CHAPTER 1

Quantum theory of
radiation

Light occupies a special position in our attempts to understand nature
both classically and quantum mechanically. We recall that Newton,
who made so many fundamental contributions to optics, championed a
particle description of light and was not favorably disposed to the wave
picture of light. However, the beautiful unification of electricity and
magnetism achieved by Maxwell clearly showed that light was properly
understood as the wave-like undulations of electric and magnetic fields
propagating through space.

The central role of light in marking the frontiers of physics con-
tinues on into the twentieth century with the ultraviolet catastrophe
associated with black-body radiation on the one hand and the pho-
toelectric effect on the other. Indeed, it was here that the era of
quantum mechanics was initiated with Planck’s introduction of the
quantum of action that was necessary to explain the black-body ra-
diation spectrum. The extension of these ideas led Einstein to explain
the photoelectric effect, and to introduce the photon concept.

It was, however, left to Dirac® to combine the wave- and particle-
like aspects of light so that the radiation field is capable of explaining
all interference phenomena and yet shows the excitation of a specific
atom located along a wave front absorbing one photon of energy. In
this chapter, following Dirac, we associate each mode of the radiation
field with a quantized simple harmonic oscillator, this 1s the essence
of the quantum theory of radiation. An interesting consequence of the
quantization of radiation is the fluctuations associated with the zero-

* The pioneering papers on the quantum theory of radiation by Dirac [1927] and Fermi [1932]
should be read by every student of the subject. Excellent modern treatments are to be found in
the textbooks by: Loudon, The Quantum Theory of Light [1973], Cohen-Tannoudji, Dupont-Roc,
and Grynberg, Atom—Photon Interactions [1992], Weinberg, Theory of Quantum Fields [1995], and
Pike and Sarkar, Quantum Theory of Radiation [1995].
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point energy or the so-called vacuum fluctuations. These fluctuations
have no classical analog and are responsible for many interesting
phenomena in quantum optics. As is discussed at length in Chapters
5 and 7, a semiclassical theory of atom—field interaction in which only
the atom is quantized and the field is treated classically, can explain
many of the phenomena which we observe in modern optics. The
quantization of the radiation field is, however, needed to explain effects
such as spontaneous emission, the Lamb shift, the laser linewidth, the
Casimir effect, and the full photon statistics of the laser. In fact,
each of these physical effects can be understood from the point of
view of vacuum fluctuations perturbing the atoms, e.g., spontaneous
emission is often said to be the result of ‘stimulating’ the atom by
vacuum fluctuations. However, as compelling as these reasons are
for quantizing the radiation field, there are other strong reasons and
logical arguments for quantizing the radiation field.

For example, the problem of quantum beat phenomena provides
us with a simple example in which the results of self-consistent fully
quantized calculation differ qualitatively from those obtained via a
semiclassical theory with or without vacuum fluctuations. Another
experiment wherein a quantized theory of radiation is required for
the proper interpretation of the observed results is two-photon in-
terferometry and the production of entangled states associated with
such a configuration. This is discussed in detail in Chapter 21. Fur-
ther support that the electromagnetic field is quantized is provided by
the experimental observations of nonclassical states of the radiation
field, e.g., squeezed states, sub-Poissonian photon statistics, and photon
antibunching.

Following this brief motivation for the quantum theory of radiation,
we now turn to the quantization of the free electromagnetic field.

1.1 Quantization of the free electromagnetic field

With the objective of quantizing the electromagnetic field in free
space, it is convenient to begin with the classical description of the
field based on Maxwell’s equations. These equations relate the electric
and magnetic field vectors E and H, respectively, together with the
displacement and inductive vectors D and B, respectively, and have
the form (in mks units):

VxH= %?, (1.1.1a)
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v xE=—%?, (1.1.1b)
V:-B=0, (1.1.1¢)
V-D=0, (1.1.1d)

with the constitutive relations

B = uoH, (1.1.2)

D = ¢E. (1.1.3)

Here €y and uo are the free space permittivity and permeability,
respectively, and ugeq = ¢~ where c is the speed of light in vacuum.
It follows, on taking the curl of Eq. (1.1.1b) and using Egs. (1.1.1a),
(1.1.1d), (1.1.2), and (1.1.3), that E(r, ) satisfies the wave equation
) 1 O*°E
v E_Eﬁ = 0. (1.1.4)
In deriving Eq. (1.1.4) we also used V x (V x E) = V(V - E) — V2E.

