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Squeezed states of light 
D. F. Walls 

Physics Department, University of Waikato, Hamilton, New Zealand 

The properties of a unique set of quantum states of the electromagnetic field are reviewed. These 
'squeezed states' have less uncertainty in one quadrature than a coherent state. Proposed schemes for 
the generation and detection of squeezed states as well as potential applications are discussed. 

THE electric field for a nearly monochromatic plane wave may 
be decomposed into two quadrature components with time 
dependence cos wt and sin wt respectively. In a coherent state, 
the closest quantum counterpart to a classical field, the fluctu­
ations in the two quadratures are equal and minimize the uncer­
tainty product given by Heisenberg's uncertainty relation. The 
quantum fluctuations in a coherent state are equal to the zero­
point fluctuations and are randomly distributed in phase. These 
zero-point fluctuations represent the standard quantum limit to 
the reduction of noise in a signal. Even an ideal laser operating 
in a pure coherent state would still possess quantum noise due 
to zero-point fluctuations. 

Other minimum uncertainty states are possible which have 
less fluctuations in one quadrature phase than a coherent state 
at the expense of increased fluctuations in the other quadrature 
phase. Such states, which have been called squeezed states l

-
5 

(other names include two photon coherent states, generalized 
coherent states), no longer have their quantum noise randomly 
distributed in phase. Such states offer intriguing possibilities. In 
the present optical communication systems which use coherent 
beams of laser light propagating in optical fibres, the ultimate 
limit to the noise is given by the quantum noise or zero-point 
fluctuations. If, instead, beams of squeezed light were used to 
transmit information in the quadrature phase that had reduced 
fluctuations the quantum noise level could be reduced below 
the zero-point fluctuations. Optical communication systems 
based on light signals with phase sensitive quantum noise have 
been proposed by Yuen and Shapiro6 ,7, 

The concept of squeezed states applies to other quantum 
mechanical systems. For example, they may have a role in 
increasing the sensitivity of a gravitational wave detector. A 
standard bar detector for gravitational radiation may be treated 
as a harmonic oscillator. The effect of the gravitational radiation 
is so weak that the expected displacement of the bar is of the 
order of 10-19 cm. This is the same order of magnitude as the 
quantum mechanical uncertainty of the bar's position in its 
ground state. Thus the signal from the gravitational wave detec­
tor may be obscured by the zero-point fluctuations of the detec­
tor. This is a striking example of the influence of quantum 
fluctuations on a macroscopic system. In principle, a way of 
beating this problem is clear. Instead of the ground state of the 
oscillator with its quantum noise randomly distributed in phase 
one' prepares the oscillator in a squeezed state. One then 
measures the displacement due to the gravitational radiation in 
the quadrature with reduced fluctuations. In this way it should 
be possible to detect displacements less than the quantum 
mechanical uncertainty in the bar's position. Of course, this 
leaves a lot of technical questions unanswered. How does one 
prepare the bar in a squeezed state? How does one make a 
measurement on the bar's quadrature phase? These problems 
and suggested solutions are discussed elsewhere8

,9 in treatments 
of quantum non-demolition measurements, 

The statistical properties of light fields such as coherent or 
thermal light may be calculated by techniques similar to classical 
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probability theory using an expansion of the density operator 
in terms of coherent states, the Glauber-Sudarshan P rep­
resentationIO,ll. Coherent light has poissonian photon counting 
statistics. Squeezed states of light on the other hand may have 
sub-poissonian photon counting statistics and have no nonsin­
gular representation in terms of the Glauber-Sudarshan P distri­
bution. The statistical properties of such fields cannot be calcu­
lated by techniques analogous to classical probability theory, 
Squeezed states are, therefore, an example of a nonclassical 
light field. To be precise we shall define a nonclassical light field 
as one that has no positive nonsingular Glauber-Sudarshan P 
function. 

