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Quantum Electrodynamics and Quantum Optics: Lecture 11

Fall 2024



Stern-Gerlach experiment1

Consider two spin states (|↑⟩ , |↓⟩. Using
magnetic field gradient we apply different
forces on them: F ∝ (∇ · B) · σ̂z.

|Ψ0⟩ =
1√
2
(|↑⟩+ |↓⟩)⊗ |x0⟩

After evolution by magnetic field:

|Ψ1⟩ =
1√
2
(|↑⟩ |x+⟩+ |↓⟩ |x−⟩)

Thus we have entangled spin with the motional
degree of freedom.

1Clerk, Aashish A., et al.“Introduction to quantum noise, measurement, and amplification.” Reviews of Modern Physics 82.2 (2010): 1155.
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Stern-Gerlach experiment

If the spread of |ψ±(x)|2 gets bigger than the width of wave
packets, we will have a strong projective measurement.

Strong measurement decoheres the system

Consider a strong measurement, where the initial state is

|Ψ0⟩ =
1√
2
(| ↓⟩+ | ↑⟩)|x0⟩

is an eigenstate of σ̂x, so that ⟨Ψ0| σ̂x |Ψ0⟩ = 1. This expectation value is a measure of the coherence
of the state. After a measurement the state becomes

⟨Ψ1| σ̂x |Ψ1⟩ =
1√
2
(⟨x−|x+⟩+ ⟨x+|x−⟩),

evidently ⟨x−|x+⟩ → 0 for a strong projective measurements. Thus measurement induces decoherence
of a state.
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Cavity QED in the dispersive limit

Two-level system in a cavity

Ĥ = h̄

(
ωc + σ̂z

g2

∆

)
â†â + h̄

(
ωeg +

g2

∆

)
σ̂z

2

E±
n = h̄ωc (n + 1)± h̄

(
ωeg

2
± Ω2

n
4∆

)
where Ωn = 2g

√
n + 1, ∆ = ωeg − ωc

Thus transition frequencies are

ω̃eg =
1
h̄
(E+

n − E−
n−1) = ωeg + (2n + 1)

g2

∆

ω̃c =
1
h̄
(E−

n − E−
n−1) = ωc −

g2

∆
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Dispersive measurement of a two-level system in the cavity

Response of the dressed cavity

âout + âin =
√

κâ

d
dt

â = −i(ωc + σ̂z
g2

∆
)â − κ

2
â +

√
κâin

⟨âout⟩
⟨âin⟩

= r(ωc) = −

1 + 2i g2

∆κ ⟨σ̂z⟩
1 − 2i g2

∆κ ⟨σ̂z⟩

 = |r|eiϕ0

Phase response at the cavity frequency

ϕ0 ≈ 4
g2

∆
1
κ
⟨σ̂z⟩
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Phase-number uncertainty

Considering a coherent state incident on the cavity |ψin⟩ = |α⟩, what is the uncertainty in the
homodine detection of the phase of the reflected radiation |ψout⟩ = |reiϕα⟩?
For a coherent state, ⟨X̂2

1⟩1/2 = ⟨α| X̂2
1 |α⟩

1/2 = 1/2 = ⟨X̂2
2⟩1/2, where

X̂1 = (â + â†)/2, X̂2 = (â − â†)/2i is the field quadrature operator

Variances

⟨∆ϕ̂2⟩ = 1
2

∆X̂2
2

|α|2 =
1

4N̄

⟨∆N̂2⟩ = N̄

⟨∆N̂2⟩⟨∆ϕ̂2⟩ = 1
4
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Measurement rate

SNR =
ϕ2

⟨∆ϕ̂2⟩
=

ϕ2

Sϕϕt−1

where t−1 is the measurement bandwidth.

⟨∆ϕ̂2⟩ = 1

4 ˙̄Nt
=

h̄ω

4P
1
t

where ˙̄N is the average photon flux.

Measurement rate

Γm ≡ SNR
2t

=
(ϕ)2

2Sϕϕ

Heisenberg uncertainty for spectral densities

SϕϕS ˙̄N ˙̄N =
1
4
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Measurement back-action

Consider Ĥ = h̄
2 (ωeg +

g2

∆ â†â)σ̂z + h̄ωcâ†â thus photon induced energy level shifts are:

∆ωeg = g2

∆ â†â. Linearizing by â = ā + δâ, and equivalently n̂ = n̄ + δn̂

∆ωeg =
g2

∆
n̄︸︷︷︸

mean

+
g2

∆
δn̂︸ ︷︷ ︸

fluctuation

consider:
d
dt

σ̂+ = −i
ωeg

2
σ̂+ − i

g2

∆
δn̂σ̂+

dephasing ⟨σ̂+(t)σ̂−(0)⟩ = ⟨e−iϕ̂(t)⟩ , ϕ̂(t) =
∫ t

0 ∆ωeg(t′)dt′

Dephasing

⟨σ̂+(t)σ̂−(0)⟩ ≈ e−Γϕt, Γϕ = 4ϕ2
0

κ
2 n̄ = 2ϕ2

0S ¯̇N ¯̇N =
2ϕ2

0
4Sϕϕ

= Γmeas

Hence both measurement rate and dephasing rate are equal.
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Dephasing

Dephasing from atom-photon interaction

Consider the initial state |Φ0⟩ = (
∣∣g〉+ |e⟩)/

√
2, the off-diagonal term of the density matrix〈

Ψ(t)
∣∣ σ̂+

∣∣Ψ(t)
〉
= e−Γϕt decays due to entanglement of cavity and atom. Assuming the

initial state to be |Φ0⟩ = (
∣∣g〉+ |e⟩)/

√
2 ⊗ |α⟩, after the interaction, the state changes to

∣∣Φ(t)
〉
=

1√
2
(e−iωegt/2 ∣∣g〉⊗ |reα⟩+ e+iωegt/2 |e⟩ ⊗

∣∣∣rgα
〉
),

where re,g = r(ωc ± i g2

∆ ) is the cavity reflection coefficient. After tracing over the light field
states,

seg = Tr(⟨1|Ψt⟩⟨Ψt |e⟩) = eiωegt/2e−|α|2(1−r∗e rg) = eiωegt/2e−2ϕ2
0N̄,

we again find the dephasing factor
e−Γϕt
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Paper for next week’s presentation
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Questions for next week’s paper

What’s the phase-relation of gravitational ”forces” at two arms?

Optical phase relation between the two arms, which optical quadratures are detected from
the two arms?

What’s the expression for the ”signal”, and the expression for the ”noise”? What are the
contributions of the ”noise”?

What’s the trade-off that leads to an ”optimal” optical power? What’s the minimally
detectable gravitational displacement? What if the harmonic oscillator is in a thermal
state?
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