1.1.1 Mode expansion of the field

We first consider the electric field to have the spatial dependence
appropriate for a cavity resonator of length L (Fig. 1.1). We take the
electric field to be linearly polarized in the x-direction and expand in
the normal modes of the cavity

E\(z.t) =Y _ Ajq;(t)sin(k;z), (1.1.5)
J

where g; is the normal mode amplitude with the dimension of a length,
kj = jn/L, with j=1,2,3,..., and

4 [ 2m " 1.1.6
J - V€0 ’ ( b )

with v; = jmc/L being the cavity eigenfrequency, V' = LA (A4 is the
transverse area of the optical resonator) is the volume of the resonator
and m; is a constant with the dimension of mass. The constant m; has
been included only to establish the analogy between the dynamical
problem of a single mode of the electromagnetic field and that of
the simple harmonic oscillator. The equivalent mechanical oscillator
will have a mass m;, and a Cartesian coordinate g;. The nonvanishing
component of the magnetic field H, in the cavity® is obtained from
Eq. (1.1.5):

* In the present treatment of field quantization in vacuum we are focussing on the electric E(r, )

and magnetic H(r,t) fields. In a material medium it is preferable to work with D(r,¢) and B(r,);
see Bialynicki-Birula and Bialynicka-Birula [1976].
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T/\/\/\ vE A

a\/\/\/\/

Hy=3" 4 (%152) cos(k;z). (1.1.7)
-
The classical Hamiltonian for the field is
1
#=3 /V di(eoE; + moHY), (1.1.8)

where the integration is over the volume of the cavity. It follows, on
substituting from Eqgs. (1.1.5) and (1.1.7) for E; and H,, respectively,
in Eq. (1.1.8), that

1
H = 3 Z(m} Vid; +m,q]2)

2
=3 Z (m]v} Q-+ ,-) : (1.1.9)

where p; = m;q; is the canonical momentum of the jth mode. Equation
(1.1.9) expresses the Hamiltonian of the radiation field as a sum of
independent oscillator energies. Each mode of the field is therefore
dynamically equivalent to a mechanical harmonic oscillator.

1.1.2 Quantization

The present dynamical problem can be quantized by identifying g;
and p; as operators which obey the commutation relations

laj,py] = ihd;y, (1.1.10a)
9,971 = [pj,pi] = 0. (1.1.10b)
It is convenient to make a canonical transformation to operators a;

and a;f:

Y 1 |
G = iy () D) (11.11a)
]

Fig. 1.1
Electromagnetic field
of frequency v inside
a cavity. The field is
assumed to be
transverse with the
electric field
polarized in the
x-direction.
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In terms of a; and a;, the Hamiltonian (1.1.9) becomes

1
H=hY v (a}aj+§). (1.1.12)
-

The commutation relations between a; and a} follow from those
between g; and p;:

[aj.a}] =57, (1.1.13)

[aj,a7] = [a],a]] = 0. (1.1.14)

(1.1.11b)

The operators aj' and a}t are referred to as the annihilation and
the creation operators, respectively. The reason for these names will
become clear in the next section. In terms of a; and aj-, the electric
and magnetic fields (Egs. (1.1.5) and (1.1.7)) take the form

Ex(z,t) =Y &i(a;e™™" +ale"")sinkjz, (1.1.15)
J
Hy(z,t) = —iegc Z & i(aje™t — a}e"“f‘) cosk;z, (1.1.16)
J
where the quantity
v\
&i=|—=L 1.1.17
J (€0V> ( )

has the dimensions of an electric field.

So far we have considered the quantization of the radiation field
in a finite one-dimensional cavity. We can now quantize the field in
unbounded free space as follows.

We consider the field in a large but finite cubic cavity of side
L. Here we regard the cavity merely as a region of space with no
specific boundaries. We consider the running-wave solutions instead
of the standing-wave solutions considered above and impose periodic
boundary conditions.