Another example of a nonclassical light field is a number 
state. This certainly has no nonsingular Glauber-Sudarshan P 
function and clearly has sub-poissonian photon statistics. Such 
nonclassical light fields with sUb-poissonian photon statistics 
which exhibit ~hoton anti bunching have been observed experi­
mentallyI2,J3,5 . A number state, however, has its quantum 
fluctuations randomly distributed in phase and hence does not 
exhibit squeezing. While a squeezed state may exhibit sub­
poissonian photon statistics and hence photon anti bunching it 
is not a necessity. Sub-poissonian statistics result if the quad­
rature phase with reduced fluctuations carries the coherent 
excitation. Using photon counting techniques direct measure­
ments of the intensity fluctuations of a light field are possible. 
To determine the fluctuations in the quadrature phases a phase 
sensitive detection scheme is necessary. This can be achieved 
by homodyning or heterodyning the signal with a local oscillator 
followed by photon counting measurements. To generate a 
squeezed state a phase dependent nonlinear optical process is 
necessary. 

Phase dependent correlation functions 
Detection of a light signal with a photon counter yields a 
measurement of the light intensity l(t) or photon number n(t). 
Using electronic correia tors one may then compute the intensity 
or photon number correlations of the light field. For example, 
one may measure the normalized second-order correlation 
function 

(2)(0) = (:12:) 
g (1)2 (1) 

where : : denotes normal ordering of the quantum mechanical 
operators. For sufficiently short counting times the variance 
V(n) of the photon number distribution is related to g(2)(0) by 

V(n)-(n) 

(n) 
(2) 

A coherent light field with poisson ian statistics has g(2)(0) = 1. 
Thermal light which has increased intensity fluctuations has 
g(2)(0) = 2. Since g(2)(0) represents the probability of two 
photons arriving simultaneously this is referred to as photon 
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Fig. 1 Phase space plot showing the uncertainty in: a, a coherent 
state la); b, a squeezed state la, rei') (r> 0); c, a number state In). 

bunching. A light field with sub-poissonian statistics will have 
g(2)(O) < 1, an effect known as photon antibunching. Photon 
anti bunching is a quantum mechanical effect which may not be 
derived from a classical description of the field. Such fields do 
not have a positive nonsingular representation in terms of the 
Glauber-Sudarshan P distribution which expresses the density 
operator for a single mode field as IO.11 

p = f P(a)la)(al d2 a (3) 

where la) is a coherent state. This representation has found 
considerable application in optics because the taking of quantum 
mechanical averages resemble classical averaging procedures 
provided P( a) exists as a positive nonsingular function. For 
fields which exhibit photon antlbunching, however, the P(a) 
are highly singular functions. In this sense we say that such fields 
are nonclassical. The quantum theory of light received further 
verification when photon antibunching was observed experi­
mentally in resonance fluorescence from a two level atom12

.!3 

in agreement with theoretical predictions l 4-16 (for reviews see 
refs 17-19). 

Our discussion of the properties of phase dependent correla­
tion functions is illustrated with reference to a single mode field. 
We may write the electric field as 

(4) 

where A is a constant including the spatial wave functions. In 
the quantum theory of radiation the amplitudes a and a tare 

E(t) 
a 

E(t) X 2 b 

Xl 

E(t) Xz c 

Fig. 1 Plot of electric field against time showing the uncertainty 
for: a, a coherent state la) (a real); b, a squeezed state la, r) with 
reduced amplitude ftuctuations (a real, r> 0); c, a squeezed state 
la, r) with reduced phase ftuctuations (a real, r<O). Reproduced 

with permission from Caves21 • 

quantum mechanical operators which obey boson commutation 
relations. We may write 

(5) 

where XI and X 2 are hermitian operators obeying the commuta­
tion relation 

(6) 

In terms of Xl and X 2 one may write E(t) as 

A . 
E(t) ='2 (XI cos wt+ X 2 sm wt) (7) 

Thus Xl and X 2 may be identified as the amplitudes of the two 
quadrature phases of the field. 

