NATURE VOL. 306 10 NOVEMBER 1983

REVIEW ARTICLE

Squeezed states of light

D. F. Walls

Physics Department, University of Waikato, Hamilton, New Zealand

The properties of a unique set of quantum states of the electromagnetic field are reviewed. These
‘squeezed states’ have less uncertainty in one quadrature than a coherent state. Proposed schemes for
the generation and detection of squeezed states as well as potential applications are discussed.

THE electric field for a nearly monochromatic plane wave may
be decomposed into two quadrature components with time
dependence cos wt and sin wt respectively. In a coherent state,
the closest quantum counterpart to a classical field, the fluctu-
ations in the two quadratures are equal and minimize the uncer-
tainty product given by Heisenberg’s uncertainty relation. The
quantum fluctuations in a coherent state are equal to the zero-
point fluctuations and are randomly distributed in phase. These
zero-point fluctuations represent the standard quantum limit to
the reduction of noise in a signal. Even an ideal laser operating
in a pure coherent state would still possess quantum noise due
to zero-point fluctuations.

Other minimum uncertainty states are possible which have
less fluctuations in one quadrature phase than a coherent state
at the expense of increased fluctuations in the other quadrature
phase. Such states, which have been called squeezed states'™
(other names include two photon coherent states, generalized
coherent states), no longer have their quantum noise randomly
distributed in phase. Such states offer intriguing possibilities. In
the present optical communication systems which use coherent
beams of laser light propagating in optical fibres, the ultimate
limit to the noise is given by the quantum noise or zero-point
fluctuations. If, instead, beams of squeezed light were used to
transmit information in the quadrature phase that had reduced
fluctuations the quantum noise level could be reduced below
the zero-point fluctuations. Optical communication systems
based on light signals with phase sensitive quantum noise have
been proposed by Yuen and Shapiro®’.

The concept of squeezed states applies to other quantum
mechanical systems. For example, they may have a role in
increasing the sensitivity of a gravitational wave detector. A
standard bar detector for gravitational radiation may be treated
as a harmonic oscillator. The effect of the gravitational radiation
is so weak that the expected displacement of the bar is of the
order of 107'” cm. This is the same order of magnitude as the
quantum mechanical uncertainty of the bar’s position in its
ground state. Thus the signal from the gravitational wave detec-
tor may be obscured by the zero-point fluctuations of the detec-
tor. This is a striking example of the influence of quantum
fluctuations on a macroscopic system. In principle, a way of
beating this problem is clear. Instead of the ground state of the
oscillator with its quantum noise randomly distributed in phase
one prepares the oscillator in a squeezed state. One then
measures the displacement due to the gravitational radiation in
the quadrature with reduced fluctuations. In this way it should
be possible to detect displacements less than the quantum
mechanical uncertainty in the bar’s position. Of course, this
leaves a lot of technical questions unanswered. How does one
prepare the bar in a squeezed state? How does one make a
measurement on the bar’s quadrature phase? These problems
and suggested solutions are discussed elsewhere®® in treatments
of quantum non-demolition measurements.

The statistical properties of light fields such as coherent or
thermal light may be calculated by techniques similar to classical
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probability theory using an expansion of the density operator
in terms of coherent states, the Glauber-Sudarshan P rep-
resentation’®!?. Coherent light has poissonian photon counting
statistics. Squeezed states of light on the other hand may have
sub-poissonian photon counting statistics and have no nonsin-
gular representation in terms of the Glauber—Sudarshan P distri-
bution. The statistical properties of such fields cannot be calcu-
lated by techniques analogous to classical probability theory.
Squeezed states are, therefore, an example of a nonclassical
light field. To be precise we shall define a nonclassical light field
as one that has no positive nonsingular Glauber-Sudarshan P
function.

Another example of a nonclassical light field is a number
state. This certainly has no nonsingular Glauber-Sudarshan P
function and clearly has sub-poissonian photon statistics. Such
nonclassical light fields with sub-poissonian photon statistics
which exhibit ghoton antibunching have been observed experi-
mentally'>'**® A number state, however, has its quantum
fluctuations randomly distributed in phase and hence does not
exhibit squeezing. While a squeezed state may exhibit sub-
poissonian photon statistics and hence photon antibunching it
is not a necessity. Sub-poissonian statistics result if the quad-
rature phase with reduced fluctuations carries the coherent
excitation. Using photon counting techniques direct measure-
ments of the intensity fluctuations of a light field are possible.
To determine the fluctuations in the quadrature phases a phase
sensitive detection scheme is necessary. This can be achieved
by homodyning or heterodyning the signal with a local oscillator
followed by photon counting measurements. To generate a
squeezed state a phase dependent nonlinear optical process is
necessary.