The classical electric and magnetic fields can be expanded in terms
of the plane waves

E(r, 1) = Z ex&yae kT Lce (1.1.18)
k
1 k X gk —ivit+ikr

H(r,t) = u_ Z —— e e, (1.1.19)
0 k k

where the summation is taken over an infinite discrete set of values of
the wave vector k = (ky, ky,k;), € is a unit polarization vector, ay is a
dimensionless amplitude and
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v 1/2
gk_(2€0V> . (1.1.20)

In Egs. (1.1.18) and (1.1.19) c.c. stands for complex conjugate. The
periodic boundary conditions require that

2nn,
L bl

27n, 27nn,

L’ L’
where ny, ny, n; are integers (0, +1, £2,...). A set of numbers (n,,n,,n;)
defines a mode of the electromagnetic field. Equation (1.1.1d) requires
that

ky = k, = k, = (1.1.21)

k-& =0, (1.1.22)

i.e., the fields are purely transverse. There are, therefore, two indepen-
dent polarization directions of &, for each k.

The change from a discrete distribution of modes to a continuous
distribution can be made by replacing the sum in Egs. (1.1.18) and
(1.1.19) by an integral:

\?
Y -2 (2—) /d3k, (1.1.23)
- T
where the factor 2 accounts for two possible states of polarization.

In many problems, we shall be interested in the density of modes
between the frequencies v and v + dv. This can be obtained by trans-
forming from the rectangular components (ky, k,, k;) to the polar
coordinates (k sin @ cos ¢, ksin 8sin ¢, k cos 8), so that the volume ele-
ment in k space is

2
&k = k*dk sin 0d0d¢ = z—3dv sin 0d0d . (1.1.24)

The total number of modes in volume L? in the range between v and
v + dv is given by

3 2 2n 3 2
AN = 2( ) d"/desme/ d¢—L v, (1125)

Therefore the number of modes with frequencies in the range v to
v+dvis

L3v2

D(v)dv = P

= _dv, (1.1.26)

where D(v) is called the mode density.
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As before, the radiation field is quantized by identifying oy and aj,
with the harmonic oscillator operators ax and alT(, respectively, which
satisfy the commutation relation [ay, alT(] = 1. The quantized electric
and magnetic fields take the form

E(r,t) = Z exExaxe KT L He, (1.1.27)
k
1 k x & —ivgt+iker
H(r,t) = - > . Exaxe KT L Hc, (1.1.28)
k

where H.c. stands for Hermitian conjugate. Usually the positive and
negative frequency parts of these field operators are written separately.
For example, the electric field operator E(r, t) is written as

E(r, 1) = EP(r, 1) + EOr, 1), (1.1.29)
where '
EV(r, 1) = Z erbpaye kT (1.1.30)
k
EO@r 1) =) abuae™ . (1.1.31)
k

Here EM(r, t) contains only the annihilation operators and its adjoint
E)(r, t) contains only the creation operators.

1.1.3 Commutation relations between electric and magnetic
field components

An important consequence of imposing the quantum conditions (1.1.13)
and (1.1.14) is that as the electric and magnetic field strengths do not
commute they are thus not measurable simultaneously. In order to
show this we rewrite the quantized mode expansions (1.1.27) and
(1.1.28) for E(r,t) and H(r,t), respectively by including explicitly the
two states of polarization denoted by the symbol A:

E(r0)=) & 6 aie ™ " + He, (1.1.32)
kA
1 k x e _

Ht) = — Y~k fa e+ 4 He, (1.1.33)
U Vi

The corresponding commutation relations between the operators gy ;
and a]T( , are

oz awx] = [ay ;. af ;] =0,
[ 1 a), 1] = Ouwdia- (1.1.34)
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It then follows that the equal time commutator between the field
components is given by

, hc? @ [ A
6.0, B (0,01 = 35 3ol ek — el
% [ =) _ e—ik-(r—r’)] ’ (1.1.35)

where e ) (i = x,y,z) is the ith component of e() We proceed by
using the operator identity of Problem 1.9 to write

kk
el +ele? + = =1, (1.1.36)

