Quantum Electrodynamics and Quantum Optics: Lecture 12

Fall 2024

Quantum measurements and measurement back-action

Free-particle Hamiltonian: $\hat{H}_0 = \frac{\hat{p}^2}{2m}$.

First measurement at time t=0, yields $\hat{x}(0)$ and $\hat{p}(0)$. Variances of these quantities $\Delta \hat{x}^2 = \langle \hat{x}^2 \rangle - \langle \hat{x} \rangle^2$ follow Heisenberg uncertainty:

$$\Delta \hat{p}(0)\Delta \hat{x}(0) \geq \frac{\hbar}{2}$$

Time-evolution for small time τ :

$$\frac{\mathrm{d}\hat{x}}{\mathrm{d}t} = -\frac{i}{\hbar}[\hat{x}, \hat{H}] = \hat{p}/m \implies \hat{x}(\tau) = \hat{x}(0) + \frac{\hat{p}(0)\tau}{m}$$

Measurement at time τ will have the uncertainty:

$$\Delta \hat{x}(\tau)^2 = \Delta \hat{x}(0)^2 + \frac{\Delta \hat{p}(0)^2 \tau^2}{m^2} + (\langle \hat{x}(0)\hat{p}(0) + \hat{p}(0)\hat{x}(0) \rangle - 2\langle \hat{p}(0) \rangle \langle \hat{x}(0) \rangle) \frac{\tau}{m}$$

Quantum measurements and measurement back-action

Assume that position and momentum are not correlated. Thus we have for the uncertainty at time τ :

$$\Delta \hat{x}(\tau)^2 = \Delta \hat{x}(0)^2 + \frac{\hbar^2 \tau^2}{4m^2 \Delta \hat{x}(0)^2}.$$

First measurement at t=0 introduces an uncertainty for the second measurement at $t=\tau$. This is referred to as the *measurement back-action*. The minimum possible uncertainty due to measurement back-action is called the *standard quantum limit* (SQL)

Standard Quantum Limit (SQL)

$$\Delta \hat{x}(\tau)^2 = \frac{\hbar \tau}{m}$$

Consider the case of gravitational wave detection , where $\tau\sim 1$ ms and m=4 kg. These parameters give $\Delta\hat{x}(\tau)_{SOL}\sim 10^{-18}$ m.

¹Ref. Ch. 14 Quantum Optics GJ Milburn, DF Walls

Harmonic oscillator quantum limit

Consider harmonic oscillator Hamiltonian: $\hat{H}_0 = \frac{\hat{p}^2}{2m} + \frac{m\Omega_{\rm m}^2\hat{x}^2}{2}$, the dynamics follows

$$\hat{x}(\tau) = \hat{x}(0)\cos(\Omega_m \tau) + \frac{\hat{p}(0)}{m\Omega_m}\sin(\Omega_m \tau)$$

$$[\hat{x}(0),\hat{x}(au)] = rac{i\hbar}{m\Omega_{
m m}}\sin(\Omega_{
m m} au), \quad \Delta\hat{x}(0)^2\Delta\hat{p}(0)^2 \geq rac{\hbar^2}{4}.$$

When measuring at a later time, at half-period (when $\Omega_{\rm m} au = \pi/2$):

Limit for periodic measurement

$$\sqrt{\Delta\hat{x}(au)^2} \geq \sqrt{rac{\hbar}{2m\Omega_{
m m}}} \equiv$$
 zero-point motion

Velocity and position cannot be determined simultaneously due to the uncertainty principle.

Optomechanics

Dispersive coupling of the mass to the cavity field:

$$\omega_{c,m} = m \frac{c\pi}{L}$$
 $\omega_{c,m}(x) = m \frac{c\pi}{L+x}$

$$= \omega_{c,m} \left(1 - \frac{x}{L}\right).$$

We consider the fundamental mode that m=1. Hamiltonian of the mass-cavity system is thus modified:

$$\hat{H}=\hbar\omega_{c}\left(1-rac{\hat{x}}{L}
ight)\hat{a}^{\dagger}\hat{a}+\hbar\Omega_{\mathrm{m}}\hat{b}^{\dagger}\hat{b}.$$

The interaction part of the Hamiltonian arises from the changing cavity frequency:

$$\hat{H}_{\rm int} = -\hbar \frac{\omega_c}{L} x_{\rm zpf} \hat{a}^{\dagger} \hat{a} \left(\hat{b} + \hat{b}^{\dagger} \right).$$

