1 / 13

Quantum Electrodynamics and Quantum Optics: Lecture 11

Fall 2024

Stern-Gerlach experiment¹

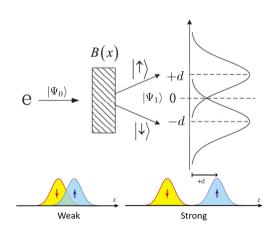
Consider two spin states $(|\uparrow\rangle, |\downarrow\rangle$. Using magnetic field gradient we apply different forces on them: $F \propto (\nabla \cdot B) \cdot \hat{\sigma}_z$.

$$|\Psi_0\rangle = \frac{1}{\sqrt{2}}(|\uparrow\rangle + |\downarrow\rangle) \otimes |x_0\rangle$$

After evolution by magnetic field:

$$|\Psi_1\rangle = \frac{1}{\sqrt{2}}(|\uparrow\rangle|x_+\rangle + |\downarrow\rangle|x_-\rangle)$$

Thus we have entangled spin with the motional degree of freedom.



¹Clerk, Aashish A., et al. "Introduction to quantum noise, measurement, and amplification," Reviews of Modern Physics 82.2 (2010): 1155.

Stern-Gerlach experiment

If the spread of $|\psi_{\pm}(x)|^2$ gets bigger than the width of wave packets, we will have a strong projective measurement.

Strong measurement decoheres the system

Consider a strong measurement, where the initial state is

$$|\Psi_0\rangle = \frac{1}{\sqrt{2}}(|\downarrow\rangle + |\uparrow\rangle)|x_0\rangle$$

is an eigenstate of $\hat{\sigma}_x$, so that $\langle \Psi_0 | \hat{\sigma}_x | \Psi_0 \rangle = 1$. This expectation value is a measure of the coherence of the state. After a measurement the state becomes

$$\langle \Psi_1 | \hat{\sigma}_x | \Psi_1 \rangle = \frac{1}{\sqrt{2}} (\langle x_- | x_+ \rangle + \langle x_+ | x_- \rangle),$$

evidently $\langle x_-|x_+\rangle \to 0$ for a strong projective measurements. Thus measurement induces decoherence of a state.

Cavity QED in the dispersive limit

Two-level system in a cavity

$$\hat{H} = \hbar \left(\omega_{\rm c} + \hat{\sigma}_z \frac{g^2}{\Delta} \right) \hat{a}^{\dagger} \hat{a} + \hbar \left(\omega_{\rm eg} + \frac{g^2}{\Delta} \right) \frac{\hat{\sigma}_z}{2}$$

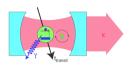
$$E_n^{\pm} = \hbar \omega_{\rm c} (n+1) \pm \hbar \left(\frac{\omega_{\rm eg}}{2} \pm \frac{\Omega_n^2}{4\Delta} \right)$$

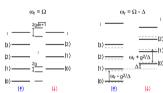
where
$$\Omega_n=2g\sqrt{n+1}$$
, $\Delta=\omega_{\mathrm{eg}}-\omega_{\mathrm{c}}$

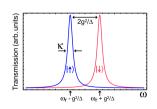
Thus transition frequencies are

$$\tilde{\omega}_{\text{eg}} = \frac{1}{\hbar} (E_n^+ - E_{n-1}^-) = \omega_{\text{eg}} + (2n+1) \frac{g^2}{\Delta}$$

$$\tilde{\omega}_{\text{c}} = \frac{1}{\hbar} (E_n^- - E_{n-1}^-) = \omega_{\text{c}} - \frac{g^2}{\Delta}$$







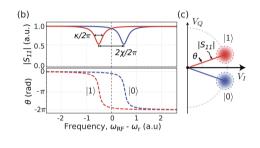
Dispersive measurement of a two-level system in the cavity

Response of the dressed cavity

$$\hat{a}_{\text{out}} + \hat{a}_{\text{in}} = \sqrt{\kappa} \hat{a}$$

$$\frac{d}{dt} \hat{a} = -i(\omega_{\text{c}} + \hat{\sigma}_z \frac{g^2}{\Delta}) \hat{a} - \frac{\kappa}{2} \hat{a} + \sqrt{\kappa} \hat{a}_{\text{in}}$$

$$\frac{\langle \hat{a}_{\text{out}} \rangle}{\langle \hat{a}_{\text{in}} \rangle} = r(\omega_{\text{c}}) = -\left(\frac{1 + 2i\frac{g^2}{\Delta\kappa} \langle \hat{\sigma}_z \rangle}{1 - 2i\frac{g^2}{\Delta\kappa} \langle \hat{\sigma}_z \rangle}\right) = |r|e^{i\phi_0}$$



Phase response at the cavity frequency

$$\phi_0pprox 4rac{g^2}{\Delta}rac{1}{\kappa}\left\langle\hat{\sigma}_z
ight
angle$$

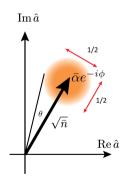
Phase-number uncertainty

Considering a coherent state incident on the cavity $|\psi_{\rm in}\rangle=|\alpha\rangle$, what is the uncertainty in the homodine detection of the phase of the reflected radiation $|\psi_{\rm out}\rangle=|re^{i\phi}\alpha\rangle$?