Phase dependent correlation functions

Detection of a light signal with a photon counter yields a
measurement of the light intensity I(t) or photon number n(t).
Using electronic correlators one may then compute the intensity
or photon number correlations of the light field. For example,
one may measure the normalized second-order correlation
function

(:I%)
(n?
where : : denotes normal ordering of the quantum mechanical
operators. For sufficiently short counting times the variance
V(n) of the photon number distribution is related to g (0) by

V(n)—(n) _

{n)
A coherent light field with poissonian statistics has g®(0) =1.
Thermal light which has increased intensity fluctuations has

2¥(0)=2. Since g¥(0) represents the probability of two
photons arriving simultaneously this is referred to as photon

g0 = (1

g2(0)—-1 2)
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Fig. 1 Phase space plot showing the uncertainty in: a, a coherent
state |a); b, a squeezed state |, r e'®) (r > 0); ¢, a number state |n).

bunching. A light field with sub-poissonian statistics will have
g?(0)<1, an effect known as photon antibunching. Photon
antibunching is a quantum mechanical effect which may not be
derived from a classical description of the field. Such fields do
not have a positive nonsingular representation in terms of the
Glauber-Sudarshan P distribution which expresses the density
operator for a single mode field as®!

p=j P(a)laXa|d®a (3)

where |a) is a coherent state. This representation has found
considerable application in optics because the taking of quantum
mechanical averages resemble classical averaging procedures
provided P(a) exists as a positive nonsingular function. For
fields which exhibit photon antibunching, however, the P(a)
are highly singular functions. In this sense we say that such fields
are nonclassical. The quantum theory of light received further
verification when photon antibunching was observed experi-
mentally in resonance fluorescence from a two level atom!%1?
in agreement with theoretical predictions!* ¢ (for reviews see
refs 17-19).

Our discussion of the properties of phase dependent correla-
tion functions is illustrated with reference to a single mode field.
We may write the electric field as

E(t)=A(ae ™ +a’e*) (4)

where A is a constant including the spatial wave functions. In
the quantum theory of radiation the amplitudes a and a’ are
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Fig. 2 Plot of electric field against time showing the uncertainty

for: a, a coherent state |a) (a real); b, a squeezed state |a, r) with

reduced amplitude fluctuations (« real, r>0); ¢, a squeezed state

|a, r) with reduced phase fluctuations (« real, r <0). Reproduced
with permission from Caves®!.

quantum mechanical operators which obey boson commutation
relations. We may write

a= X1 +iX2 (5)
where X, and X, are hermitian operators obeying the commuta-
tion relation

(%, X5) =§ 6)

In terms of X, and X, one may write E(t) as
A
E(t)=£(X1 cos wt + X, sin wt) N

Thus X; and X, may be identified as the amplitudes of the two
quadrature phases of the field.

From the commutation relation (6) we deduce the following
relation for the uncertainties AX; ={V(X;)}!/? in X, and X,

AX,AX, =1 (8)

A family of minimum uncertainty states is defined by taking
the equal sign. One such class of minimum uncertainty states is
the coherent states which have V(X,)= V(X;)=3. A broader
class of minimum uncertainty states may have unequal variances
in each quadrature, These are the so called squeezed states. The
condition for squeezing is

V(X)<} i=1lor2 (9)
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Fig. 3 Photon number distribution for a squeezed state |a, r}
(@ =17, r==0.5) compared with a coherent state (r=0).

It is sometimes convenient especially for multimode fields to
write the condition in terms of the normally ordered variance

V(X;):<0 i=tor2 (10)

Figure 1 shows a phase space plot of the uncertainties in X
and X, for a coherent state, a squeezed state and a number
state is shown. These error ellipses may be rigorously derived
as the contours of the Q function®.

The time dependence of E(t) including the uncertainty AE ()
is shown in Fig. 2 for a a coherent state, b a squeezed state
with reduced amplitude fluctuations, ¢ a squeezed state with
reduced phase fluctuations. The corresponding error box for
these states at £=0 is also shown.

