1. Introduction

The first indication of the quantum nature of light came in 1900 when M. Planck
discovered he could account for the spectral distribution of thermal light by
postulating that the energy of a harmonic oscillator is quantized. Further
evidence was added by A. Einstein who showed in 1905 that the photoelectric
effect could be explained by the hypothesis that the energy of a light beam was
distributed in discrete bundles later known as photons.

Einstein also contributed to the understanding of the absorption and emis-
sion of light from atoms with his development of a phenomenological theory in
1917. This theory was later shown to be a natural consequence of the quantum
theory of electromagnetic radiation.

Despite this early connection with quantum theory physical optics has
developed more or less independently of quantum theory. The vast majority of
physical-optics experiments can adequately be explained using classical theory
of electromagnetic radiation based on Maxwell’s equations. An early attempt to
find quantum effects in an optical interference experiment by G.I. Taylor in 1909
gave a negative result. Taylor’s experiment was an attempt to repeat T. Young’s
famous two slit experiment with one photon incident on the slits. The classical
explanation based on the interference of electric field amplitudes and the
quantum explanation based on the interference of the probability amplitudes for
the photon to pass through either slit coincide in this experiment. Interference
experiments of Young’s type do not distinguish between the predictions of
classical theory and quantum theory. It is only in higher-order interference
experiments involving the interference of intensities that differences between the
predictions of classical and quantum theory appear. In such an experiment two
electric fields are detected on a photomultiplier and their intensities are allowed
to interfere. Whereas classical theory treats the interference of intensities, in
quantum theory the interference is still at the level of probability amplitudes.
This is one of the most important differences between quantum theory and
classical theory.

The first experiment in intensity interferometry was the famous experiment
of R. Hanbury Brown and R.Q. Twiss. This experiment studied the correlation
in the photo-current fluctuations from two detectors. Later experiments were
photon counting experiments, and the correlations between photon numbers
were studied.

The Hanbury-Brown-Twiss experiment observed an enhancement in the
two-time intensity correlation function of short time delays for a thermal light
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source known as photon bunching. This was a consequence of the large intensity
fluctuations in the thermal source. Such photon bunching phenomena may be
adequately explained using a classical theory with a fluctuating electric field
amplitude. For a perfectly amplitude stabilized light field such as an ideal laser
operating well above threshold there is no photon bunching. A photon counting
experiment where the number of photons arriving in an interval T are counted,
shows that there is still a randomness in the photon arrivals. The photon-
number distribution for an ideal laser is Poissonian. For thermal light a super-
Poissonian photocount distribution results.

While the above results may be derived from both classical and quantum
theory, the quantum theory makes additional unique predictions. This was first
elucidated by R.J. Glauber in his quantum formulation of optical coherence
theory in 1963. One such prediction is photon antibunching where the initial
slope of the two-time correlation function is positive. This corresponds to
greater than average separations between the photon arrivals or photon anti-
bunching. The photocount statistics may also be sub-Poissonian. A classical
theory of fluctuating field amplitudes would require negative probabilities in
order to give photon antibunching. In the quantum picture it is easy to visualize
photon arrivals more regular than Poissonian.

It was not, however, until 1975 when H.J. Carmichael and D.F. Walls
predicted that light generated in resonance fluorescence from a two-level atom
would exhibit photon antibunching that a physically accessible system exhibit-
ing nonclassical behaviour was identified. Photon antibunching was observed
during the next year in this system in an experiment by H.J. Kimble,
M. Dagenais and L. Mandel. This was the first nonclassical effect observed in
optics and ushered in a new era in quantum optics.

The experiments of Kimble et al. used an atomic beam and hence the photon
antibunching was convolved with the atomic number fluctuations in the beam.
With developments in ion-trap technology it is now possible to trap a single ion
for several minutes. H. Walther and coworkers in Munich have studied reson-
ance fluorescence from a single atom in a trap. They have observed both photon
antibunching and sub-Poissonian statistics in this system.

In the 1960’s improvements in photon counting techniques proceeded in
tandem with the development of new laser light sources. Light from incoherent
(thermal) and coherent (laser) sources could now be distinguished by their
photon counting properties. The groups of F.T. Arecchi in Milan, L. Mandel in
Rochester and R.E. Pike in Malvern measured the photocount statistics of the
laser. They showed that the photocount statistics went from super-Poissonian
below threshold to Poissonian far above threshold. Concurrently, the quantum
theory of the laser was being developed by H. Haken in Stuttgart, M.O. Scully
and W. Lamb at Yale, and M. Lax and W.H. Louisell in New Jersey. In these
theories both the atomic variables and the electromagnetic field were quantized.
The result of these calculations were that the laser functioned as an essentially
classical device. In fact H. Risken showed that it could be modelled by a van der
Pol oscillator.
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It 1s only quite recently that the role the noise in the pumping process plays
in obscuring the quantum aspects of the laser has been understood. If the noise
in the pumping process can be suppressed the output of the laser may exhibit
sub-Poissonian statistics. In other words, the intensity fluctuations may
be reduced below the shot-noise level characteristic of normal lasers.
Y. Yamamoto in Tokyo has pioneered experimental developments in the area of
semiconductor lasers with suppressed pump noise. In a high impedance con-
stant current driven semiconductor laser the fluctuations in the pumping elec-
trons are reduced below Poissonian. This results in the photon statistics of the
emitted photons being sub-Poissonian.