From the commutation relation (6) we deduce the following 
relation for the uncertainties ~XI ={V(Xj )}I/2 in Xl and X 2 

(8) 

A family of minimum uncertainty states is defined by taking 
the equal sign. One such class of minimum uncertainty states is 
the coherent states which have V(XI ) = V(X2 ) =!. A broader 
class of minimum uncertainty states may have unequal variances 
in each quadrature. These are the so called squeezed states. The 
condition for squeezing is 

V(X;)<! i = 1 or 2 (9) 
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Fig. 3 Photon number distribution for a squeezed state la, r) 
(a = 7, r = ±0.5) compared with a coherent state (r = 0). 

It is sometimes convenient especially for multimode fields to 
write the condition in terms of the normally ordered variance 

:V(Xj ): <0 i = 1 or 2 (10) 

Figure 1 shows a phase space plot of the uncertainties in Xl 
and X2 for a coherent state, a squeezed state and a number 
state is shown. These error ellipses may be rigorously derived 
as the contours of the Q function4

• 

The time dependence of E(t) including the uncertainty JiE(t) 
is shown in Fig. 2 for a a coherent state, b a squeezed state 
with reduced amplitude fluctuations, c a squeezed state with 
reduced phase fluctuations. The corresponding error box for 
these states at t = 0 is also shown. 

For a single mode field the variance in one quadrature may 
be calculated using the Glauber-Sudarshan P representation 

V(XI)=i{ 1+ f p(a)[(a+a*)-(a)+(a*»]2 d2a } (11) 

The condition for squeezing V(XI ) <i requires that P(a) be a 
non positive definite function. In this sense squeezing like photon 
anti bunching is a nonclassical property of the electromagnetic 
field. Note that to derive equation (11) the commutation relation 
[a, at] = 1 has been used. If a classical field is assumed from the 
outset arbitrary squeezing may be obtained in either quadrature. 
Thus squeezing has a non trivial significance only in the case of 
quantized fields. A distinction between classical and quantum 
fields may be obtained from the normally ordered correlation 
function g(2)(0) which is always :;,:1 for classical fields (see 
ref. 20). 

Properties of squeezed states 
We shall now briefly describe the mathematical properties of 
squeezed states. A coherent state la) may be generated by the 
action of the displacement operator D( a) on the vacuum 

la) = D(a)IO) (f2) 

where 

A squeezed state la, () may be generated by first acting with 
the squeeze operator S(() on the vacuum followed by the 
displacement operator D(a) (ref. 21) 

la, () = D(a)SWIO) (13) 

where 

and 

Fig. 4 Q function for a squeezed state. Reproduced with per­
mission from Yuen4

• 

An alternative but equivalent characterization of squeezed states 
has been given by Yuen4

• We note that whereas a coherent 
state is generated by linear terms in a and a t in the exponent 
a squeezed state requires quadratic terms. 

The variances in squeezed state la, () are given by 

V(YI )=ie-2r 

V(Y2)=ie2r 
(14) 

where Y j + i Y 2 = (XI + iX2 ) e-i8
/

2 is a rotated complex ampli­
tude so that 2Ji Y l and 2Ji Y 2 represent the length of the minor 
and major axes of the error ellipse. The mean photon number 
in the squeezed state la, () is 

(15) 

Clearly, the variances V(X;) are independent of the field ampli­
tude a. Thus squeezing is a quantum mechanical effect which 
may occur in fields with high intensity. In this sense one may 
say it is a macroscopic quantum effect. This is a significant 
difference from photon antibunching which is only appreciable 
for fields with low intensity. There is no general relation between 
photon antibunching and squeezing, however, we shall consider 
the limit where the coherent amplitude greatly exceeds the 
squeezing (laI 2 »sinh2 r). In this limit we find 

(16) 

where we have chosen a real so that the amplitude is carried 
by Xl' 
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Fig. 5 Squeezing in the parametric oscillator (---) compared 
with an ideal parametric amplifier (_. -' -' -) as a function of the 

pump driving field. 

