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Reconstruction of non-classical cavity field states
with snapshots of their decoherence
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The state of a microscopic system encodes its complete quantum
description, from which the probabilities of all measurement out-
comes are inferred. Being a statistical concept, the state cannot be
obtained from a single system realization, but can instead be
reconstructed’ from an ensemble of copies through measurements
on different realizations’™. Reconstructing the state of a set of
trapped particles shielded from their environment is an important
step in the investigation of the quantum-—classical boundary’.
Although trapped-atom state reconstructions®® have been
achieved, it is challenging to perform similar experiments with
trapped photons because cavities that can store light for very long
times are required. Here we report the complete reconstruction
and pictorial representation of a variety of radiation states trapped
in a cavity in which several photons survive long enough to be
repeatedly measured. Atoms crossing the cavity one by one are
used to extract information about the field. We obtain images of
coherent states’, Fock states with a definite photon number and
‘Schrodinger cat’ states (superpositions of coherent states with
different phases'®). These states are equivalently represented by
their density matrices or Wigner functions''. Quasi-classical
coherent states have a Gaussian-shaped Wigner function, whereas
the Wigner functions of Fock and Schrodinger cat states show
oscillations and negativities revealing quantum interferences.
Cavity damping induces decoherence that quickly washes out such
oscillations®. We observe this process and follow the evolution of
decoherence by reconstructing snapshots of Schrodinger cat states
at successive times. Qur reconstruction procedure is a useful tool
for further decoherence and quantum feedback studies of fields
trapped in one or two cavities.

Engineering and reconstructing non-classical states of trapped
light requires cavities that prevent the escape of even single photons
during the preparation and read-out procedures. We have built a
cavity made of highly reflecting superconducting mirrors'” whose
long damping time, T, = 0.13 s, allows the trapped field to interact
with thousands of atoms crossing the cavity one by one. The inter-
action with atoms is used to turn an initial coherent field into a Fock
or Schrédinger cat state and, subsequently, to reconstruct it. An
ensemble of trapped photons becomes, like a collection of trapped
atoms, an ‘object of investigation’ to be manipulated and observed
for fundamental tests and quantum information purposes.

Our set-up is sketched in Fig. 1a. The cavity C, resonant at 51 GHz,
is cooled to a temperature of 0.8 K (mean number of residual black-
body photons, 1, = 0.05). A coherent microwave field with a Poisson
photon number distribution (mean, #y; standard deviation,
An=ny) is initially injected into C using a classical pulsed source
S. Rubidium atoms from an atomic beam are prepared, in box B, in
the circular Rydberg state with principal quantum number 50 (|g)).

The cavity is detuned from the transition between |g) and the adja-
cent circular state with principal quantum number 51 (|e)) by an
amount 6, precluding atom—field energy exchange. The pulsed atom
preparation produces Rydberg atoms with a velocity of 250 ms™".
Auxiliary microwave cavities Ry and R, sandwiching C are connected
to a microwave source S'. They are used to apply resonant pulses to
the atoms. The R, pulse performs the |g)— (|e) + |g))/{2 trans-
formation. The same pulse, differing by an adjustable phase shift ¢,
is applied in R,. Atoms are counted by the detector D, discriminating
le) and |g) (one atom on average every 0.5ms). For experimental
details, see refs 13 and 14.

The R;—R, combination forms a Ramsey interferometer'. It is
sensitive to the atomic-state-superposition phase shift induced by
the atom’s interaction with the field in C, which is characterized by

Figure 1| Reconstructing a coherent state. a, The set-up, showing the
stream of atoms prepared in box B and crossing the R,—R,; interferometer in
which the cavity C, made of two mirrors facing each other, is inserted. The
source S, coupled to a waveguide, generates a coherent microwave pulse
irradiating C on one side. By diffraction at the mirrors’ edges, it injects into C
a small coherent field with controlled amplitude and phase. The field outside
vanishes almost instantaneously when § is switched off. The source S is used
to prepare an initial field in C and, later, to translate the field for state
reconstruction. Another pulsed source, S’, feeds the interferometer cavities
R; and R,. Information is extracted from the field by state-selective atomic
countingin D. b, Density matrix (modulus of matrix elements) of a coherent
state of amplitude f§ = (2.5, reconstructed in an 11-dimensional Hilbert
space. The reconstruction parameters are 6/21 = 65 kHz and