[t took another nine years after the observation of photon antibunching for
another prediction of the quantum theory of light to be observed — squeezing of
quantum fluctuations. The electric field for a nearly monochromatic plane wave
may be decomposed into two quadrature components with the time dependence
cos wt and sin wt, respectively. In a coherent state, the closest quantum counter-
part to a classical field, the fluctuations in the two quadratures are equal and
minimize the uncertainty product given by Heisenberg’s uncertainty relation.
The quantum fluctuations in a coherent state are equal to the zero-point
vacuum fluctuations and are randomly distributed in phase. In a squeezed state
the quantum fluctuations are no longer independent of phase. One quadrature
phase may have reduced quantum fluctuations at the expense of increased
quantum fluctuations in the other quadrature phase such that the product of the
fluctuations still obeys Heisenberg’s uncertainty relation.

Squeezed states offer the possibility of beating the quantum limit in optical
measurements by making phase-sensitive measurements which utilize only the
quadrature with reduced quantum fluctuations. The generation of squeezed
states requires a nonlinear phase-dependent interaction. The first observation of
squeezed states was achieved by R.E. Slusher in 1985 at the AT&T Bell
Laboratories in four-wave mixing in atomic sodium. This was soon followed by
demonstrations of squeezing in an optical parametric oscillator by H.J. Kimble
and by four-wave mixing in optical fibres by M.D. Levenson.

Squeezing-like photon antibunching is a consequence of the quantization of
the light field. The usefulness of squeezed light was demonstrated in experiments
1n optical interferometry by Kimble and Slusher. Following the original sugges-
tion of C.M. Caves at Caltech they injected squeezed light into the empty port of
an interferometer. By choosing the phase of the squeezed light so that the
quantum fluctuations entering the empty port were reduced below the vacuum
level they observed an enhanced visibility of the interference fringes.

In the nonlinear process of parametric down conversion a high frequency
photon splits into two photons with frequencies such that their sum equals that
of the high-energy photon. The two photons (photon twins) produced in this
process possess quantum correlations and have identical initensity fluctuations.
This may be exploited in experiments where the intensity fluctuations in the
difference photocurrent for the two beams is measured. The intensity difference
fluctuations in the twin beams have been shown to be considerably below the
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shot-noise level in experiments by E. Giacobino in Paris and P. Kumar in
Evanston.

The twin beams may also be used in absorption measurements where the
sample is placed in one of the beams and the other beam is used as a reference.
The driving laser is tuned so that the frequency of the twin beams matches the
frequency at which the sample absorbs. When the twin beams are detected and
the photocurrents are subtracted, the presence of even very weak absorption can
be seen because of the small quantum noise in the difference current.

The photon pairs generated in parametric down conversion also carry
quantum correlations of the Einstein—Podolsky—-Rosen type. Intensity correla-
tion experiments to test Bell inequalities were designed using a correlated pair of
photons. The initial experiments by A. Aspect in Paris utilized a two photon
cascade to generate the correlated photons, however, recent experiments have
used parametric down conversion. These experiments have consistently given
results in agreement with the predictions of quantum theory and in violation of
classical predictions. At the basis of the difference between the two theories is the
interference of probability amplitudes which is characteristic of quantum mech-
anics. In these intensity interference experiments as opposed to interference
experiments of the Young’s type the two theories yield different predictions. This
was strikingly demonstrated in an intensity interference experiment which has
only one incident photon but has phase-sensitive detection. In this experiment
proposed by S.M. Tan, D.F. Walls and M.J. Collett a single photon may take
either path to two homodyne detectors. Nonlocal quantum correlations be-
tween the two detectors occur, which are a consequence of the interference of the
probability amplitudes for the photon to take either path.

The major advances made in quantum optics, in particular the ability to
generate and detect light with less quantum fluctuations than the vacuum,
makes optics a fertile testing ground for quantum measurement theory. The idea
of quantum non-demolition measurements arose in the context of how to detect
the change in position of a free mass acted on by a force such as a gravitational
wave. However, the concept 1s general. Basically one wishes to measure the
value of an observable without disturbing it so that subsequent measurements
can be made with equal accuracy as the first. Demonstrations of quantum
non-demolition measurements have been achieved in optics. In experiments by
M.D. Levenson and P. Grangier two electromagnetic-field modes have been
coupled via a nonlinear interaction. A measurement of the amplitude quadrat-
ure of one mode (the probe) allows one to infer the value of the amplitude
quadrature of the other mode (the signal) without disturbing it. This quantum
non-demolition measurement allows one to evade the back action noise of
the measurement by shunting the noise into the phase quadrature which is
undetected.

The techniques developed in quantum optics include quantum treatments of
dissipation. Dissipation has been shown to play a crucial role in the destruction
of quantum coherence, which has profound implications for quantum measure-
ment theory. The difficulties in generating a macroscopic superposition of
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quantum states (Schrodingers cat) is due to the fragility of such states to the
presence of even small dissipation. Several schemes to generate these superposi-
tion states in optics have been proposed but to date there has been no experi-
mental manifestation.

Matter-wave interferometry is a well established field, for example, electron
and neutron interferometry. More recently, however, such effects have been
demonstrated with atoms. Interferometry with atoms offers the advantage of
greater mass and therefore greater sensitivity for measurements of changes of
gravitational potentials. Using techniques of laser cooling the de Broglie
wavelength of atoms may be increased. With slow atoms the passage time in the
interferometer is increased thus leading to an increase in sensitivity. Atoms also
have internal degrees of freedom which may be used to tag which path an atom
took. Thus demonstrations of the principle of complementary using a double-
slit interference experiment with which path detectors may be realized with
atoms.