For a coherent state,
$$\langle \hat{X}_1^2 \rangle^{1/2} = \langle \alpha | \hat{X}_1^2 | \alpha \rangle^{1/2} = 1/2 = \langle \hat{X}_2^2 \rangle^{1/2}$$
, where $\hat{X}_1 = (\hat{a} + \hat{a}^{\dagger})/2$, $\hat{X}_2 = (\hat{a} - \hat{a}^{\dagger})/2i$ is the field quadrature operator

Variances

$$egin{align} \langle \Delta \hat{\phi}^2
angle &= rac{1}{2} rac{\Delta \hat{X}_2^2}{|lpha|^2} = rac{1}{4 ar{N}} \ & \langle \Delta \hat{N}^2
angle &= ar{N} \ & \langle \Delta \hat{N}^2
angle \langle \Delta \hat{\phi}^2
angle &= rac{1}{4} \ & \end{aligned}$$



Measurement rate

$$SNR = \frac{\phi^2}{\langle \Delta \hat{\phi}^2 \rangle} = \frac{\phi^2}{S_{\phi\phi} t^{-1}}$$

where t^{-1} is the measurement bandwidth.

$$\langle \Delta \hat{\phi}^2 \rangle = \frac{1}{4\dot{N}t} = \frac{\hbar\omega}{4P} \frac{1}{t}$$

where $\dot{\bar{N}}$ is the average photon flux.

Measurement rate

$$\Gamma_{
m m} \equiv rac{{
m SNR}}{2t} = rac{(\phi)^2}{2S_{\phi\phi}}$$

Heisenberg uncertainty for spectral densities

$$S_{\phi\phi}S_{\dot{N}\dot{N}}=rac{1}{4}$$

Measurement back-action

Consider $\hat{H} = \frac{\hbar}{2}(\omega_{\rm eg} + \frac{g^2}{\Delta}\hat{a}^{\dagger}\hat{a})\hat{\sigma}_z + \hbar\omega_{\rm c}\hat{a}^{\dagger}\hat{a}$ thus photon induced energy level shifts are:

$$\Delta \omega_{\mathrm{eg}} = \frac{g^2}{\Delta} \hat{a}^{\dagger} \hat{a}$$
. Linearizing by $\hat{a} = \bar{a} + \delta \hat{a}$, and equivalently $\hat{n} = \bar{n} + \delta \hat{n}$
$$\Delta \omega_{\mathrm{eg}} = \underbrace{\frac{g^2}{\Delta} \bar{n}}_{\mathrm{mean}} + \underbrace{\frac{g^2}{\Delta} \delta \hat{n}}_{\mathrm{fluctuation}}$$

consider:

$$\frac{d}{dt}\hat{\sigma}^{+} = -i\frac{\omega_{\rm eg}}{2}\hat{\sigma}^{+} - i\frac{g^{2}}{\Delta}\delta\hat{n}\hat{\sigma}^{+}$$

dephasing
$$\langle \hat{\sigma}^+(t)\hat{\sigma}^-(0) \rangle = \langle e^{-i\hat{\phi}(t)} \rangle$$
 , $\hat{\phi}(t) = \int_0^t \Delta\omega_{\rm eg}(t')dt'$

Dephasing

$$\langle \hat{\sigma}^+(t)\hat{\sigma}^-(0) \rangle \approx e^{-\Gamma_\phi t}$$
, $\Gamma_\phi = 4\phi_0^2 \frac{\kappa}{2} \bar{n} = 2\phi_0^2 S_{\check{N}\check{N}} = \frac{2\phi_0^2}{4S_{\phi\phi}} = \Gamma_{\rm meas}$ Hence both measurement rate and dephasing rate are equal.

Dephasing

Dephasing from atom-photon interaction

Consider the initial state $|\Phi_0\rangle=(|g\rangle+|e\rangle)/\sqrt{2}$, the off-diagonal term of the density matrix $\langle \Psi(t)|\,\hat{\sigma}^+\,|\Psi(t)\rangle=e^{-\Gamma_\phi t}$ decays due to entanglement of cavity and atom. Assuming the initial state to be $|\Phi_0\rangle=(|g\rangle+|e\rangle)/\sqrt{2}\otimes|\alpha\rangle$, after the interaction, the state changes to

$$\left|\Phi(t)\right\rangle = \frac{1}{\sqrt{2}} \left(e^{-i\omega_{\rm eg}t/2}\left|g\right\rangle \otimes \left|r_e\alpha\right\rangle + e^{+i\omega_{\rm eg}t/2}\left|e\right\rangle \otimes \left|r_g\alpha\right\rangle\right),$$

where $r_{e,g}=r(\omega_{\rm c}\pm i\frac{g^2}{\Delta})$ is the cavity reflection coefficient. After tracing over the light field states,

$$s_{\rm eg} = \operatorname{Tr}(\langle 1 | \Psi_t \rangle \langle \Psi_t | e \rangle) = e^{i\omega_{\rm eg}t/2} e^{-|\alpha|^2 (1 - r_e^* r_g)} = e^{i\omega_{\rm eg}t/2} e^{-2\phi_0^2 \bar{N}},$$

we again find the dephasing factor

$$e^{-\Gamma_{\phi}t}$$

PHYSICAL REVIEW A

VOLUME 47, NUMBER 4

APRIL 1993

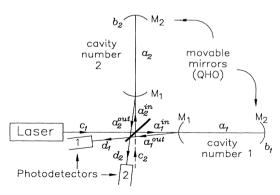
Quantum limits in interferometric detection of gravitational radiation

A. F. Pace and M. J. Collett

Department of Physics, University of Auckland, Private Bag 92019, New Zealand

D. F. Walls*

Joint Institute for Laboratory Astrophysics, University of Colorado, Boulder, Colorado 80309-0440 (Received 13 July 1992)



Questions for next week's paper

- What's the phase-relation of gravitational "forces" at two arms?
- Optical phase relation between the two arms, which optical quadratures are detected from the two arms?
- What's the expression for the "signal", and the expression for the "noise"? What are the contributions of the "noise"?
- What's the trade-off that leads to an "optimal" optical power? What's the minimally detectable gravitational displacement? What if the harmonic oscillator is in a thermal state?