K2
where &V&ll, 2222 and kk denote dyadic products. One can verify
that taking the inner product of (1.1.36) with the Cartesian unit vector

é; from the left and é; from the right yields
kik;
el + el = 5, — i (1137)
The summation over the polarization states in Eq. (1.1.35) can

now be carried out using (1.1.37). The resulting expression for the
commutator is

(Ex(r, 1), Hy(r, 1)] = Zk [l"“-")—e—"k'(f-f’)]. (1.1.38)

We now replace the summation by an integral via

Z =1 2;’)3 / d’k. (1.1.39)

k

The factor of 2 has not been included as was done in Eq. (1.1.23)
because, in the present case, we have summed over two polarization
states explicitly. We obtain

[Ex(r,t), Hy(',t)] = —ihc2%5<3)(r —r). (1.1.40)

In general
[Ej(r,t), H(Y,0)] =0 (j =x,),2), (1.1.41)
[E;(r,t), Hy (¥, t)] = —ihcza%a(”(r —r), (1.1.42)

where j, k, and Z form a cyclic permutation of x, y, and z.

We, therefore, conclude that the parallel components of E and H
may be measured simultaneously whereas the perpendicular compo-
nents cannot.
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1.2 Fock or number states

In this section we first restrict ourselves to a single mode of the field
of frequency v having creation and annihilation operators a' and a,
respectively. Let |n) be the energy eigenstate corresponding to the
energy eigenvalue E,, 1e.,

2

If we apply the operator a from the left, we obtain after using the
commutation relation [a,a'] = 1 and some rearrangement

H\n) = hy (aTa + l) In) = E,|n). (1.2.1)

Halny = (E, — hv)aln). (1.2.2)
This means that the state

In—1) = ai n), (1.2.3)

n

is also an energy eigenstate but with the reduced eigenvalue
E,=E,— hv. (12.4)

In Eq. (1.2.3), «, is a constant which will be determined from the
normalization condition

(n—1n—1) = 1. (1.2.5)

If we repeat this procedure n times we move down the energy ladder
in steps of Av until we obtain

#a|0) = (Eo — v)al0). (1.2.6)

Here Ej 1s the ground state energy such that (Eg—#v) would correspond
to an energy eigenvalue smaller than E,. Since we do not allow energies
lower than E, for the oscillator, we must conclude

al0) = 0. (12.7)

The state |0) is referred to as the vacuum state. Using this relation we
can find the value of Ey from the eigenvalue equation

1
H|0) = 5hv|0) = Eg|0). (1.2.8)
This gives
1
Ey = Ehv. (1.2.9)

It then follows from Eq. (1.2.4) that
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E, = (n + %) hv. (1.2.10)

From Eq. (1.2.1), we obtain
a‘aln) = njn), (1.2.11)

ie, the energy eigenstate |n) is also an eigenstate of the ‘number’
operator

n=aa. (1.2.12)

The normalization constant «, in Eq. (1.2.3) can now be determined.

1

(n—1n—1)= PE

talny = " _(nn) = 2 =
(n|a'aln) |0€n|2<n|n> P 1. (1.2.13)

If we take the phase of the normalization constant «, to be zero then
a, = /n. Equation (1.2.3) then becomes

aln) = \/njn — 1). (1.2.14)

We can proceed along the same lines with the operator a'. The resulting
equation is

d'ln) = n+1n+1). (1:2.15)

A repeated use of this equation gives

(ah)"
= 0). 1.2.16
N 10) ( )
It is useful to interpret the energy eigenvalues (1.2.10) as corre-
sponding to the presence of n quanta or photons of energy hAv. The
eigenstates |n) are called Fock states or photon number states. They
form a complete set of states, ie.,

n)

> ln)(nl = 1. (12.17)

n=0

The energy eigenvalues are discrete, in contrast to classical electromag-
netic theory where energy can have any value. The energy expectation
value can however take on any value, for the state vector is, in general,
an arbitrary superposition of energy eigenstates, i.e.,

) =) culn) (1.2.18)
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Fig. 1.2

Energy levels for the
quantum mechanical
harmonic oscillators
associated with the

electromagnetic field.