For a single mode field the variance in one quadrature may
be calculated using the Glauber-Sudarshan P representation

ViXy) =%-{1 +'[ P(e)l(a+a*) - {(a)+{a™)T dza} (11)

The condition for squeezing V(X;) <3 requires that P(a) be a
nonpositive definite function. In this sense squeezing like photon
antibunching is a nonclassical property of the electromagnetic
field. Note that to derive equation (11) the commutation relation
[a, a']=1 has been used. If a classical field is assumed from the
outset arbitrary squeezing may be obtained in either quadrature.
Thus squeezing has a non trivial significance only in the case of
quantized fields. A distinction between classical and quantum
fields may be obtained from the normally ordered correlation
function g®@(0) which is always =1 for classical fields (see
ref. 20).

Properties of squeezed states

We shall now briefly describe the mathematical properties of
squeezed states. A coherent state |a) may be generated by the
action of the displacement operator D(a) on the vacuum

la) = D(a){0) (12)
where
D(a)=g il gua’ g=aTa
A squeezed state |o, {) may be generated by first acting with

the squeeze operator S({) on the vacuum followed by the
displacement operator D(a) (ref. 21)

o, £) = D(a)S(£)]0) (13)
where
$(¢)=exp (3¢*a®~3La™)
and

L=re"
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Fig. 4 Q function for a squeezed state. Reproduced with per-
mission from Yuen®.

An alternative but equivalent characterization of squeezed states
has been given by Yuen®. We note that whereas a coherent
state is generated by linear terms in a and a' in the exponent
a squeezed state requires quadratic terms.

The variances in squeezed state |a, {) are given by

(14)

where Y, +iY,=(X,+iX;) e7'%? is a rotated complex ampli-
tude so that 2AY; and 2AY, represent the length of the minor
and major axes of the error ellipse. The mean photon number
in the squeezed state |a, {) is

(ny=|a|*+sinh?r (15)

Clearly, the variances V{X) are independent of the field ampli-
tude «. Thus squeezing is a quantum mechanical effect which
may occur in fields with high intensity. In this sense one may
say it is a macroscopic quantum effect. This is a significant
difference from photon antibunching which is only appreciable
for fields with low intensity, There is no general relation between
photon antibunching and squeezing, however, we shall consider
the limit where the coherent amplitude greatly exceeds the
squeezing (|a|* > sinh? r). In this limit we find

2
VXD =" PO -D =k -1)  (16)

where we have chosen a real so that the amplitude is carried
by X].
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Fig. 5 Squeezing in the parametric oscillator (——) compared
with an ideal parametric amplifier (~-=-~- - ) as a function of the
pump driving field.

For r>0 we have a reduction in amplitude fluctuations
(: ¥(X,):<0) and photon antibunching (g‘?(0) <1) whereas
for r<0 we have an increase in amplitude fluctuations and
photon bunching. Hence in this limit a squeezed state may show
either photon bunching or antibunching depending on whether
the amplitude fluctuations are increased or reduced. The photon
number distribution® in a squeezed state |e, r) is plotted in Fig.
3 for a =7, r=+0.5. We can see that the photon statistics are
sub- or super-poissonian depending on whether r>0 or r<0.

No such simple relation between antibunching and squeezing
exists for all values of «. For exampie in the opposite limit of
a « 1, that is, a squeezed vacuum |0, r),

cosh 2r
sinh? r

gP(0) =1+ (17)

Thus the photons in a squeezed vacuum are always bunched
irrespective of the sign of the squeeze parameter.

An example of a quantum state which exhibits photon anti-
bunching but no squeezing is a number state |n) for which

V(X)) =V(X;)=@(@2n+1) (18)

The complete absence of phase information in a number state
is clear from the phase space annulus shown in Fig. 1c.

As the Glauber-Sudarshan P representation does not exist
for a squeezed state we must consider an alternative representa-
tion such as the Wigner function, the Q function, or the general-
ized P function?®® The Q function for a squeezed state is
derived in ref. 4. The distribution Q(X;, X,) plotted in Fig. 4
as a function of the amplitudes of the two quadratures clearly
shows the unequal variances in X,; and X,.

