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Quantum measurements and measurement back-action

A ~2
Free-particle Hamiltonian: Ho = L.
First measurement at time t = 0, yields 55(0) and fJ(O) Variances of these quantities

A%* = (#%) — (%)? follow Heisenberg uncertainty:

Time-evolution for small time T:

b P ol _ & p
T E[x,H]—p/m = %(1) =2(0) + -

Measurement at time T will have the uncertainty:
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Quantum measurements and measurement back-action

Assume that position and momentum are not correlated. Thus we have for the uncertainty at
time T:

h2 2
4m2A%(0)2°
First measurement at t = 0 introduces an uncertainty for the second measurement at t = 7.

This is referred to as the measurement back-action. The minimum possible uncertainty due to
measurement back-action is called the standard quantum limit (SQL)

Standard Quantum Limit (SQL)

AR(T)? = A%(0) +

e

Ax(T)? -

Consider the case of gravitational wave detection!, where T ~ 1 ms and m = 4 kg. These
parameters give AX(T)sor ~ 10718 m.

1Ref. Ch. 14 Quantum Optics GJ Milburn, DF Walls
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Harmonic oscillator quantum limit

QZ %2 .
==, the dynamics follows

. . . gl A p2
Consider harmonic oscillator Hamiltonian: Hy = f—m +

%(t) = 2(0) cos(QT) + 11?1(—(2,),1 sin( Q) T)

[2(0),3(7)] =

sin(Qmt), A%(0)*Ap(0)* >
When measuring at a later time, at half-period (when QT = 71/2):

Limit for periodic measurement

\/A%(T)? > HZm;z)m = zero-point motion

Velocity and position cannot be determined simultaneously due to the uncertainty principle.
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Optomechanics
Dispersive coupling of the mass to the cavity field:
o = ST
cm — I
cTt

L+x

X
= 1——).
wc’m ( L)

We consider the fundamental mode that m = 1. Hamiltonian of the mass-cavity system is
thus modified:

Wem(x) =m

W

A = hw, (1 - %) a*a + hQmb'h.
The interaction part of the Hamiltonian arises from the changing cavity frequency:

A

o gWe o ata (1 gt
Hipt = thpraa<b+b>.
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Optomechanics

Reflection from the cavity at resonance
(w = w,):

w — we(x) —ix/2
w — we(x)+ix/2
_ wex/L—ix/2
 wex/L+ix/2

Amplitude

rlw] =

Phase shift around resonance of the reflected
field

Phase

X W,
0 2Lh 1S

o

Change in Cavity Length
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Quantum Langevin equations
Recall: Coupling between system and bath

Hp = /dwhwb+[w]b[w] and Hsp = /dwhg w] ( w] +a+b[w]>

Time-evolution of the operators in the Heisenberg picture includes a dissipation term and a

fluctuation term: 4 ;
a
a = —ﬁ[a HSyS] ﬂ + ﬁaln

For the optomechanical Hamiltonian, H = hw, (1 — i) At + hQmbth, we get the following
equations of motion with drive:

da K.

5 = i+ e . “Xpil (b + b*) A+ VK (B + B tt),
db Iy ;

e Qb + i [ — X' — 2mb+ VI mbin.
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Quantum Langevin equations

We transfer to a rotating frame, @ — 4e/“t. We consider the case when the cavity is

resonantly driven, i.e. w; = w.. Next we assume that the fields are strong, so they can be
represented as a sum of a mean value and small fluctuations:

a—&+0o2 and b— B+ b

The interaction Hamiltonian Hip = h%xzpfﬁJrﬁ (lAJ’L + B) is thus linearized:

ata = (a* + 08" (@ +6a) — a (5@ + 5@*)

Redefining i as @, we get linearized quantum Langevin equations:
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Quadratures

Next we consider the fluctuations in amplitude and phase quadratures:
N 1 N i
X=—z(a+a") and Y=—2(a"-a).
2 V2
The Langevin equations for the optical field can be expressed as

dX K » N
E = 5 X+ ViKin

~

1\/_xzpf a(b+bh — g?-i- ViYin

Position of the mechanical oscillator is only imprinted on the phase of the optical field
= We can infer position using homodyne detection.
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Input-output relations

The input-output relation for fields also applies to the quadratures:
Aout = —fin + \/E‘j - Yout = _Ym + \/_Y

Taking the Fourier transform Y[w] = [ &Y (t)dt, and redefining § = & = x,pf (E#—ifr) for
readability yields

—iw¥w] = iv2Y 2%%ag(w] - g?[w] + /i ¥in|w).

After substitution, we assume so-called bad-cavity limit ¥ > (), and derive the output phase
quadrature:

8

~

Yout|w] = Yin[w] [w].

. c ©
L Kq

Fall 2024 Quantum Electrodynamics and Quantum Optics: Lecture 12 11 /18



Spectral densities

We can find spectral densities by Wiener-Khinchin theorem:

Spglw] = lim ~ (¥ [w] Ve [a])

T—00 T
= [dreen (i 0T(0) = [ " dw" (T -w] o))

The input noise and mechanical motion are not correlated: (¥;,(w)§(w)) = 0, and using the
relations:

(Y (OYE(#) = (a+1)é(t =), (V] ()i (t)) = n6(t —t)
Spectral density of the output noise is given by

8w?a?
SYoutYOUt[w] - \1,./ + KL2 Sfi‘?[w]
Shot noise S¢. 5. N—
in¥in signal
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SQL and Heisenberg uncertainty

The weakest signal S};;p that can be measured is when the signal-to-noise ratio is equal to 1:

2
imp _ [ _KL7 ) o
Sqq - <8w§5¢2) Syinyin

Force acting on the mechanical oscillator is F = —3H/dj. Assuming X =0,

F= \/EH%X — P \/Eh“’cfgn

K L
8 [ w._\?
= Spplw] =~ (hfoc) S ki [ ]
From these two expressions, it can be seen that
. K2

SerlwlS” = 18,1, S%uke = -
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Spectrum of position fluctuations

We write a second order differential equation for position:

Zj —02 5 md — pcxzpr qu + VT Jin-
Taking the Fourier transform as glw] = [ dte“!§(t), we get:

3] = e [—zi%axzpfmw1 + Voo

-1
where x[w] = (an —w? - iwrm) :
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Noise spectral density

Saglw] = 2Tmx[w][* | Sgingin +4 - X% o -
(b) W, — § W, +4
65
Sileo] = 2l xlec] Prn + Cogt + 1) ; A
Sipl—w] = 20 |xee] 2(mes + Ca) R RE/ANS
m c AN
-5.5 -4.5 4.5 5.5
(w—w.) /27 (kHz)

Asymmetric noise spectral density — In
contrast to the classical results!
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Paper for this week

Squeezed light from a silicon micromechanical resonator

Amir H. Safavi-Naeini">, Simon Groblacher™?*, Jeff T. Hill">*, Jasper Chan', Markus Aspelmeyer® & Oskar Painter">*
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Questions

@ What is optomechanical Hamiltonian? How does linearization work and how to justify it?
@ What is the quantum backaction force on the mechanical oscillator?

@ What is the physical mechanism that enables optical squeezing?

@ What are the Fourier domain operators? What are their commutation relations and
statistical properties?
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Questions

@ What is the physically the optical cavity and the mechanical oscillator?
@ What is the technical difficulties in observing large optical squeezing?
@ How is different optical quadrature spectrum measured?

@ What is the typical bandwidth in observing this type of optical squeezing?
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