For r> 0 we have a reduction in amplitude fluctuations 
(: V(X1 ): < 0) and photon antibunching (g(2)(0) < 1) whereas 
for r < 0 we have an increase in amplitude fluctuations and 
photon bunching. Hence in this limit a squeezed state may show 
either photon bunching or antibunching depending on whether 
the amplitude fluctuations are increased or reduced. The photon 
number distribution4 in a squeezed state la, r) is plotted in Fig. 
3 for a = 7, r = ±O.S. We can see that the photon statistics are 
sub- or super-poisson ian depending on whether r> 0 or r < O. 

No such simple relation between antibunching and squeezing 
exists for all values of a. For example in the opposite limit of 
a« 1, that is, a squeezed vacuum 10, r), 

(2)( ) cosh 2r g 0 =1+-­
sinh2 r 

(17) 

Thus the photons in a squeezed vacuum are always bunched 
irrespective of the sign of the squeeze parameter. 

An example of a quantum state which exhibits photon anti­
bunching but no squeezing is a number state In) for which 

(18) 

The complete absence of phase information in a number state 
is clear from the phase space annulus shown in Fig. 1 c. 

As the Glauber-Sudarshan P representation does not exist 
for a squeezed state we must consider an alternative representa­
tion such as the Wi~ner function, the Q function, or the general­
ized P function22. 3. The Q function for a squeezed state is 
derived in ref. 4. The distribution Q(X1 , X 2 ) plotted in Fig. 4 
as a function of the amplitudes of the two quadratures clearly 
shows the unequal variances in Xl and X 2 • 

Production of squeezed states 
There has been no experimental manifestation of squeezed states 
of light. The requirement to produce a squeezed state may be 
simply expressed as follows. For a single mode field mix a part 
of the field with its phase conjugate to produce a new mode b 
such that 

(19) 

where p, 2 - p2 = 1. For mode a in a coherent state the mode b 
will be in a squeezed state4. Thus a scheme involving a phase 

2.o..----,--.-------,.-------,.-------. 
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Fig. 6 Photon statistics g(2)(0) and variances l!.X~ for the para­
metric oscillator as a function of the idler driving field. The pump 

driving field is held fixed at the threshold value. 

conjugate mirror appears as one of the favourite candidates for 
a state squeezer24. The above prescription seems very simple, 
however, the phase conjugate mirror involves a nonlinear inter­
action, in this case a four-wave mixing interaction. Squeezed 
states may also be generated by a three-wave mixinf interaction 
as for example in the parametric amplifier25-27.51. 2. The pro­
totype for these interactions is described by the Hamiltonian, 

(20) 

where 

(degenerate parametric amplifier) 

x(n) is the nonlinear susceptibility of the optical medium and 
e is the amplitude of the pump field which has been 
treated classically. This approximate form of the Hamiltonian 
generates squeezed states with a squeeze parameter given by 
r=12x(n)(e)tl. Several objections to this ideal system can be 
raised. Fluctuations resulting from the quantization of the pump 
field and the nonlinear medium have been neglected as have 
vacuum fluctuations associated with any loss process. The 
vacuum fluctuations will tend to equalize the variances in the 
two quadratures and hence destroy the squeezing28-29. Thus the 
characteristic damping time of any loss mechanism should be 
long compared with the interaction time. Phase and amplitude 
fluctuations in the laser used for the pump may also degrade 
the squeezing30

• Phase fluctuations may be compensated for by 
using part of the pump as the local oscillator in a homodyne 
detection scheme. 