¢ = —d(0,0) + n. We sample 161 points in phase space and for each point
detect ~7,000 atoms over 600 realizations. The fidelity, F = (§|p|f), of the
reconstructed state is 0.98. ¢, Wigner function (in units of 2/m) obtained
from the density matrix shown in b.
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the Rabi frequency £2/2n = 49 kHz. This phase shift is described by an
operator @(N, 0) that depends on d and the photon number operator
N = a'a(where aand a' respectively denote the photon annihilation
and creation operators). To lowest order, @(N, d) is linear in N, but
for the small §/Q values of our experiment, we take into account its
exact nonlinear expression'’’. The interferometer measures
cos(@(N, 0) + ¢), which is sensitive to the diagonal elements of the
field density matrix in the Fock state basis, but contains no informa-
tion about the coherences between these states. To obtain this
information, we measure the phase shifts produced by the field after
it has been translated in phase space, by mixing it with reference
coherent fields of adjustable complex amplitudes o. These transla-
tions, described by the operators D(o) = exp(omT — o*a) (where the
asterisk denotes complex conjugation), are achieved by injecting a
second field pulse into C.

We denote by p the density matrix of the field to be reconstructed
(Fock-state-basis matrix elements, p,,), by p(“) = D(a)pD(—0a) the
density matrix after field translation and by P. and P, the respective
probabilities of finding in |e) and |g) the first atom that crosses the
interferometer (experimentally obtained by averaging over many field
realizations). The difference P, — P, = Tr[p(“)cos(é(N, o) + )] is
the expectation value in the translated state of the diagonal field oper-
ator cos(®@(N, 0) + ¢). The measurement is non-demolition for the
photon number", and the ensemble average of first-crossing atoms
does not change p(“),m. Hence, the same P, — P, expression holds for
the second (or any subsequent) atom. We thus determine P, — P, by
averaging the detections of successive atoms for a single field realiza-
tion with those measured for different realizations. A measuring
sequence for each realization lasts 4 ms, which is short in comparison
with the characteristic evolution time of the state. We also correct the
raw P, — P, values by taking into account the known imperfections of
the interferometer.

The P.— P, difference is also the expectation value of
G(o, ¢, 0) = D(—a)cos(D(N, ) + ¢)D() in state p. By sampling o
values, we obtain the expectations g(a, ¢, 5) of an ensemble of non-
commuting G(a, ¢, d) operators satisfying:
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Figure 2 | Reconstructing Fock states. a—e, Reconstructed density matrices
(modulus of matrix elements) and Wigner functions (in units of 2/) of the
ny = 0, 1,2, 3,4 Fock states prepared by quantum non-demolition projection
of an initial coherent field (n,, = 1.5 for ny, = 0, 1, 2, 3; n,,, = 5.5 for ny = 4).
The Wigner functions are shown as three-dimensional plots and two-
dimensional projections. We select a photon number n if, after the
detection of ~60 preparation atoms, the measurement has converged to a
Fock state having a probability >0.9 for ny = 0, 1, 2, 3 and >0.8 for n, = 4.
The same detuning (6/21 = 120 kHz) is used for state preparation and
reconstruction, corresponding to 0®/0n = n/2 at n = 3. Two values of

¢ (—@(0,0) + mand —P(0, 5) + 1/2) are used for state preparation and
reconstruction, which is made in a nine-dimensional Hilbert space. We
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TrlpG(o.¢.0)] = 8(2.¢0,9) (1)

Provided that we sample a large enough number of points  in phase
space, equation (1) allows us to reconstruct p. To ensure that the
reconstructed state does not contain any information other than that
extracted from the data, we also maximize the field entropy,
—Tr[plnp], during the reconstruction procedure (principle of max-
imum entropy'®).