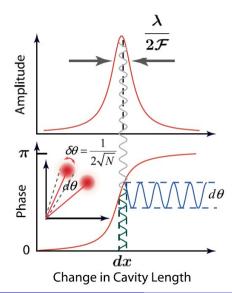
Optomechanics

Reflection from the cavity at resonance $(\omega = \omega_c)$:

$$r[\omega] = \frac{\omega - \omega_c(x) - i\kappa/2}{\omega - \omega_c(x) + i\kappa/2}$$
$$= \frac{\omega_c x/L - i\kappa/2}{\omega_c x/L + i\kappa/2}.$$

Phase shift around resonance of the reflected field

$$\theta \sim 2 \frac{x}{L} \frac{\omega_c}{\hbar} \propto x$$



Quantum Langevin equations

Recall: Coupling between system and bath

$$\hat{H}_{\mathit{B}} = \int \mathrm{d}\omega\,\hbar\omega\hat{b}^{\dagger}[\omega]\hat{b}[\omega] \quad \text{and} \quad \hat{H}_{\mathit{SB}} = \int \mathrm{d}\omega\,\hbar g[\omega] \left(\hat{a}\hat{b}^{\dagger}[\omega] + \hat{a}^{\dagger}\hat{b}[\omega]\right).$$

Time-evolution of the operators in the Heisenberg picture includes a dissipation term and a fluctuation term:

$$\frac{\mathrm{d}\hat{a}}{\mathrm{d}t} = -\frac{i}{\hbar}[\hat{a}, \hat{H}_{\mathrm{sys}}] - \frac{\kappa}{2}\hat{a} + \sqrt{\kappa}\hat{a}_{\mathrm{in}}.$$

For the optomechanical Hamiltonian, $\hat{H}=\hbar\omega_c\left(1-\frac{\hat{x}}{L}\right)\hat{a}^{\dagger}\hat{a}+\hbar\Omega_{\rm m}\hat{b}^{\dagger}\hat{b}$, we get the following equations of motion with drive:

$$\begin{split} \frac{\mathrm{d}\hat{a}}{\mathrm{d}t} &= -i\omega_{c}\hat{a} + i\frac{\omega_{c}}{L}x_{\mathrm{zpf}}\hat{a}\left(\hat{b} + \hat{b}^{\dagger}\right) - \frac{\kappa}{2}\hat{a} + \sqrt{\kappa}(\hat{a}_{\mathrm{in}} + \bar{a}_{in}e^{i\omega_{L}t}),\\ \frac{\mathrm{d}\hat{b}}{\mathrm{d}t} &= -i\Omega_{\mathrm{m}}\hat{b} + i\frac{\omega_{c}}{L}x_{\mathrm{zpf}}\hat{a}^{\dagger}\hat{a} - \frac{\Gamma_{\mathrm{m}}}{2}\hat{b} + \sqrt{\Gamma_{\mathrm{m}}}\hat{b}_{\mathrm{in}}. \end{split}$$

Quantum Langevin equations

We transfer to a rotating frame, $\hat{a} \to \hat{a}e^{i\omega_L t}$. We consider the case when the cavity is resonantly driven, i.e. $\omega_L = \omega_c$. Next we assume that the fields are strong, so they can be represented as a sum of a mean value and small fluctuations:

$$\hat{a}
ightarrow ar{lpha} + \delta \hat{a}$$
 and $\hat{b}
ightarrow ar{eta} + \delta \hat{b}.$

The interaction Hamiltonian $\hat{H}_{\rm int}=\hbar rac{\omega_c}{L}x_{
m zpf}\hat{a}^\dagger\hat{a}\left(\hat{b}^\dagger+\hat{b}
ight)$ is thus linearized:

$$\hat{a}^{\dagger}\hat{a} = (\bar{\alpha}^* + \delta\hat{a}^{\dagger})(\bar{\alpha} + \delta\hat{a}) \rightarrow \bar{\alpha} \left(\delta\hat{a} + \delta\hat{a}^{\dagger}\right)$$

Redefining $\delta \hat{a}$ as \hat{a} , we get *linearized quantum Langevin equations*:

$$\begin{split} \frac{\mathrm{d}\hat{a}}{\mathrm{d}t} &= i \frac{\omega_c}{L} x_{\mathrm{zpf}} \bar{\alpha} \left(\hat{b} + \hat{b}^\dagger \right) - \frac{\kappa}{2} \hat{a} + \sqrt{\kappa} \hat{a}_{\mathrm{in}}, \\ \frac{\mathrm{d}\hat{b}}{\mathrm{d}t} &= -i \Omega_{\mathrm{m}} \hat{b} + i \frac{\omega_c}{L} \bar{\alpha} (\hat{a} + \hat{a}^\dagger) - \frac{\Gamma_{\mathrm{m}}}{2} \hat{b} + \sqrt{\Gamma_{\mathrm{m}}} \hat{b}_{\mathrm{in}}. \end{split}$$