The magnitude of the squeezing is limited by the small values 
of the nonlinear susceptibility and the interaction time. To 
increase the interaction time the nonlinear crystal may be placed 
inside an optical cavity. There is a parametric oscillator configur­
ation where the cavity modes are driven externally by classical 
fields. An analysis of the cavity must include the cavity losses 
which tend to destroy the squeezing. Thus there will be a 
competition between the squeezing produced by the nonlinear 
interaction and the degradation of the squeezing by the damping. 
This results in a limiting value to the squeezing attainable in 
the steady state. An analysis of the degenerate parametric oscil­
lator includin§ the quantization of the pump field has been 
carried ouel

- 3. When only the pump mode is driven by an 
external field there exists a threshold driving field below which 
the semiclassical value of the mean field is zero. The squeezing 
in the idler mode as a function of the pump field amplitude is 



©          Nature Publishing Group1983

~NA~TU~R~E~V~0~L.~3~06~10~N~0~V~E~M~B~ER~19~8~3 ________________ --REVIEVVARTICLE------------------------------------~145 

shown in Fig. 5. As the pump amplitude is increased from zero 
squeezing appears in the idler mode. However, the squeezing 
approaches a maximum value corresponding to V(X2 ) = 1/8 
close to the threshold value of the pump field, then decreases 
as the pump power is increased above threshold. 

The case where the driving field for the pump mode is held 
fixed at the threshold value and the driving field for the idler 
is increased from zero is shown in Fig. 6. For low values of the 
idler driving field the squeeze parameter is initially positive and 
amplitude fluctuations are increased, hence we have photon 
bunching (g(2)(0) > 1). As the idler driving field is increased the 
squeeze parameter goes to zero and then becomes negative. 
Thus we have reduced amplitude fluctuations and hence photon 
anti bunching (g(2)(0) < 1). This is consistent with the general 
properties of squeezed states with lal2» sinh2 r discussed above. 
This system provides a feasible scheme for detecting squeezed 
states by making photon correlation measurements directly on 
the squeezed field. Facility to change the sign of the squeeze 
parameter and observe the accompanying change of the photon 
statistics from bunching to anti bunching would indicate the 
presence of a squeezed state. 

Other nonlinear intracavity devices have been shown34.35 to 
give a maximum squeezing factor not greatly exceeding 2. The 
coupling of the cavity modes to the vacuum fluctuations of the 
extracavity modes apparently acts as a counter to the squeezing 
produced by the nonlinear interaction in a steady-state configur­
ation. 

One possibility of avoiding the limitation to squeezing 
imposed by the vacuum fluctuations entering the cavity is to 
make one mirror perfectly reflecting. It has been claimed 
that since the vacuum fluctuations may no longer enter from 
the second port arbitrary squeezing is in principle attainable 
(B. Yurke, personal communication). 

Another way to avoid the problem of vacuum fluctuations is 
to revert to the parametric amplifier configuration where the 
cavity losses no longer have a role. The parametric amplifier is 
a travelling wave phase matched interaction and the Hamilton 
equation (20) which only includes a single mode is not appropri­
ate. A multimode analysis36 of a travelling wave parametric 
amplifier indicates that a reduction in squeezing over the single 
mode case may occur for the non degenerate amplifier. This 
reduction in squeezing is caused by the contribution from non­
resonant modes whose axes of squeezing become misaligned 
with respect to the resonant mode. 

Another possible system for producing squeezed states is a 
two-photon laser due to the quadratic nature of the field interac­
tion. A laser, however, is an active system in which the atoms 
are pumped to the excited state and may consequently decay 
by spontaneous emission. Calculations using a two-level model 
for the atomic medium reveal that any potential squeezing is 
destroyed by the fluctuations resulting from spontaneous 
emission37.38 

It is clear, therefore, that a phase sensitive nonlinear interac­
tion in a passive medium is required to produce squeezed states. 
Predictions of squeezing in a variety of nonlinear optical pro­
cesses have now been made, for example the free electron 
laser39, second harmonic generation40.41 , the single atom-single 
field mode interaction42, and multiphoton absorption43. The 
prediction of squeezing in four wave mixing24 has attracted the 
interest of experimentalists42. An analysis of the effect of atomic 
fluctuations in four-wave mixing based on a two-level atomic 
medium reveals that for the atoms driven near saturation or 
close to resonance the spontaneous emission will destroy the 
squeezing4s. For significant squeezing the driving fields should 
be of low intensity and sufficiently far from resonance so as not 
to saturate the atoms. 