The creation
operator at adds a
quantum of energy
hv, whereas the
destruction operator
a subtracts the same
amount of energy.

En,—l—l = (TL + 3/2)hl/
U

a E, =®n+1/2)hv

Ep_y = (n—1/2)hv

E2 = 5/2 hv
E1 = 3/2 hV
Eo =1/2 hw

where ¢, are complex coefficients. The residual energy #v/2 corre-
sponding to Eg is called the zero-point energy. In Fig. 1.2, the energy
levels for the quantum mechanical oscillations associated with the
electromagnetic field are given.

An important property of the number state |n) is that the corre-
sponding expectation value of the single-mode linearly polarized field
operator

E(r,t) = ae ™% L Hec (1.2.19)
vanishes, 1.e.,
(n|E|n) = 0. (1.2.20)

However, the expectation value of the intensity operator E? is given
by

(n|E*|n) = 2|62 (n + %) , (1.2.21)
1.e., there are fluctuations in the field about its zero ensemble average.
It is interesting to note that there are nonzero fluctuations even for a
vacuum state |0). These vacuum fluctuations are responsible for many
interesting phenomena in quantum optics as discussed earlier. For
example, it may be considered that they stimulate an excited atom to
emit spontaneously. They also account for the Lamb shift of 2P, , —
281/, energy levels of atomic hydrogen. In particular in Section 1.3,
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we shall see how the vacuum fluctuations of the electromagnetic field
are responsible for the Lamb shift.

The operators a and a' annihilate and create photons, respectively,
for, as seen in Egs. (1.2.14) and (1.2.15), they change a state with n
photons into one with n — 1 or n+ 1 photons. The operators a and a'
are therefore referred to as annihilation (or destruction) and creation
operators, respectively. These operators are not themselves Hermitian
(a # a') and do not represent observable quantities such as the electric
and magnetic field amplitudes. However, some combinations of the
operators are Hermitian such as a; = (a + a')/2 and a, = (a — a')/2i.

So far we have considered a single-mode field and have found that,
in general, the wave function can be written as a linear superposition
of photon number states |n). We now extend this formalism to deal
with multi-mode fields.

We can rewrite the Hamiltonian & in Eq. (1.1.12) as

H =D Hy (1.2.22)
k

where

2
The energy eigenstate |nx) of #k is defined in a manner similar to the

single-mode field via the energy eigenvalue equation

1
%an) = hvk (nk + 5) |nk>. (1224) :

The general eigenstate of # can therefore have ny, photons in the
first mode, ny, in the second, ny, in the /th and so forth, and can be
written as |nk, )|nk,) ... |nk,) ... or more conveniently

|nk1,nk2, BN T ) = |{nk}) (1.2.25)

The annihilation and creation operators ai, and alt/ lower and raise

the /th entry alone, ie.,

ax, [Nk, s Mkys -« o5 My -+ -) = 1K, [Pk Pkys -5 Bk, — 1,.0), (1.2.26)

alt/lnkl,nkz,...,nkf,...) = \/nk, + lng,nk,,...,nk, +1,...).
(1.2.27)

1
Hy = by (a,tak + —) . (12.23)

The general state vector for the field is a linear superposition of these
eigenstates:

nk 1 nkz g Y

=) " cmyl{md). (1.2.28)
{m}
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This is a more general superposition than

¥) = [k [¥,) - [W) - (1.2.29)

where |yy,) are state vectors for individual modes. Equation (1.2.28)
includes state vectors of the type (1.2.29) as well as more general
states having correlations between the field modes which can result
from interaction of the various field modes with a common system.

1.3 Lamb shift

The precision observation of the Lamb shift, between the 2S;,, and
2Py, levels in hydrogen, was in a real sense the stimulus for mod-
ern quantum electrodynamics (QED). According to Dirac theory, the
25,2 and 2Py, levels should have equal energies. However, radiative
corrections due to the interaction between the atomic electron and the
vacuum, shift the 28/, level higher in energy by around 1057 MHz
relative to the 2P;/; level.