Atoms may be diffracted from the periodic potential structure of a standing
light wave. A new field of atomic optics is rapidly emerging. In atomic optics the
role of the light and atoms are reversed. Optical elements such as mirrors and
beam splitters consist of light fields which reflect and split atomic beams. The
transmission of an atom by a standing light wave may be state selective (the
optical Stern—Gerlach effect) and this property may be used as a beam splitter.
The scattering of an atom by a standing light wave may depend on the photon
statistics of the light. Hence, measuring the final momentum distribution of the
atoms may give information on the photon statistics of the light field. Thus
atomic optics may extend the range of quantum measurements possible with
quantum optical techniques. For example. the position an atom passes through
a standing light wave may be determined by measuring the phase shift it imparts
to the light.

The field of quantum optics now occupies a central position involving the
interaction of atoms with the electromagnetic field. It covers a wide range of
topics ranging from fundamental tests of quantum theory to the development
of new laser-light sources. In this text we introduce the analytic techniques of
quantum optics. These techniques are applied to a number of illustrative
cxamples. While the main emphasis of the book is theoretical, descriptions of
the experiments which have played a central role in the development of
quantum optics are included.

A summary of the topics included in this text book is given as follows:

A familiarity with non-relativistic quantum mechanics is assumed. As we will
be concerned with the quantum properties of light and its interaction with
atoms, the electromagnetic field is quantised in the second chapter. Commonly
used basis states for the field, the number states, the coherent states, and the
squeezed state are introduced and their properties discussed. A definition of
optical coherence is given via a set of field correlation functions in Chap. 3.
Various representations for the electromagnetic field are introduced in Chap. 4
using the number states and the coherent states as a basis.
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In Chap. 5 we present a number of simple models which illustrate some of
the quantum correlation phenomena we discuss in later chapters. In Chap. 6
a rather lengthy description is given of the quantum theory of damping and the
stochastic methods which may be employed to treat problems with damping. In
Chap. 7 we present the input—output formulation of interactions in optical
cavities. This theory plays a central role in the study of squeezed light genera-
tion. In Chap. 8 the input—-output theory is applied to several systems in
nonlinear optics, which produce squeezed light. Comparison with experiments is
included. Applications of squeezed light in the field of optical interferometry are
given. Potential use of squeezed light in gravitational wave interferometry is
discussed.

In Chap. 9 two examples are given where the steady state quantum statistics
of a field generated via a nonlinear optical interaction may be found exactly. In
the case of parametric subharmonic generation the quantum tunnelling time
between two states of a superposition is calculated.

In Chap. 10 we introduce atoms for the first time. The atomic energy levels
are quantised and the interaction Hamiltonian between a two-level atom and
the electromagnetic field derived. The spontaneous decay of an excited atom
into a vacuum 1is treated. The modification of the atomic decay when the
vacuum is squeezed, is also studied. In Chap. 11 we treat the classic problem of
resonance fluorescence from a coherently driven atom. The resonance fluor-
escence spectrum is derived as is the photon antibunching of the emitted light.
A comparison of theory with experimental results is given.

In Chap. 12 the quantum theory of the laser is developed including the
theory of pump-noise-suppressed lasers, which give a sub-Poissonian output. In
Chap. 13 a full quantum treatment is presented of optical bistability and four-
wave mixing. Both systems involve the interaction of an ensemble of two-level
atoms with a cavity field. The generation of squeezed light from these systems is
analysed. Fundamental questions in quantum mechanics are addressed in
Chap. 14. Experimental tests of the Bell inequalities in optics are described. In
Chap. 15 quantum non-demolition measurements in optical systems are ana-
lysed. Further fundamentals of quantum coherence and the quantum measure-
ment theory are discussed in Chap. 16.

In Chap. 17 an introduction to the newly emerging field of atomic optics is
given.
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The study of the quantum features of light requires the quantisation of the
clectromagnetic field. In this chapter we quantise the field and introduce three
possible sets of basis states, namely, the Fock or number states, the coherent
states and the squeezed states. The properties of these states are discussed. The
phase operator and the associated phase states are also introduced.

2.1 Field Quantisation

The major emphasis of this text is concerned with the uniquely quantum-
mechanical properties of the electromagnetic field, which are not present in
a classical treatment. As such we shall begin immediately by quantizing the
electromagnetic field. We shall make use of an expansion of the vector potential
for the electromagnetic field in terms of cavity modes. The problem then reduces
to the quantization of the harmonic oscillator corresponding to each individual
cavity mode.

We shall also introduce states of the electromagnetic field appropriate to the
description of optical fields. The first set of states we introduce are the number
states corresponding to having a definite number of photons in the field. It turns
out that it is extremely difficult to create experimentally a number state of the
field, though fields containing a very small number of photons have been
generated. A more typical optical field will involve a superposition of number
states. One such field is the coherent state of the field which has the minimum
uncertainty in amplitude and phase allowed by the uncertainty principle, and
hence is the closest possible quantum mechanical state to a classical field. It also
possesses a high degree of optical coherence as will be discussed in Chap. 3,
hence the name coherent state. The coherent state plays a fundamental role in
quantum optics and has a practical significance in that a highly stabilized laser
operating well above threshold generates a coherent state.

A rather more exotic set of states of the electromagnetic field are the
squeezed states. These are also minimum-uncertainty states but unlike the
coherent states the quantum noise is not uniformly distributed in phase.
Squeezed states may have less noise in one quadrature than the vacuum. As
a consequence the noise in the other quadrature is increased. We introduce the
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basic properties of squeezed states in this chapter. In Chap. 8 we describe ways
to generate squeezed states and their applications.

While states of definite photon number are readily defined as eigenstates of
the number operator a corresponding description of states of definite phase is
more difficult. This is due to the problems involved in constructing a Hermitian
phase operator to describe a bounded physical quantity like phase. How this
problem may be resolved together with the properties of phase states is dis-
cussed in the final section of this chapter.