The Wigner function associated with the state described by the
density matrix p is defined at point o in phase space as'*

W(o)= %Tr[D(—oc)pD(oc)ei”N] (2)

and (to within a normalization) is the expectation value of the
photon number parity operator exp(inN) in the state translated by
—o. The Wigner function could be determined directly'” if the atoms
underwent an exact phase shift of @ per photon, realizing the mea-
surement of exp(inN) after field translation by different values of o.
This would be a special case of reconstruction corresponding to
@(N, ) — @(0, ) = nN. This relation cannot be satisfied, owing to
nonlinear atom—field phase shift. Instead of a direct determination of
the Wigner function, we thus reconstruct p first and then obtain the
Wigner function using equation (2).

Figure 1b shows the reconstructed density matrix of a coherent
state. Along its diagonal, we recognize the Poisson photon number
distribution p,,,. The off-diagonal elements describe the classical
coherence of the state. The corresponding Wigner function, shown
in Fig. 1¢, is, as expected, a Gaussian peak with a circular symmetry.

As a first non-classical example, we have reconstructed Fock states.
To generate them, we prepare a coherent field and let it interact with
atoms, achieving a quantum non-demolition measurement of the
photon number that progressively projects the field onto a Fock state
|11). This procedure is adapted from ref. 15, taking into account the
known effect of cavity damping during state projection. Following
this preparation, we apply our reconstruction method with sub-
sequent probe atoms and reconstruct the Fock states present in the
expansion of the initial coherent state.

sample ~400 points in phase space and, for each point, average between
about 50 (for ny = 3) and 500 (n, = 0, 1) realizations, with ~10 atoms in
each realization. In addition to the main peak in the density matrices, for
ny > 1 we observe a small diagonal peak at n = ny — 1 due to cavity damping
during reconstruction. A peak at n = 0 also appears in the n, = 4 density
matrix, because of imperfections in the state preparation process that selects
the photon number modulo four (as @(n + 4, §) = @(n, 6) + 2n). The off-
diagonal elements in the density matrices and the corresponding
fluctuations in the angular distributions of the Wigner functions mainly
reflect statistical noise (fewer atoms detected for reconstructing ny = 2, 3, 4
than for ny = 0, 1). The fidelities, F = (n,| p|n,), of the reconstructed states
are 0.89, 0.98, 0.92, 0.82, 0.51 for ny = 0, 1, 2, 3, 4, respectively.
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Figure 2 displays the obtained density matrices together with the
corresponding Wigner functions for ny =0 (vacuum), 1, 2, 3, 4. As
expected, the density matrices mainly exhibit a single diagonal peak.
Each Wigner function shows circular rings around the origin of phase
space, where it is positive for even 1, and negative for odd 7. The
number of rings and their size increases as expected with #,. Photonic
Fock states with small values of 1, have already been reconstructed in
free space'®* and in a cavity®', but to our knowledge this is the first
Fock state reconstruction with n, > 2.

To generate a Schrédinger cat state®*, we first inject into C a coher-
ent field of amplitude = |n,,. We then prepare an atom in the state
(Je) + |g))/|2 using R, and send it into C. The two atomic compo-
nents shift the phase of the field in opposite directions. Neglecting
atom—field phase shift nonlinearity, the field is split into two coherent
states of complex amplitudes fexp(£iy), where y = (0®(n, 6)/0n)/2
evaluated at n = n,,,. The atom is entangled with the field in the state
(|ey|fexp(iy)) + \g}|/3exp(—ix)))/\52. The R, pulse then mixes |e) and
|g) again. Last, the atomic detection, depending upon its outcome
(|g) or |e)), projects the field onto one of the two Schrodinger cat
states (|fexp(iy)) |/3exp(—ix)))/\52. We call these ‘even’ (plus sign)
and ‘odd’ (minus sign) Schrédinger cat states because they contain,
for y = m/2, only even and odd photon numbers, respectively. After
this preparation, we apply our reconstruction procedure.