Production of squeezed states

There has been no experimental manifestation of squeezed states
of light. The requirement to produce a squeezed state may be
simply expressed as follows, For a single mode field mix a part
of the field with its phase conjugate to produce a new mode b
such that

b=pa+va' (19)

where p?—»?=1. For mode a in a coherent state the mode b
will be in a squeezed state®. Thus a scheme involving a phase
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Fig. 6 Photon statistics g'*(0) and variances AX? for the para-
metric oscillator as a function of the idler driving field. The pump
driving field is held fixed at the threshold value.

conjugate mirror appears as one of the favourite candidates for
a state squeezer®*. The above prescription seems very simple,
however, the phase conjugate mirror involves a nonlinear inter-
action, in this case a four-wave mixing interaction. Squeezed
states may also be generated by a three-wave mixing interaction
as for example in the parametric amplifier?>27-*'2, The pro-
totype for these interactions is described by the Hamiltonian,

H=h{x""(e)a’+x"(e)a™] (20)
where

xP(e)=ex®  (degenerate parametric amplifier)

X(a)(e) = 82X(3)

(four-wave mixing)

x‘™ is the nonlinear susceptibility of the optical medium and
e is the amplitude of the pump field which has been
treated classically. This approximate form of the Hamiltonian
generates squeezed states with a squeeze parameter given by
r=|2x")(&)t|. Several objections to this ideal system can be
raised. Fluctuations resulting from the quantization of the pump
field and the nonlinear medium have been neglected as have
vacuum fluctuations associated with any loss process. The
vacuum fluctuations will tend to equalize the variances in the
two quadratures and hence destroy the squeezing?®2°. Thus the
characteristic damping time of any loss mechanism should be
long compared with the interaction time. Phase and amplitude
fluctuations in the laser used for the pump may also degrade
the squeezing®. Phase fluctuations may be compensated for by
using part of the pump as the local oscillator in a homodyne
detection scheme.

The magnitude of the squeezing is limited by the small values
of the nonlinear susceptibility and the interaction time. To
increase the interaction time the nonlinear crystal may be placed
inside an optical cavity. There is a parametric oscillator configur-
ation where the cavity modes are driven externally by classical
fields. An analysis of the cavity must include the cavity losses
which tend to destroy the squeezing. Thus there will be a
competition between the squeezing produced by the nonlinear
interaction and the degradation of the squeezing by the damping.
This results in a limiting value to the squeezing attainable in
the steady state. An analysis of the degenerate parametric 0scil-
lator including the quantization of the pump field has been
carried out’~*’, When only the pump mode is driven by an
external field there exists a threshold driving field below which
the semiclassical value of the mean field is zero. The squeezing
in the idler mode as a function of the pump field amplitude is
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shown in Fig. 5. As the pump amplitude is increased from zero
squeezing appears in the idler mode. However, the squeezing
approaches a maximum value corresponding to V(X,)=1/8
close to the threshold value of the pump field, then decreases
as the pump power is increased above threshold.

The case where the driving field for the pump mode is held
fixed at the threshold value and the driving field for the idler
is increased from zero is shown in Fig. 6. For low values of the
idler driving field the squeeze parameter is initially positive and
amplitude fluctuations are increased, hence we have photon
bunching (g¥(0) > 1). As the idler driving field is increased the
squeeze parameter goes to zero and then becomes negative.
Thus we have reduced amplitude fluctuations and hence photon
antibunching (g®(0) <1). This is consistent with the general
properties of squeezed states with |«| > sinh? r discussed above.
This system provides a feasible scheme for detecting squeezed
states by making photon correlation measurements directly on
the squeezed field. Facility to change the sign of the squeeze
parameter and observe the accompanying change of the photon
statistics from bunching to antibunching would indicate the
presence of a squeezed state.

Other nonlinear intracavity devices have been shown
give a maximum squeezing factor not greatly exceeding 2. The
coupling of the cavity modes to the vacuum fluctuations of the
extracavity modes apparently acts as a counter to the squeezing
produced by the nonlinear interaction in a steady-state configur-
ation.

One possibility of avoiding the limitation to squeezing
imposed by the vacuum fluctuations entering the cavity is to
make one mirror perfectly reflecting. It has been claimed
that since the vacuum fluctuations may no longer enter from
the second port arbitrary squeezing is in principle attainable
(B. Yurke, personal communication).