A convenient starting point for the quantisation of the electromagnetic field
is the classical field equations. The free electromagnetic field obeys the source
free Maxwell equations.

V-B=0, (2.1a)
CB

VxE= — = | 2.1b

8 ct ( )

V-D=0, 2.1¢)
°D

VxH:‘ﬁt : (2.1d)
C

where B = uoH, D = ¢yE, 1y and ¢, being the magnetic permeability and
electric permittivity of free space, and pgeo = ¢ 2 Maxwell’s equations are
gauge invariant when no sources are present. A convenient choice of gauge for
problems in quantum optics is the Coulomb gauge. In the Coulomb gauge both
B and E may be determined from a vector potential A(r, t) as follows

B=VxA4 (2.2a)
oA

E= -2 (2.2b)
ct

with the Coulomb gauge condition
V-d=0. (2.3)
Substituting (2.2a) into (2.1d) we find that A4(r, t) satisfies the wave equation

~2
V2A(r ) = - AR (2.4)

c?  ort
We separate the vector potential into two complex terms
Ar,ty=Ar 0)+ A7 1), (2.5)

where A*)(r, t) contains all amplitudes which vary as ¢ '’ for w >0 and
A (r, t) contains all amplitudes which vary as e*' and 47 = (4(1))*,

It is more convenient to deal with a discrete set of variables rather than the
whole continuum. We shall therefore describe the field restricted to a certain
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volume of space and expand the vector potential in terms of a discrete set of
orthogonal mode functions:

A(+)(l', f) = Z Ckllk(r)e_iwkt s (26)
k

where the Fourter coefficients ¢, are constant for a free field. The set of vector
mode functions #,(r) which correspond to the frequency w, will satisfy the wave
equation

2
Wy

(V2 +7> u,(r) =0 (2.7)

provided the volume contains no refracting material. The mode functions are
also required to satisfy the transversality condition,

Vou(r)y=0 . (2.8)
The mode functions form a complete orthonormal set

J\";k(r)llk'(l’)dr = 5kk’ . (29)

|4

The mode functions depend on the boundary conditions of the physical
volume under consideration, e.g., periodic boundary conditions corresponding
to travelling-wave modes or conditions appropriate to reflecting walls which
lead to standing waves. E.g., the plane wave mode functions appropriate to
a cubical volume of side L may be written as

u(r)= L 326 exp(ik - r) (2.10)

where ¢* is the unit polarization vector. The mode index k describes several
discrete variables, the polarisation index (4 = 1,2) and the three Cartesian
components of the propagation vector k. Each component of the wave vector
k takes the values

_ 2mn, 2rn, 2nn,

k.= , k= , k.= . nen,,n, =0 +1, +£2,...
L L L

2.11)

The polarization vector é* is required to be perpendicular to k by the transver-
sality condition (2.8).
The vector potential may now be written in the form

1,2
A(",I)=Z( " ) [acu(rye ™ + aluf(r)e’=] . (2.12)

r \ 20,80
The corresponding form for the electric field is

h

1:2
E(r.t)=i), (_2(;)1() [au(r)e 1% — afuk(r)eie=] . (2.13)
k 0
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The normalization factors have been chosen such that the amplitudes a, and
a; are dimensionless.

In classical electromagnetic theory these Fourier amplitudes are complex
numbers. Quantisation of the electromagnetic field is accomplished by choosing
a, and a] to be mutually adjoint operators. Since photons are bosons the
appropriate commutation relations to choose for the operators a, and aj, are the
boson commutation relations

Lak, ar ] = [ag, a;«] =0, [a, aI»] = Ok’ - (2.14)

The dynamical behaviour of the electric-field amplitudes may then be described
by an ensemble of independent harmonic oscillators obeying the above commu-
tation relations. The quantum states of each mode may now be discussed
independently of one another. The state in each mode may be described by
a state vector | ¥ ), of the Hilbert space appropriate to that mode. The states of
the entire field are then defined in the tensor product space of the Hilbert spaces
for all of the modes.
The Hamiltonian for the electromagnetic field is given by

1
H=§J(80E2+,uOH2)dr . (2.15)

Substituting (2.13) for E and the equivalent expression for H and making use of
the conditions (2.8) and (2.9), the Hamiltonian may be reduced to the form

H=Y hoala+3) . (2.16)
k

This represents the sum of the number of photons in each mode multiplied by
the energy of a photon in that mode, plus 3hw, representing the energy of the
vacuum fluctuations in each mode. We shall now consider three possible
representations of the electromagnetic field.

2.2 Fock or Number States

The Hamiltonian (2.15) has the eigenvalues hw,(n, + 3) where n, is an integer
(n, =0, 1,2, ..., ). The eigenstates are written as |n, > and are known as
number or Fock states. They are eigenstates of the number operator N, = a;a,

aray|my = mlm> . (2.17)

The ground state of the oscillator (or vacuum state of the field mode) is defined
by

a0y =0 . (2.18)
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From (2.16 and 18) we sce that the energy of the ground state is given by
1
<0|H|0>=52hwk : (2.19)
k

Since there is no upper bound to the frequencies in the sum over electromagnetic
field modes, the energy of the ground state is infinite, a conceptual difficulty of
quantized radiation field theory. However, since practical experiments measure
a change in the total energy of the electromagnetic field the infinite zero-point
energy does not lead to any divergence in practice. Further discussions on this
point may be found in [2.1]. a, and al are raising and lowering operators
for the harmonic oscillator ladder of eigenstates. In terms of photons they
represent the annihilation and creation of a photon with the wave vector k£ and
a polarisation é,. Hence the terminology, annihilation and creation operators.
Application of the creation and annihilation operators to the number states
yield

a lmy =m 2l — 1>, ai|m> =+ D ng+ 1) . (2.20)

The state vectors for the higher excited states may be obtained from the vacuum
by successive application of the creation operator

aT i
|nk>:(:(zkf$|0>, me=0,1.2.. . (2.21)
k-

The number states are orthogonal
<”k I ’nk> = (Smn ) (222)

and complete

x

Y o imydm|=1. (2.23)

ne=0

Since the norm of these eigenvectors is finite, they form a complete set of basis
vectors for a Hilbert space.

