +

√
Γmq̂in

]
,

where χ[ω] =
(

Ω2
m −ω2 − iωΓm

)−1
.
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Noise spectral density

Sq̂q̂[ω] = 2Γm|χ[ω]|2

Sq̂inq̂in + 4

(
xzpfᾱ

ωc
L

)2

Γm︸ ︷︷ ︸
Ceff

SX̂X̂



Sq̂q̂[ω] = 2Γm|χ[ω]|2(nth + Ceff + 1)

Sq̂q̂[−ω] = 2Γm|χ[ω]|2(nth + Ceff)

Asymmetric noise spectral density → In
contrast to the classical results!
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Paper for this week
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Questions

What is optomechanical Hamiltonian? How does linearization work and how to justify it?

What is the quantum backaction force on the mechanical oscillator?

What is the physical mechanism that enables optical squeezing?

What are the Fourier domain operators? What are their commutation relations and
statistical properties?
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Questions

What is the physically the optical cavity and the mechanical oscillator?

What is the technical difficulties in observing large optical squeezing?

How is different optical quadrature spectrum measured?

What is the typical bandwidth in observing this type of optical squeezing?
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