Another system with somewhat different characteristics is 
squeezing in resonance fluorescence from a two-level atom46

• 

Resonance fluorescence differs from many of the systems dis­
cussed above as it involves many modes of the radiation field. 
Resonance fluorescence deserves attention as it is the only 
system in which photon antibunching has been observedI2.13• 

We consider a two-level atom driven by a coherent driving 
field. The product of the amplitude of the driving field and the 
dipole moment of the atom is characterized by the Rabi 
frequency. We denote the Rabi frequency normalized by the 
naturallinewidth of the atom by O. The driving field may have 
a detuning with respect to the atomic transition. We shall use 
S to characterize the detuning normalized by the natural 
linewidth. 

The condition for squeezing in a field may best be 
expressed in terms of the normally ordered variances which 
do not include the contribution from the vacuum fluctuations. 
For squeezing in either quadrature (E1 = (E(+) + E (-» /2, 
E2 = (E (+) - E(-»/2i) of the field we require 

: V(E;) : <0 i = 1 or 2 (21) 

We calculate the squeezing in the components of the fluorescent 
field in the direction along and perpendicular to the mean field. 
The variance in the component E) in the direction of the mean 
field is 

(22) 

where A is a constant. 
Thus we find squeezing in this component provided 0 2 < 

1 + S2. No squeezing occurs in the component orthogonal to the 
mean field. The reduced amplitude fluctuations occurring for 
0 2 < 1 + S2 is consistent with the observed fact that the fluores­
cent light is antibunched. We note that the fluorescent light is 
also antibunched in the strong field limit 0 2> 1 + S2 where there 
is no squeezing. In this limit the characteristics of the fluorescent 
light resemble a number state. 

Detection of squeezed states 

Proposals to measure the variances in the quadrature phases of 
a light field suggest homodyning or heterodyning the signal with 
a local oscillator which gives the necessary phase dependence 
followed by a photon counting measurement. Such measure­
ments are feasible with existing technology. (For further details 
of such a measurement scheme see refs 6, 7, 20.) 

The signal field is homodyned with a local oscillator which is 
assumed to be in a coherent state. The complex amplitude of 
the local oscillator may be written as e = lei ei6 where 8 is the 
phase of the local oscillator with respect to the signal field. In 
the limit where the amplitude of the local oscillator greatly 
exceeds the amplitude of the signal field the photon statistics 
of the combined field are directly related to the normally ordered 
variance of the signal field. Assuming a perfect detector 
efficiency it may be shown that6

•
7.2o 

V(n)-(n)=4IeI 2 :V(E1) : if8=0 

=4IeI 2 :V(E2 ) : if8=7T/2 (23) 

Thus by changing the phase of the local oscillator a measurement 
of the photon statistics yields the normally ordered variance in 
E1 (8 =0) and the normally ordered variance in E2 (8 = 7T/2). 
A change of photon statistics from sub- to super-poissonian as 
8 is varied will indicate the presence of squeezing. 

Such measurements impose a stringent requirement on the 
relative phase stability between the local oscillator and the 
signal. Yuen and Chan47 have recently suggested that photon 
number fluctuations in the local oscillator may be eliminated 
using a balanced detector scheme developed in the microwave 
region48. 

Another way to detect a squeezed state is by a direct photon 
correlation measurement if one has the facility to vary the sign 
of the squeeze parameter. The presence of a squeezed state is 



©          Nature Publishing Group1983

146 REVIEW ARTICLE NATURE VOL. 306 10 NOVEMBER 1983 

indicated by a change of photon statistics from bunching to 
anti bunching as the squeeze parameter is varied. An example 
of such a system is the parametric oscillator with two driving 
fields discussed earlier. This method obviates the need for 
homodyning the signal with a local oscillator. 