While the number states form a useful representation for high-energy
photons, e.g. 7 rays where the number of photons is very small, they are not the
most suitable representation for optical fields where the total number of photons
is large. Experimental difficulties have prevented the generation of photon
number states with more than a small number of photons. Most optical fields
are either a superposition of number states (pure state) or a mixture of number
states (mixed state). Despite this the number states of the electromagnetic field
have been used as a basis for several problems in quantum optics including some
laser theories.
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2.3 Coherent States

A more appropriate basis for many optical fields are the coherent states [2.2].
The coherent states have an indefinite number of photons which allows them to
have a more precisely defined phase than a number state where the phase is
completely random. The product of the uncertainty in amplitude and phase for
a coherent state is the minimum allowed by the uncertainty principle. In this
sense they are the closest quantum mechanical states to a classical description of
the #eld. We shall outline the basic properties of the coherent states below.
These states are most easily generated using the unitary displacement operator

D(x) = exp(aa’ — x*a) , (2.24)

where 2 is an arbitrary complex number.
Using the operator theorem [2.2]
eA +B — eAe

which holds when
[A.[A,B]]=[B,[A.B]]=0,

Be—l4.B] 2 (2.25)

.

we can write D(x) as

D(z)=¢ 1717 2g2a’ ¢ 2" (2.26)
The displacement operator D(x) has the following properties

DY (2)y=D )= D(— x). DY (x)aD(%) = a + x ,

DY (2)a'D(x) = a* + »* . (2.27)
The coherent state |2 ) is generated by operating with D(«) on the vacuum state

2> = D(x}]|0) . (2.28)

The coherent states are eigenstates of the annihilation operator a. This may be
proved as follows:

D'(x)alx> = DY (x)aD(2)|0)> = (a + 2)|0> = %[0 . (2.29)
Multiplying both sides by D(x) we arrive at the eigenvalue equation
alxy =aa> . (2.30)

Since a is a non-Hermitian operator its eigenvalues % are complex.
Another useful property which follows using (2.25) is

D(x + )= D(2)D(f)exp(—iIm{affi*]) . (2.31)

The coherent states contain an indefinite number of photons. This may be made
apparent by considering an expansion of the coherent states in the number-
states basis.
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Taking the scalar product of both sides of (2.30) with {(n| we find the
recursion relation

n+ D2+ 1y =aln]a) . (2.32)

It follows that

n

(nlay = iz Ol (2.33)

We may expand |« ) in terms of the number states |n)> with expansion coeflic-
ients (n|x > as follows

N Zin><n|y>—<0|a>z 12|n> (2.34)

The squared length of the vector {2 ) is thus

I |2n

[Calay]? =<0 2| Z = [<0|2y]* e*!” . (2.35)
It is easily seen that
(Ofa)y = <01 D(2)[0)
_elxl? 2 (2.36)

Thus |{%|x>|? = 1 and the coherent states are normalized.
The coherent state may then be expanded in terms of the number states as

lay =e” M”Z 12|1> (2.37)

We note that the probability distribution of photons in a coherent state is
a Potisson distribution
|“|2n€—\1|2

P(J1)=|<rzlx>|2=mﬁ, (2.38)

where ||? is the mean number of photons (7 = {«|a'ala) = ||?).
The scalar product of two coherent states is

(flay =<0|D*(B)D(=)[0) . (2.39)
Using (2.26) this becomes

CBlay =expl —3(ja|” + |B1%) + 2f*] . (2.40)
The absolute magnitude of the scalar product is

[{Bloy|? =e 702 (2.41)

Thus the coherent states are not orthogonal although two states |2 > and |f)
become approximately orthogonal in the limit |2 — | > 1. The coherent states
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form a two-dimensional continuum of states and are, in fact, overcomplete. The
completeness relation

% f|o¢><x|d2a=1 , (2.42)

may be proved as follows.
We use the expansion (2.37) to give

92_ - c |n><m| —|x|2 xmaon 12
J}oc)@c] - nzo mZOTC\/W ¥ Myt d?y (2.43)

Changing to polar coordinates this becomes

x 27

d?x 5 ny{m] ot i(n—m

J{1><x|7:n.m_(}m!rd ! doeitn—me (2.44)
Using

2n

de)ei("‘m’G:Znénm , (2.45)

0
we have

Cmynl [
Jv|o<><7|4——n§0 o ste fg? (2.46)
0

where we let ¢ = r2. The integral equals n!. Hence we have

Joc><o¢|——— Z ln><{n|=1, (2.47)

following from the completeness relation for the number states.
An alternative proof of the completeness of the coherent states may be given
as follows. Using the relation [2.3]

4’2

e e 8= 4 + ([B, A]+ ((B.[B.A]+ - (2.48)

It 1s easy to see that all the operators 4 such that
DY (o)AD(a) = A (2.49)

are proportional to the identity.
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We consider

A={d*x|a){x
then

D'(B) [ d?xloy [ D(F) = [d>x |z — B> (o — Bl = [d?afo)al . (2.50)
Then using the above result we conclude that

fd?ajad ()« 1. (2.51)

The constant of proportionality is easily seen to be m.