Another way to avoid the problem of vacuum fluctuations is
to revert to the parametric amplifier configuration where the
cavity losses no longer have a role. The parametric amplifier is
a travelling wave phase matched interaction and the Hamilton
equation (20) which only includes a single mode is not appropri-
ate. A multimode analysis®® of a travelling wave parametric
amplifier indicates that a reduction in squeezing over the single
mode case may occur for the non degenerate amplifier. This
reduction in squeezing is caused by the contribution from non-
resonant modes whose axes of squeezing become misaligned
with respect to the resonant mode.

Another possible system for producing squeezed states is a
two-photon laser due to the quadratic nature of the field interac-
tion. A laser, however, is an active system in which the atoms
are pumped to the excited state and may consequently decay
by spontaneous emission. Calculations using a two-level model
for the atomic medium reveal that any potential squeezing is
destroyed by the fluctuations resulting from spontaneous
emission®”%,

It is clear, therefore, that a phase sensitive nonlinear interac-
tion in a passive medium is required to produce squeezed states.
Predictions of squeezing in a variety of nonlinear optical pro-
cesses have now been made, for example the free electron
laser®, second harmonic generation®®*!, the single atom-single
field mode interaction*?, and multiphoton absorption*?. The
prediction of squeezing in four wave mixing®* has attracted the
interest of experimentalists®?. An analysis of the effect of atomic
fluctuations in four-wave mixing based on a two-level atomic
medium reveals that for the atoms driven near saturation or
close to resonance the spontaneous emission will destroy the
squeezing*®. For significant squeezing the driving fields should
be of low intensity and sufficiently far from resonance so as not
to saturate the atoms.

Another system with somewhat different characteristics is
squeezing in resonance fluorescence from a two-level atom®®,
Resonance fluorescence differs from many of the systems dis-
cussed above as it involves many modes of the radiation field.
Resonance fluorescence deserves attention as it is the only
system in which photon antibunching has been observed’*'?,

34,35 to
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We consider a two-level atom driven by a coherent driving
field. The product of the amplitude of the driving field and the
dipole moment of the atom is characterized by the Rabi
frequency. We denote the Rabi frequency normalized by the
natural linewidth of the atom by (). The driving field may have
a detuning with respect to the atomic transition. We shall use
& to characterize the detuning normalized by the natural
linewidth.

The condition for squeezing in a field may best be
expressed in terms of the normally ordered variances which
do not include the contribution from the vacuum fluctuations.
For squeezing in either quadrature (E,=(E+E™)/2,
E,=(E™ = E™)/2i) of the field we require

:V(E): <0 i=lor2 (21)
We calculate the squeezing in the components of the fluorescent
field in the direction along and perpendicular to the mean field.
The variance in the component E in the direction of the mean
field is

- +8§2-02
ey =2 ) g

4 1+82+0° =)

where A is a constant.

Thus we find squeezing in this component provided Q°<
1+ 6% No squeezing occurs in the component orthogonal to the
mean field. The reduced amplitude fluctuations occurring for
Q* <1+ 87 is consistent with the observed fact that the fluores-
cent light is antibunched. We note that the fluorescent light is
also antibunched in the strong field limit 3? > 1+ 82 where there
is no squeezing. In this limit the characteristics of the fluorescent
light resemble a number state.

Detection of squeezed states

Proposals to measure the variances in the quadrature phases of
a light field suggest homodyning or heterodyning the signal with
a local oscillator which gives the necessary phase dependence
followed by a photon counting measurement. Such measure-
ments are feasible with existing technology. (For further details
of such a measurement scheme see refs 6, 7, 20.)

The signal field is homodyned with a local oscillator which is
assumed to be in a coherent state. The complex amplitude of
the local oscillator may be written as £ =|e| e'® where 8 is the
phase of the local oscillator with respect to the signal field. In
the limit where the amplitude of the local oscillator greatly
exceeds the amplitude of the signal field the photon statistics
of the combined field are directly related to the normally ordered
variance of the signal field. Assuming a perfect detector
efficiency it may be shown that®7?°

if0=0
fo=m/2 (23)

V(n)—(ny=4le|*: V(E,):
=4|e[: V(E,):

Thus by changing the phase of the local oscillator a measurement
of the photon statistics yields the normally ordered variance in
E, (6=0) and the normally ordered variance in E, (6 = n/2).
A change of photon statistics from sub- to super-poissonian as
6 is varied will indicate the presence of squeezing.