Figure 3a, b shows the Wigner functions of the even and odd
Schrodinger cat states obtained from the same coherent field
(nm = 3.5, x = 0.37m). They exhibit two well-separated positive peaks
that are associated with the classical components and whose slightly
elongated shapes are due to the phase shift nonlinearity neglected
above. The ‘size’ of each of these states, defined as the squared dis-
tance between the peaks (and expressed as a number of photons), is
& = 4n,,sin’y = 11.8 photons. Between these peaks, oscillating fea-
tures with alternating positive and negative values are the signatures
of the state’s quantum interference. The even and odd Schrodinger
cat states have nearly identical classical components and only differ in
the sign of their quantum interferences. The theoretical Wigner func-
tions, taking the nonlinearity in the preparation of the Schrodinger
cat states into account, are shown for comparison in the insets. The
fidelity of the two states (overlap between the reconstructed p and the
expected p) is F = 0.72. It is mainly limited by imperfections in the R,
and R, pulses applied to the preparation atom, which reduce the

Wigner function (2/x)

Figure 3 | Reconstructing Schrédinger cat states. a, b, The Wigner
functions (in units of 2/7) of even (a) and odd (b) Schrodinger cat states with
n, = 3.5 and y = 0.371 are reconstructed, following state preparation. The
same detuning (6/2n = 51 kHz) and interferometer phase

(¢ = —&(0,0) + n) are used for state preparation and reconstruction. The
number of sampling points is ~500, with ~2,000 atoms detected at each
point, in 400 realizations. The dimension of the Hilbert space used for
reconstruction is 11. The small insets present for comparison the theoretical
Wigner functions computed in the case of ideal preparation and detection of
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contrast of the quantum interference feature. If the preparing atom
is detected without discriminating |e) and |g), we obtain the statistical
mixture of even and odd Schrodinger cat states whose Wigner func-
tion is shown in Fig. 3c. Equivalently, this is a statistical mixture of the
two classical components. Although non-classical states of propagat-
ing light with similar Wigner functions have previously been
observed®, here well-separated classical components of a field can
be identified in a reconstructed state and unambiguously distin-
guished from their quantum interference term.

Schrodinger cats states are model states for exploring decoher-
ence, the phenomenon accounting for the transition between
quantum and classical behaviours®. Our reconstruction method
allows us to study this process. Immediately after state preparation,
we realize the D(x) translation and detect a sequence of atoms
divided into 4-ms time windows. These atoms record P. — P, as a
function of time, without modifying the dynamics of this quantity.
We average the results of realizations corresponding to the same
translation and time window, and then repeat the process for dif-
ferent values of o. This provides a direct record of the evolution of
the translated states, rather than that of the state itself. The two
dynamics are closely related, however. Decoherence acting on the
initial density operator p(0) turns it at time ¢ into p(f) = L[p(0), t].
Here L is the decoherence superoperator', which can be shown to
satisfy the following relation:

D(ce™"*T)L[p(0),£] D( — e ~/2") = L[D(ct) p(0) D( — ), ]

Translating the initial field by o and letting it evolve over time ¢ is
equivalent to letting it evolve during that time and translating it by
oexp(—1/2T.). We thus analyse the data obtained at time ¢ as if they
corresponded to a translation rescaled by exp(—#2T,). This is more
efficient than letting the field evolve before translating it, because we
exploit all the data of a long sequence instead of recording only a short
time window for each delay. We have experimentally checked the
equivalence between the two methods by comparing the results for
one time delay and have verified that the reconstructed Schrodinger
cat states are, within the effects of noise, undistinguishable.