The coherent states have a physical significance in that the field generated by
a highly stabilized laser operating well above threshold is a coherent state. They
form a useful basis for expanding the optical field in problems in laser physics
and nonlinear optics. The coherence properties of light fields and the signi-
ficance of the coherent states will be discussed in Chap. 3.

2.4 Squeezed States

A general class of minimum-uncertainty states are known as squeezed states. In
general, a squeezed state may have less noise in one quadrature than a coherent
state. To satisfy the requirements of a mimmimum-uncertainty state the noise in
the other quadrature is greater than that of a coherent state. The coherent states
are a particular member of this more general class of minimum uncertainty
states with equal noise in both quadratures. We shall begin our discussion by
defining a family of minimum-uncertainty states. Let us calculate the variances
for the position and momentum operators for the harmonic oscillator

q:\/%(a-#cﬁ), p:i\/hzw(a—af) . (2.52)
The variances are defined by

V(A) = (AA)? = (A2 — (A>* . (2.53)
In a coherent state we obtain

Bla= . Bpa="2 @254

Thus the product of the uncertainties is a minimum

h
(Ap Ag)con = 5 (2.55)
Thus, there exists a sense in which the description of the state of an oscillator by
a coherent state represents as close an approach to classical localisation as
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possible. We shall consider the properties of a single-mode field. We may write
the annihilation operator a as a linear combination of two Hermitian operators

X, +1X,
a=————.

5 (2.56)

X, and X,, the real and imaginary parts of the complex amplitude, give
dimensionless amplitudes for the modes’ two quadrature phases. They obey the
following commutation relation

[X,X,]=2. (2.57)
The corresponding uncertainty principle is
AX AX,>1. (2.58)

This relation with the equals sign defines a family of minimum-uncertainty
states. The coherent states are a particular minimum-uncertainty state with

AX,=AX,=1. (2.59)

The coherent state |« ) has the mean complex amplitude  and it is a minimum-
uncertainty state for X ; and X ,, with equal uncertainties in the two quadrature
phases. A coherent state may be represented by an “crror circle” in a complex
amplitude plane whose axes are X | and X, (Fig. 2.1a). The centre of the error
circle liesat 1 (X, + iX,) = x and the radius AX, = AX, = | accounts for the
uncertainties in X, and X ,.

There is obviously a whole family of minimum-uncertainty states defined by
AX, AX, = 1.1f we plot AX, against AX , the minimum-uncertainty states lie
on a hyperbola (Fig. 2.2). Only points lying to the right of this hyperbola
correspond to physical states. The coherent state with AX; = AX, is a special
case of a more general class of states which may have reduced uncertainty in one
quadrature at the expense of increased uncertainty in the other
(AX| < 1 < AX,). These states correspond to the shaded region in Fig. 2.2.
Such states we shall call squeezed states [2.4]. They may be generated by using
the unitary squeeze operator [2.5]

S(e) = exp(1/2¢*a* — 1/2¢at?) | (2.60)

where ¢ = re?'?,
Note the squeeze operator obeys the relations

SHe)=S"Yey=S(—¢), (2.61)
and has the following useful transformation properties

S™(e)aS(e) = acoshr — a'e " *¥sinhr |

S*(¢)a'S(e) = a’ coshr — ae??sinhr | (2.62)

STe)(Y, +iY,)S(e) = Yie " +iYse” |
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(b)

Fig. 2.1. Phase-space plot showing the uncertainty in (a) a coherent state |« ), and (b) a squeezed
state |2, r>

AX,

Fig. 2.2. Plot of AX ;| versus AX, for the minimum-uncertainty states. The dot marks a coherent
state while the shaded region corresponds to the squeezed states

where
Yl + 1Y2 = (Xl + in)eAid) (263)

1s a rotated complex amplitude. The squeeze operator attenuates one compon-
ent of the (rotated) complex amplitude, and it amplifies the other component.
The degree of attenuation and amplification is determined by r = ||, which will
be called the squeeze factor. The squeezed state |o, &) is obtained by first
squeezing the vacuum and then displacing it

lo, e = D(2)S(e) |0 . (2.64)
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A squeezed state has the following expectation values and variances
(X1 +iX,) =Y +iY, e’ =2 |
AY,=e"” AY, =¢"

k] bl

(N>y =|z|? 4+ sinh?r ,
(AN)? = |xcoshr — x*e?'® sinhr|? + 2cosh?rsinh?r | (2.65)

Thus the squeezed state has unequal uncertainties for Y; and Y, as seen in the
error ellipse shown in Fig. 2.1b. The principal axes of the ellipse lie along the
Y, and Y, axes, and the principal radii are AY; and AY,. A more rigorous
definition of these error ellipses as contours of the Wigner function is given in
Chap. 3.

2.5 Two-Photon Coherent States

We may define squeezed states in an alternative but equivalent way [2.6]. As this
definition is sometimes used in the literature we include it for completeness.
Consider the operator

b = pa + va' (2.66)
where
==,

Then b obeys the commutation relation

[b,bT]=1. (2.67)
We may write (2.66) as

b= UaU" (2.68)

where U is a unitary operator. The eigenstates of b have been called rwo-photon
coherent states and are closely related to the squeezed states.
The eigenvalue equation may be written as

bifoe=BIB - (2.69)
From (2.68) it follows that
e =UlB> (2.70)

where | > are the eigenstates of a.
The properties of | >, may be proved to parallel those of the coherent states.
The state | >, may be obtained by operating on the vacuum

155 = Dg(B)]10), (2.71)
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with the displacement operator
D () =Pt ~#"0 (2.72)
and [0>, = U|0). The two-photon coherent states are complete

d2p _

P _ (2.73)
n

J|ﬁ>gg<ﬁl

and their scalar product is

LBIB De=exp(B*p —21B12—2|B'17) . (2.74)

We now consider the relation between the two-photon coherent states and the
squeezed states as previously defined. We first note that

U =S5
with g = coshr and v = ¢%*® sinh r. Thus
10>, =10,8> (2.75)

with the above relations between (u, v) and (r, ). Using this result in (2.71) and
rewriting the displacement operator. Dy(f), in terms of a and a" we find

15De = D(2)S(e) |0} = |2, &) (2.76)
where
= uf —vf* .