Early attempts to calculate such ‘vacuum induced’ radiative correc-
tions were frustrated in that they predicted infinite level shifts. How-
ever, the beautiful measurement of Lamb and Retherford provided
the stimulus for renormalization theory which has been so successful
in handling these divergences.

On the occasion of Lamb’s sixty-fifth birthday, Freeman Dyson®
wrote:

Your work on the hydrogen fine structure led directly to the
wave of progress in quantum electrodynamics on which I
took a ride to fame and fortune. You did the hard, tedious,
exploratory work. Once you had started the wave rolling, the
ride for us theorists was easy. And after we had zoomed
ashore with our fine, fancy formalisms, you still stayed with
your stubborn experiment. For many years thereafter you
were at work, carefully coaxing the hydrogen atom to give us
the accurate numbers which provided the solid foundations
for all our speculations...

Those years, when the Lamb shift was the central theme
of physics, were golden years for all the physicists of my
generation. You were the first to see that that tiny shift, so
elusive and hard to measure, would clarify in a fundamental
way our thinking about particles and fields.

* Dyson [1978].
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Shortly after the experimental results were announced, Bethe pro-
duced a simple nonrelativistic calculation which was in good qual-
itative agreement with theory, by using the suggestion of Kramers,
Schwinger, and Weisskopf for ‘subtracting off’ infinities. This was
extended to a full relativistic theory in quantitative agreement with
experiments by Kroll and Lamb, and French and Weisskopf; and was
the harbinger of modern QED as developed by Schwinger, Feynman,
and Dyson.

The excellent agreement between the full quantum theory of radia-
tion and matter, and experiment, e.g., the Lamb shift, provides strong
support for the quantization of the radiation field. However, a detailed
calculation of thg Lamb shift would take us too far from mainstream
quantum optics. Therefore, we will present here a heuristic derivation
of the electromagnetic level shift following Welton.

The effect of the fluctuations in the electric and magnetic fields
associated with the vacuum is a perturbation of the electron in a
hydrogen atom from the standard orbits of the Coulomb potential
—e? /4ne,r due to the proton; so the electron radius r — r + dr,
where or is the fluctuation in the position of the electron due to
the fluctuating fields. The change in potential energy, and thus the
associated level shift, is given by

AV =V(r+or)—V(r)
=dr-VV + %(5r~V)2V(r)+... (1.3.1)

Since the fluctuations are isotropic, (dr)ysc = 0, the first term can be
neglected. Moreover,

1
((or- V)2>vac = 5((57)2>Vacvz, (1.3.2)
again due to the isotropy of the fluctuations. We therefore obtain
1 —?
A =z 2 vac 2 s 1.33
a7} = gorhe (¥ (7)) (133)

where (...), represents the quantum average with respect to the atomic
states.
For the 28 state of hydrogen

2 2 1
<V2 ( 4nfor)> -2 [aniov (;) ps(®)

2
e

25 (0)?
2

_60
e

= — 1.34
8megay’ (1.3.4)



1.3 Lamb shift 15

where ap = 4meph®/me? (m is the mass of the electron) is the Bohr
radius and we use

V2 (%) = —4nd(r), (1.3.5)
and
1
w25(0) = W, (1.3.6)

For P-states, the nonrelativistic wave function vanishes at the origin
and hence so does the energy shift.

Next we consider the contribution ((6r)?)vac due to the vacuum
fluctuations in Eq. (1.3.3). The classical equation of motion for the
electron displacement (dr)x induced by a single mode of the field of
wave vector k and frequency v is

d2
m—d—ﬁ(ér)k = —eEy. (1.3.7)

This is valid if the field frequency v is greater than the frequency v in
the Bohr orbit, ie., if v > nc/ap. For the field oscillating at frequency
v,

Sr(t) = 6r(0)e™" +c.c. (1.3.8)
We thus have
e
(07 = 3 B (1.3.9)
where, from Eq. (1.1.27),
Ey = &x(ae ™% £ He)). (1.3.10)