Figure 4a shows four snapshots of the Wigner function of an odd
Schrodinger cat at increasing times, clearly revealing decoherence.
Although the classical components have hardly decayed after 50 ms,

\\

the atomic state superpositions. Decoherence during state preparation is
taken into account. The maximum theoretical values of the classical
components and interference fringes are close to 0.5 and 1, respectively. In
the reconstructed states, the quantum interference is smaller, mainly owing
to imperfections of the Ramsey interferometer that affect the preparation of
the Schrodinger cat state (but not its reconstruction). ¢, Reconstructed
Wigner function of the field prepared in C when the state of the preparation
atom is not read-out (statistical mixture of two classical fields). Inset,
corresponding theoretical Wigner function.
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the interference feature has vanished, turning the initial state into a
statistical mixture similar to that shown in Fig. 3c. A complete movie
of the evolution of the Wigner function of a Schrodinger cat state is
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Figure 4 | Movie of decoherence. a, Snapshots of the Wigner function of the
odd Schrédinger cat state in Fig. 3b at four successive times after state
preparation. b, Corresponding snapshots of the translated density matrix p*
(modulus of matrix elements). The dimension of the Hilbert space is
enlarged to 30. The n = 0 peak is clipped, its amplitude being ~0.38 in each
snapshot. In all frames, the small matrix elements for n <5 are due to the
deviation of the classical component of the Schrodinger cat state from an
ideal coherent state. ¢, The quantum coherence of the Schrodinger cat states
(even, red; odd, blue), defined as the sum of the \ anO\ for n =5, plotted as a
function of time. The statistical error bars (shown, for clarity, for the even
Schrodinger cat states only) are obtained by analysing the state
reconstructions performed on different subsamples of measured data. The
solid line is a common exponential fit, including an offset (dotted line)
accounting for residual noise in the modulus of the density matrix elements.
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presented in the Supplementary Information. By subtracting the
Wigner functions of the even and odd Schrédinger cat states corres-
ponding to the same preparation sequence, we isolate their interfer-
ence features by cancelling their equal, classical, parts. A movie
showing the progressive vanishing of this interference is also pro-
vided in the Supplementary Information.

It is also instructive to observe decoherence directly in the density
matrix. To distinguish the classical coherence of each component of
the Schrodinger cat state from their mutual quantum coherence, we
consider the mathematically translated reconstructed density matrix

T'= p~Fexplin) whose classical components are close to the vacuum
|0) and to |—2ifsiny). This formal translation leaves unchanged the
distance between the two classical components in the phase plane as
well as their mutual coherence.

In Fig. 4b, we present the density matrix p" () of the Schrodinger
cat state in Fig. 4a, reconstructed for the same times. In each frame,
the diagonal elements present two maxima around n =0 and n=11.
The off-diagonal elements are of two kinds. Those for which
|n—n'| =11 describe the classical coherence of the non-vacuum
component and remain nearly unchanged on the observed timescale.
The off-diagonal terms in the first row and column of the matrix
(respectively pl and pL)) initially exhibit a bell-shaped variation
with #, centred at n= 11. These terms correspond to the quantum
coherence of the Schrodinger cat state responsible for the oscillations
observed in the Wigner function. Their fast decay is the signature of
decoherence.

The measured quantum coherence of the even and odd
Schrodinger cat states is plotted as a function of time in Fig. 4c. A
common exponential fit vyields a decoherence time of
Tq =17 = 3 ms. A simple analytical model of decoherence' predicts
that Ty=2TJ/d*=22ms at T=0K, reduced to** Ty=2T./
(d*(1+2m,)+4n,) = 19.5 ms when including a thermal background
at T= 0.8 K, in good agreement with the measured value. A movie of
a smaller Schrodinger cat state (d* = 8) yields Ty = 28 ms, illustrating
the dependence of the decoherence time on the Schrédinger cat state
size>'*. Earlier experiments have studied the relaxation of photonic*
and atomic® Schrodinger cat states by observing some of their spe-
cific features, but this experiment allows us to produce a movie of
decoherence in a fully reconstructed Schrodinger cat state.

We have shown that atoms interacting with a cavity field can be
used to engineer and reconstruct a wide variety of photonic states and
to study their evolution. Going one step farther, we plan to use
information provided by the atoms to implement feedback proce-
dures and preserve the quantum coherence over longer time inter-
vals*. We will also extend these studies to fields stored in two cavities.
Atoms will be used to entangle the cavity fields into non-local
quantum states*”**, reconstruct these states and protect them against
decoherence by means of quantum feedback operations.
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