Quadratures

Next we consider the fluctuations in amplitude and phase quadratures:

$$\hat{X} \equiv rac{1}{\sqrt{2}} \left(\hat{a} + \hat{a}^\dagger
ight) \quad ext{and} \quad \hat{Y} \equiv rac{i}{\sqrt{2}} \left(\hat{a}^\dagger - \hat{a}
ight).$$

The Langevin equations for the optical field can be expressed as

$$\begin{split} \frac{\mathrm{d}\hat{X}}{\mathrm{d}t} &= -\frac{\kappa}{2}\hat{X} + \sqrt{\kappa}\hat{X}_{\mathrm{in}} \\ \frac{\mathrm{d}\hat{Y}}{\mathrm{d}t} &= i\sqrt{2}x_{\mathrm{zpf}}\frac{\omega_{c}}{L}\bar{\alpha}(\hat{b} + \hat{b}^{\dagger}) - \frac{\kappa}{2}\hat{Y} + \sqrt{\kappa}\hat{Y}_{\mathrm{in}} \end{split}$$

Position of the mechanical oscillator is only imprinted on the phase of the optical field We can infer position using *homodyne detection*.

Input-output relations

The input-output relation for fields also applies to the quadratures:

$$\hat{a}_{\text{out}} = -\hat{a}_{\text{in}} + \sqrt{\kappa}\hat{a} \implies \hat{Y}_{\text{out}} = -\hat{Y}_{\text{in}} + \sqrt{\kappa}\hat{Y}.$$

Taking the Fourier transform $\hat{Y}[\omega] = \int_{-\infty}^{\infty} e^{i\omega t} \hat{Y}(t) dt$, and redefining $\hat{q} = \hat{x} = x_{\rm zpf} \left(\hat{b} + \hat{b}^{\dagger} \right)$ for readability yields

$$-i\omega \hat{Y}[\omega] = i\sqrt{2}\frac{\omega_c}{L}\bar{\alpha}\hat{q}[\omega] - \frac{\kappa}{2}\hat{Y}[\omega] + \sqrt{\kappa}\hat{Y}_{\rm in}[\omega].$$

After substitution, we assume so-called bad-cavity limit $\kappa \gg \Omega_m$ and derive the output phase quadrature:

$$\hat{Y}_{\text{out}}[\omega] = \hat{Y}_{\text{in}}[\omega] + i \frac{\bar{\alpha}\omega_c}{L} \sqrt{\frac{8}{\kappa}} \hat{q}[\omega].$$

Spectral densities

We can find spectral densities by Wiener-Khinchin theorem:

$$\begin{split} S_{\hat{Y}\hat{Y}}[\omega] &= \lim_{\tau \to \infty} \frac{1}{\tau} \langle \hat{Y}_{\tau}^{\dagger}[\omega] \hat{Y}_{\tau}[\omega] \rangle \\ &= \int \mathrm{d}\tau \, e^{-i\omega\tau} \langle \hat{Y}^{\dagger}(\tau) \hat{Y}(0) \rangle = \int_{\infty}^{\infty} \mathrm{d}\omega' \langle \hat{Y}^{\dagger}[-\omega] \hat{Y}[\omega'] \rangle \end{split}$$

The input noise and mechanical motion are not correlated: $\langle \hat{Y}_{in}(\omega) \hat{q}(\omega) \rangle = 0$, and using the relations:

$$\langle \hat{Y}_{in}(t)\hat{Y}_{in}^{\dagger}(t')\rangle = (\bar{n}+1)\delta(t-t'), \quad \langle \hat{Y}_{in}^{\dagger}(t)\hat{Y}_{in}(t')\rangle = \bar{n}\delta(t-t')$$

Spectral density of the output noise is given by

$$S_{\hat{Y}_{\text{out}}\hat{Y}_{\text{out}}}[\omega] = \underbrace{1}_{\text{Shot noise } S_{\hat{Y}_{\text{in}}\hat{Y}_{\text{in}}}} + \underbrace{\frac{8\omega_c^2\bar{\alpha}^2}{\kappa L^2}S_{\hat{q}\hat{q}}[\omega]}_{\text{signal}}$$