Thus we have found the equivalent squeezed state for the given two-photon
coherent state.
Finally, we note that the two-photon coherent state | f >, may be written as

B¢ = S(e) D(B)[0) .

Thus the two-photon coherent state is generated by first displacing the vacuum
state, then squeezing. This is the opposite procedure to that which defines the
squeezed state |a, ¢ ». The two procedures yield the same state if the displace-
ment parameters o and f are related as discussed above.

The completeness relation for the two-photon coherent states may be em-
ployed to derive the completeness relation for the squeezed states. Using the
above results we have

d? : :
JTIB |pcoshr — B*e??sinhr, e fcoshr — f*e*®sinhr,c|=1 . (2.77)

The change of variable

a = fcoshr — f*e? sinhr (2.78)
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leaves the measure invariant, that is d?« = d?f. Thus

dz
f—n—“ o, ed<{ae)=1. (2.79)

2.6 Variance in the Electric Field

The electric field for a single mode may be written in terms of the operators
X, and X, as

1 [(ho\'? .
E(rt)y=—=| [ X sin(wt — k-r)— X,cos(wt —k-r)] . (2.80)
J L 2e0

The variance in the electric field is given by
V(E(r, 1)) = K{V(X)sin*(wt — k*¥) + V(X,)cos*(wt — k)
—sin[2(wr — k-r)] (X, X5)) (2.81)

where

K=i3(2hw) ’
L Eo

UAX 1 X)) + (X2 X))

VX, X5)= > — (X (X,
For a minimum-uncertainty state

VX, X2)=0. (2.82)
Hence (2.81) reduces to

V(E(r,t)) = K[ V(X ,)sin*(wt — k-r) + V(X,)cos*(wt — k-r)] . (2.83)

The mean and uncertainty of the electric field is exhibited in Figs. 2.3a—c where
the line is thickened about a mean sinusoidal curve to represent the uncertainty
in the electric field.

The variance of the electric field for a coherent state is a constant with time
(Fig. 2.3a). This is due to the fact that while the coherent-state-error circle
rotates about the origin at frequency o, it has a constant projection on the axis
defining the electric field. Whereas for a squeezed state the rotation of the error
ellipse leads to a variance that oscillates with frequency 2w. In Fig. 2.3b the
coherent excitation appears in, the quadrature that has reduced noise. In
Fig. 2.3c the coherent excitation appears in the quadrature with increased noise.
This situation corresponds to the phase states discussed in [2.7] and in the final
section of this chapter.
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(a)

t
(b)
t
(c)
2
1
e 1 2
-1
-2

Fig. 2.3. Plot of the electric field versus time showing schematically the uncertainty in phase and
amplitude for (a) a coherent state, (b) a squeezed state with reduced amplitude fluctuations. and (c)
a squeezed state with reduced phase fluctuations

The squeezed state |2, ¥ > has the photon number distribution [2.6]

! 3 2 pl2a s prent g*?
P(;1)=(nru)‘l<fﬁ) Hn( é“)‘ oM (2.84
VAR
where
v=sinhre*? ~ p=coshr, f=puou+va*.

H,(x) are Hermite polynomials.

The photon number distribution for a squeezed state may be broader or
narrower than a Poissonian depending on whether the reduced fluctuations
occur in the phase (X,) or amplitude (X ;) component of the field. This is
illustrated in Fig. 2.4a where we plot P(n) for r =0, r >0, and r < 0. Note,

a squeezed vacuum (« = 0) contains only even numbers of photons since
H,(0) = 0 for n odd.
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(a)
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P(n)
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Fig. 2.4. Photon number distribution for a squeezed state |x,r): (a) x=3, r=0, 0.5, —0.5,
(b)x=3.r=10

For larger values of the squeeze parameter r, the photon number distribution
exhibits oscillations, as depicted in Fig 2.4b. These oscillations have been
interpreted as interference in phase space [2.8].

2.7 Multimode Squeezed States

Multimode squeezed states are important since several devices produce light

which is correlated at the two frequencies w, and @ _. Usually these frequencies

are symmetrically placed either side of a carrier frequency. The squeezing exists

not in the single modes but in the correlated state formed by the two modes.
A two-mode squeezed state may be defined by [2.9]

sy 2=y = Do (2:)D_(2-)S(G)|0) (2.85)

-

where the displacement operator is

D.(x) = exp(aai — a*a.) , (2.86)
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and the unitary two-mode squeeze operator is
S(G)=exp(G*a,a_ — Ga'al) . (2.87)
The squeezing operator transforms the annihilation operators as

S'(G)a, S(G) = a, coshr — a; e¥sinhr | (2.88)

where G = re'®,
This gives for the following expectation values

{a, y>=o0o,, a_y=o0o_,

(al a; y = |x, |* + sinh?r, (al aly = o¥ oy,
{ay a )y = 0o, {asa_>=<a_a,)=o,u_ — e’sinhrcoshr .
(2.89)
The quadrature operator X is generalized in the two-mode case to
1
X=——(a, +at +a_+ad"). (2.90)

NG

As will be seen in Chap. 5, this definition is a particular case of a more general
definition. It corresponds to the degenerate situation in which the frequencies of
the two modes are equal.