Applications of squeezed states 
Squeezed states have several potential applications, one, for 
example, is in optical communication systems. In a proposed 
scenario information would be transmitted in the quadrature of 
the field with reduced quantum fluctuations. An enhanced sig­
nal-to-noise ratio could then be obtained in the quantum noise 
limited regime over information sent using coherent light beams. 
The application of squeezed states in optical communications 
systems is discussed in refs 6 and 7. 

Similar considerations hold in the amplification of signals. 
Noise is necessarily added in the amplification process, however, 
if a suitable phase sensitive amplifier is used the noise may be 
added preferentially to the quadrature not carrying information. 
This leaves the amplification of the quadrature carrying the 
information essentially noise free. 

Interferometric techniques to detect very weak forces such 
as gravitational radiation experience limitations on sensitivity 
due to quantum noise arising from photon counting and radi­
ation pressure fluctuations. These sources of noise may be inter­
preted as arising from the beating of the input laser wit~ the 
vacuum fluctuations entering the unused port of the Inter­
ferometer. It turns out that these two different noise sources 
arise from fluctuations in the two different quadrature phases 
of the vacuum entering the unused input port. It has been 
suggested by Caves21 that injecting a squeezed state into the 
unused input port will reduce one or other of the two sources 
of noise depending on which quadrature is squeezed. 

Another intriguing application of squeezed states is in an 
optical waveguide tap. Shapiro has shown that a high signal-to­
noise ratio may be obtained using a squeezed state in an optical 
waveguide to tap a signal carrying waveguide49

• This may be 
achieved with very low energy loss from the signal thus offering 
the possibility of permitting optical data bus technol.ogy to reach 
multikilometre path lengths with many user sites but no 
repeaters. 

Conclusions 
The field of quantum optics has been an active field of research 
since the early 1960s. However, much which has been discussed 
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under this heading could more correctly be described as non­
linear optics as no quantization of the electromagnetic field is 
necessary. Very few features which are explicitly a result ~f 
quantization of the field have been observed-photon antI­
bunching being one exception. Squeezed states represent a class 
of quantum states for which no classical analogue exists, hence 
their detection would be of fundamental interest. 

The achievements of quantum optics have been based on the 
measurement of photon correlation functions of the electromag­
netic field. We now seem to be on the verge of an era where a 
new class of measurements on the phase dependent correlation 
functions of the electromagnetic field will be possible. This will 
enable information on the electromagnetic field to be obtained 
which was not accessible from photon correlation measure­
ments. Such measurements based on homodyning or heterodyn­
ing the field with a local oscillator appear feasible with current 
technology. The presence of a squeezed state will be indicated 
by the observation of sub-poissonian photon statistics in such a 
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Present efforts are directed towards methods of generating a 
squeezed state. While a proof in principle of the existence of 
squeezed states seems possible in, for example, resonance 
fluorescence from a two-level atom or an intracavity nonlinear 
optical interaction the magnitude of the squeezing obtained in 
such systems is small. To obtain appreciable squeezing one must 
look to either a single pass device with a high nonlinearity and 
low losses or possibly to a cavity with a single input/ output port 
which prevents the vacuum fluctuations entering as in the two 
port cavity. 

Should a device be found to give a light field with significant 
squeezing the potential applications ar~ attractive. ~ese.a~pli­
cations lie on the frontier of technology In quantum nOIse limited 
situations. For example, a squeezed light field could be used in 
an optical communication system where the .information is car­
ried by the quadrature with reduced quantum fluctuations. This 
would enable a better signal-to-noise ratio to be attained than 
using conventional laser sources which are limited by the quan­
tum noise of a coherent state. The general concept of squeezed 
states with their phase dependence of quantum noise has impor­
tant implications in quantum amplifier theory and ultrasensitive 
electronics such as required for the detection of gravitational 
radiation. While no experimental observation of squeezed states 
has yet been reported this is a goal well worth achieving both 
from a fundamental point of view and in consideration of the 
applications that will follow. 
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