Such measurements impose a stringent requirement on the
relative phase stability between the local oscillator and the
signal. Yuen and Chan*” have recently suggested that photon
number fluctuations in the local oscillator may be eliminated
using a balanced detector scheme developed in the microwave
region*®,

Another way to detect a squeezed state is by a direct photon
correlation measurement if one has the facility to vary the sign
of the squeeze parameter. The presence of a squeezed state is
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indicated by a change of photon statistics from bunching to
antibunching as the squeeze parameter is varied. An example
of such a system is the parametric oscillator with two driving
fields discussed earlier. This method obviates the need for
homodyning the signal with a local oscillator.

Applications of squeezed states

Squeezed states have several potential applications, one, for
example, is in optical communication systems. In a proposed
scenario information would be transmitted in the quadrature of
the field with reduced quantum fluctuations. An enhanced sig-
nal-to-noise ratio could then be obtained in the quantum noise
limited regime over information sent using coherent light beams.
The application of squeezed states in optical communications
systems is discussed in refs 6 and 7.

Similar considerations hold in the amplification of signals.
Noise is necessarily added in the amplification process, however,
if a suitable phase sensitive amplifier is used the noise may be
added preferentially to the quadrature not carrying information.
This leaves the amplification of the quadrature carrying the
information essentially noise free.

Interferometric techniques to detect very weak forces such
as gravitational radiation experience limitations on sensitivity
due to quantum noise arising from photon counting and radi-
ation pressure fluctuations. These sources of noise may be inter-
preted as arising from the beating of the input laser with the
vacuum fluctuations entering the unused port of the inter-
ferometer. It turns out that these two different noise sources
arise from fluctuations in the two different quadrature phases
of the vacuum entering the unused input port. It has been
suggested by Caves?! that injecting a squeezed state into the
unused input port will reduce one or other of the two sources
of noise depending on which quadrature is squeezed.

Another intriguing application of squeezed states is in an
optical waveguide tap. Shapiro has shown that a high signal-to-
noise ratio may be obtained using a squeezed state in an optical
waveguide to tap a signal carrying waveguide*®. This may be
achieved with very low energy loss from the signal thus offering
the possibility of permitting optical data bus technology to reach
multikilometre path lengths with many user sites but no
repeaters.

Conclusions

The field of quantum optics has been an active field of research
since the early 1960s. However, much which has been discussed
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under this heading could more correctly be described as non-
linear optics as no quantization of the electromagnetic field is
necessary. Very few features which are explicitly a result of
quantization of the field have been observed—photon anti-
bunching being one exception. Squeezed states represent a class
of quantum states for which no classical analogue exists, hence
their detection would be of fundamental interest.

The achievements of quantum optics have been based on the
measurement of photon correlation functions of the electromag-
netic field. We now seem to be on the verge of an era where a
new class of measurements on the phase dependent correlation
functions of the electromagnetic field will be possible. This will
enable information on the electromagnetic field to be obtained
which was not accessible from photon correlation measure-
ments. Such measurements based on homodyning or heterodyn-
ing the field with a local oscillator appear feasible with current
technology. The presence of a squeezed state will be indicated
by the observation of sub-poissonian photon statistics in such a
phase sensitive detection process.

Present cfforts are directed towards methods of generating a
squeezed state. While a proof in principle of the existence of
squeezed states seems possible in, for example, resonance
fluorescence from a two-level atom or an intracavity nonlinear
optical interaction the magnitude of the squeezing obtained in
such systems is small. To obtain appreciable squeezing one must
look to either a single pass device with a high nonlinearity and
low losses or possibly to a cavity with a single input/output port
which prevents the vacuum fluctuations entering as in the two
port cavity.

Should a device be found to give a light field with significant
squeezing the potential applications are attractive. These appli-
cations lie on the frontier of technology in quantum noise limited
situations. For example, a squeezed light field could be used in
an optical communication system where the information is car-
ried by the quadrature with reduced quantum fluctuations. This
would enable a better signal-to-noise ratio to be attained than
using conventional laser sources which are limited by the quan-
tum noise of a coherent state. The general concept of squeezed
states with their phase dependence of quantum noise has impor-
tant implications in quantum amplifier theory and ultrasensitive
electronics such as required for the detection of gravitational
radiation. While no experimental observation of squeezed states
has yet been reported this is a goal well worth achieving both
from a fundamental point of view and in consideration of the
applications that will follow.
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