After summing over all modes, we obtain

<(5l‘)2>vac = Z (mcikz)z (OI(Ek)2|0)
k

=Z(ﬁz‘)2 LEAY (13.11)
X C 2€0V

where we have made the substitution & = (hick/2eoV)'/2. For the
continuous mode distribution, the summation in Eq. (1.3.11) is changed
to an integral (Eq. (1.1.23)). We then obtain after carrying out the
angular integrations

) B |14 ) e 2 th
((Or) )vac = 2(27:)3 4n/dkk (mczkz) (2€0V>

1 /e A \? [dk
= e (n?) (-m—c) - (1.3.12)
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This gives a divergent result. However as noted before, the present
method is only valid for v > mc/ag, or equivalently k > =m/aq. It is
also valid only for wavelengths longer than the Compton wavelength,
Le., k < mc/h, because of magnetic effects on the motion which begin
when v/c = p/mc = hk/mc < 1. The present method is invalid if the
electron is relativistic. We can therefore choose the lower and upper
limits for the integral in Eq. (1.3.12) to be n/ag and mc/h, respectively.
We then obtain

2 2 h
((O1))vac = ﬁ (;_C) (%) In (4‘202 C) . (1.3.13)

On substituting Egs. (1.3.4) and (1.3.13) into Eq. (1.3.3), we obtain
the following expression for the Lamb shift

2
an=4¢ ¢ (”) L (4€°hc). (1.3.14)

3 4neg 4meghc \mc ) 8nag e?

This shift is about 1 GHz in good agreement with the observed shift,
considering the crude approximations made in the calculation.

Finally, we note the exciting developments in Lamb shift physics
made possible by modern quantum optical techniques, namely the
measurement of the radiation shift of the 1§ state via precise mea-
surements of the two-photon 1S-2S transition first performed by
Hinsch and co-workers.

1.4 Quantum beats

Over the past decades several alternative theories to quantum elec-
trodynamics (QED) have been proposed. One such theory is based
on stochastic electrodynamics. In this theory, matter is treated quan-
tum mechanically while radiation is described according to Maxwell’s
equations, to which one adds vacuum fluctuations. In this picture, it
would seem that almost all quantum phenomena, such as spontaneous
emission, Lamb shift, and the laser linewidth, can be understood in a
semiquantitative fashion.

Quantum beat™ phenomena however provide us with a simple ex-
ample of a case in which the results of a self-consistent fully quantized
calculation differ substantially from those obtained via a semiclassical
theory (SCT) even when augmented by the notion of vacuum fluctua-
tions. This is a good example of a problem which cannot be explained,
let alone calculated, by semiclassical-type arguments.

* Svanberg [1991].
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In later chapters, we shall present elaborate theories of atom-field
interaction based on semiclassical and fully quantum mechanical treat-
ments. In this section, however, we discuss quantum beats via QED
and SCT in three-level atomic systems using simple arguments. We
consider two different types of three-level atoms in the so-called V
and A type configurations which are prepared in a coherent superpo-
sition of all three states. Both systems are first treated semiclassically
and then by QED methods in order to compare the results of both
approaches.

As depicted in Fig. 1.3, an ensemble of atoms prepared in a coherent
superposition of states is described by a state vector,

[p(t)) = caexp(—iwgt)|a) + cp exp(—iwpt)|b)
+c. exp(—iw.t)|c), (1.4.1)

where ¢,, ¢p, and ¢, are probability amplitudes for the atom to be in
levels |a), |b), and |c), respectively. Furthermore, if the nonvanishing
dipole matrix elements are denoted by

V type atoms A type atoms

Pac = e(alrlc} Wac = e<a|r|c> (142)

gbc = e(b|r|c) '@ab = e<a|r|b>,

where the designations V and A are explained in Fig. 1.3, then the
state (1.4.1) implies that each atom contains two microscopic oscillating
dipoles, that is,

V type atoms A type atoms
P(t) = Poc(cec) explivit) P(t) = Pac(cic.)exp(ivit) (1.4.3)

+ Ppe(cyee) exp(ivat) + Pa(Cc;cp) explivat)
+c.C. +c.C.,

where vi = w; — @, v, = wp — . for V type atoms and v = w, — wy,
v, = w, — o, for A type atoms. From a semiclassical perspective, the
field radiated will then be a sum of two terms

E® =g, exp(—ivit) + & exp(—ivat), (1.4.4)

in an obvious notation. Hence it is clear that a square law detector
contains an interference or beat note term

EPP? =811 + 182 + {6162 expli(vi — v2)t] +cc}. (14.5)
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2 jf' (a) V-type atom
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[y (t) = ¢i 1,0) + e1 )¢, 1) + e21¢,1,,)
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)
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Such a beat note is frequently observed in beam-foil spectroscopy
experiments.