SQL and Heisenberg uncertainty

The weakest signal $S^{\mathrm{imp}}_{\hat{q}\hat{q}}$ that can be measured is when the signal-to-noise ratio is equal to 1:

$$S_{\hat{q}\hat{q}}^{\mathrm{imp}} = \left(rac{\kappa L^2}{8\omega_c^2ar{lpha}^2}
ight)S_{\hat{\Upsilon}_{\mathrm{in}}\hat{\Upsilon}_{\mathrm{in}}}$$

Force acting on the mechanical oscillator is $\hat{F}=-\partial\hat{H}/\partial\hat{q}$. Assuming $\hat{X}=0$,

$$\hat{F} = \sqrt{2}\hbar \frac{\omega_c}{L} \hat{X} \implies \hat{F} = \sqrt{\frac{8}{\kappa}} \hbar \frac{\omega_c}{L} \hat{X}_{\text{in}}$$

$$\implies S_{\hat{F}\hat{F}}[\omega] = \frac{8}{\kappa} \left(\hbar \frac{\omega_c}{L} \bar{\alpha} \right)^2 S_{\hat{X}_{\rm in} \hat{X}_{\rm in}}[\omega]$$

From these two expressions, it can be seen that

$$S_{\hat{F}\hat{F}}[\omega]S_{\hat{q}\hat{q}}^{\text{imp}} = \hbar^2 S_{\hat{Y}_{\text{in}}Y_{\text{in}}} S_{\hat{X}_{\text{in}}\hat{X}_{\text{in}}} = \frac{\hbar^2}{4}.$$

Spectrum of position fluctuations

We write a second order differential equation for position:

$$\ddot{\hat{q}} = -\Omega_{\rm m}^2 \hat{q} - 2i \frac{\omega_c}{L} \bar{\alpha} x_{\rm zpf} \hat{X} - \Gamma_{\rm m} \dot{\hat{q}} + \sqrt{\Gamma_{\rm m}} \hat{q}_{\rm in}.$$

Taking the Fourier transform as $\hat{q}[\omega] = \int_{-\infty}^{\infty} \mathrm{d}t \, e^{i\omega t} \hat{q}(t)$, we get:

$$\hat{q}[\omega] = \chi[\omega] \left[-2i \frac{\omega_c}{L} \bar{\alpha} x_{\text{zpf}} \hat{X}[\omega] + \sqrt{\Gamma_{\text{m}}} \hat{q}_{\text{in}} \right],$$

where
$$\chi[\omega] = \left(\Omega_{\mathrm{m}}^2 - \omega^2 - i\omega\Gamma_{\mathrm{m}}\right)^{-1}$$
.

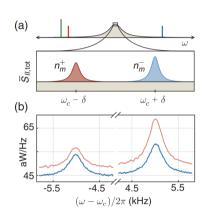
Noise spectral density

$$S_{\hat{q}\hat{q}}[\omega] = 2\Gamma_{
m m}|\chi[\omega]|^2 \left[S_{\hat{q}_{
m in}\hat{q}_{
m in}} + \underbrace{4rac{\left(x_{
m zpf}ar{lpha}rac{\omega_c}{L}
ight)^2}{\Gamma_{
m m}}}_{C_{
m eff}} S_{\hat{\chi}\hat{\chi}}
ight]$$

$$S_{\hat{q}\hat{q}}[\omega] = 2\Gamma_{\rm m}|\chi[\omega]|^2(n_{\rm th} + C_{\rm eff} + 1)$$

$$S_{\hat{q}\hat{q}}[-\omega] = 2\Gamma_{\rm m}|\chi[\omega]|^2(n_{\rm th} + C_{\rm eff})$$

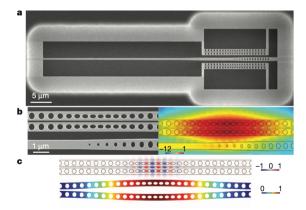
Asymmetric noise spectral density \rightarrow In contrast to the classical results!



Paper for this week

Squeezed light from a silicon micromechanical resonator

Amir H. Safavi-Naeini^{1,2*}, Simon Gröblacher^{1,2*}, Jeff T. Hill^{1,2*}, Jasper Chan¹, Markus Aspelmeyer³ & Oskar Painter^{1,2,4}



Questions

- What is optomechanical Hamiltonian? How does linearization work and how to justify it?
- What is the quantum backaction force on the mechanical oscillator?
- What is the physical mechanism that enables optical squeezing?
- What are the Fourier domain operators? What are their commutation relations and statistical properties?

Questions

- What is the physically the optical cavity and the mechanical oscillator?
- What is the technical difficulties in observing large optical squeezing?
- How is different optical quadrature spectrum measured?
- What is the typical bandwidth in observing this type of optical squeezing?