The mean and variance of X in a two-mode squeezed state is

(X>=2(Ref{o,} +Refa_}),

0 0
V(X) = (e“z’ cosz5 + ez'sinzz) . (2.91)

These results for two-mode squeezed states will be used in the analyses of
nondegenerate parametric oscillation given in Chaps. 4 and 6.

2.8 Phase Properties of the Field

The definition of an Hermitian phase operator corresponding to the physical
phase of the field has long been a problem. Initial attempts by P. Dirac led to
a non-Hermitian operator with incorrect commutation relations. Many of these
difficulties were made quite explicit in the work of Susskind and Glogower [2.10].
Recently, Pegg and Barnett [2.11] showed how to construct an Hermitian phase
operator, the eigenstates of which, in an appropriate limit, generate the correct
phase statistics for arbitrary states. We will first discuss the Susskind-Glogower
(SG) phase operator.
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Let a be the annihilation operator for a harmonic oscillator, representing
a single field mode. In analogy with the classical polar decomposition of
a complex amplitude we define the SG phase operator,

et = (aah) 1 2a . (2.92)

The operator €' has the number state expansion

K€

e’ =Y |ndin+ 1| (2.93)

n=0
and eigenstates |e'*) like

ey =) e™|ny for —n<$<nm. (2.94)

n=0

It is easy to see from (2.93) that €' is not unitary,
[e', (e)"]=105<0] . (2.95)

An equivalent statement is that the SG phase operator is not Hermitian. As an
immediate consequence the eigenstates |€') are not orthogonal. In many ways
this is similar to the non-orthogonal eigenstates of the annihilation operator a,
i.e. the coherent states. None-the-less these states do provide a resolution of
identity

jdmei"’}(ei"’ =2n . (2.96)

The phase distribution over the window — n < ¢ < = for any state | > is then
defined by

1 :
P(9) = 5 I<eI)I? . (297)

The normalisation integral is

jP(d))dqﬁ =1. (2.98)

The question arises; does this distribution correspond to the statistics of any
physical phase measurement? At the present time there does not appear to be an
answer. However, there are theoretical grounds [2.12] for believing that P(¢) is
the correct distribution for optimal phase measurements. If this is accepted then
the fact that the SG phase operator is not Hermitian is nothing to be concerned
about. However, as we now show, one can define an Hermitian phase operator,
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the measurement statistics of which converge, in an appropriate limit, to the
phase distribution of (2.97) [2.13].

Consider the state | ¢, > defined on a finite subspace of the oscillator Hilbert
space by

[P0y =(s+1)"12 ) e"n)y . (2.99)
n=0

It is easy to demonstrate that the states |¢ ) with the values of ¢ differing from
¢o by integer multiples of 2nt/(s + 1) are orthogonal. Explicitly, these states are

¥ 2
|<z>m>=exp(iw)!¢o>; m=0,1, ... s, (2.100)
s+ 1
with
2nm
Om = o+ s+1°

Thus ¢¢ < ¢, < ¢ + 21 In fact, these states form a complete orthonormal set
on the truncated (s + 1) dimensional Hilbert space. We now construct the
Pegg-Barnett (PB) Hermitian phase operator

6= Y duldu><bul 2101

For states restricted to the truncated Hilbert space the measurement statistics of
¢ are given by the discrete distribution

P = [{umlth >4|? (2.102)

where [} >, is any vector of the truncated space.

It would seem natural now to take the limit s —» oc and recover an Hermitian
phase operator on the full Hilbert space. However, in this limit the PB phase
operator does not converge to an Hermitian phase operator, but the distribu-
tion in (2.102) does converge to the SG phase distribution in (2.97). To see this,

choose ¢ = 0.
Then
s 2 2
Po=(s+1)"'| Y exp(—inm “>¢n (2.103)
n=0 §+ 1

where y, = (n|y ;.
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As ¢, are uniformly distributed over 2 we define the probability density by

P( . l 27'C _IP . 1 i ind)w 2 (2 104)
$) = hm s+ 1 "1 2n nzoe " '
where
2nm
= hi 2.105
¢ =lim =, (2.105)

and y, is the number state coeflicient for any Hilbert space state. This conver-
gence in distribution ensures that the moments of the PB Hermitian phase
operator converge, as s — oc , to the moments of the phase probability density.

The phase distribution provides a useful insight into the structure of fluctu-
ations in quantum states. For example, in the number state |n)», the mean and
variance of the phase distribution are given by

(py=¢o+T7, (2.106)
and
Vig)=3n , (2.107)

respectively. These results are characteristic of a state with random phase. In the
case of a coherent state {re'?)> with r > 1, we find

{p>=¢ , (2.108)
1
Vig) = PR (2.109)

where i = (a'a) = r? is the mean photon number. Not surprisingly a coherent
state has well defined phase in the limit of large amplitude.

Exercises

2.1 If | X,) is an eigenstate for the operator X find (X, |y ) in the cases
@) [y =ap;(0) [y =nwr) .

2.2 Prove that if | > is a minimum-uncertainty state for the operators X ; and
Xz, then V(Xl,Xz) =0.

2.3 Show that the squeeze operator

S(r, ¢) = exp {% (e™%? g% — ¢ a+2):|

may be put in the normally ordered form
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r *k
S(r, ¢) = (coshr) 2 exp ( —5 a”) exp[ — In(coshr)ata]exp (% a"‘)

where I' = ¢2'¢ tanhr.

24 Evaluate the mean and variance for the phase operator in the squeezed
state |a, r» with » real. Show that for |r| > |«| this state has either enhanced or
diminished phase uncertainty compared to a coherent state.