Finally we note, and this is the central point, that such an inter-
ference term is predicted by SCT for atoms of both types V and
A.

Let us now consider the same problem as viewed from a QED
perspective. For an atom of the V' type we now calculate a beat note

W) ECOES (O)lwr (1)), (1.4.6)

where E( )(t) and E (+)(t) are proportional to the creation and annihi-
lation operator expressions a}L exp(ivit) and a, exp(—iv,t), respectively.
In view of |yy(t)), as given in Fig. 1.3(a), Eq. (1.4.6) reduces to

K<1v10v2|a.1ra2|0vl 1,,) expli(vi — v2)f] {clc), (1.4.7)

Fig. 1.3

Three-level atomic
structures for (a) V
type and (b) A type
quantum beats.
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where k is a constant. Hence, the beat note calculated via QED is
given by

kexpli(vi — v2)t] {c|c) . (1.4.8)
——

=]

On the other hand for A type atoms we have
(WA()ETOESY 0)lwa (), (1.49)
and taking |wa(t)) from Fig. 1.3(b) this becomes

x'(1,,01,]a] @210y, 1,,) expli(vi — v2)i}(c|b)
= k' exp[i(vy — v2)t] (c|b) . (1.4.10)
N~

=(

Summarizing these QED considerations,

V type atoms :(tpy(t)|E{_)(t)E§+)(t)|wy(t)) =k exp[i(v; — v2)tl,
A type atoms : (pa(t) E\V(OESY (0)lya(e)) =0 (14.11)

whereas in the SCT calculations one finds the beat note amplitude to
be nonvanishing for both V' type and A type atoms.

The following argument based on the quantum theory of measure-
ment provides some physical insight concerning the missing beats. A
V type atom when coherently excited will decay via the emission of
a photon with frequency v; or v,. Since both transitions lead to the
same final atomic state, one cannot determine along which path, v
or v,, the atom decayed. Analogous to Young’s double-slit problem,
this uncertainty in atomic trajectory leads to an interference between
photons with frequencies v; and v,, giving rise to quantum beats. The
complementary nature of which-path information and the appearance
of quantum beats will be discussed in detail in Chapter 19. A coher-
ently excited A type atom will also decay via the emission of a photon
with frequency v; or v,. However, after the emission is long past, an
observation of the atom would now tell us which decay channel (1 or
2) was taken (atom in |c) or |b)). Consequently, we expect no beats in
this case.

The clear conclusion is that a QED calculation is consistent with
our most fundamental notions of quantum theory, while SCT applied
to this problem is not.
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1.5 What is light? — The photon concept

The quantum theory of radiation provides a complete description of
radiation-matter interactions (when supplemented by certain renor-
malization presumptions). It is however tempting to argue that the
conceptual underpinnings of the quantum theory of radiation and the
concept of a photon can be best thought of as involving a classical
electromagnetic field plus the fluctuations associated with vacuum.
However, advances in quantum optics have brought forward new
arguments for quantizing the electromagnetic field, and with them,
deeper insight into the conceptual nature of photons. With such ex-
amples as quantum beat phenomena, the quantum eraser, and certain
two-photon interference phenomena, as discussed later in this book,
it becomes necessary to think of the photon as a quantum mechanical
entity whose basic physics is much deeper than the semiclassical the-
ory plus vacuum fluctuation logic. We also note that there are deep
questions associated with the question of metric in a quantized field
theory, and that, in one of his last papers, Feynman® makes inter-
esting comments connecting the possibility of a deeper understanding
of renormalization theory by combining negative probability concepts
with indefinite-metric physics. Some of these ideas and the extensions
of our conceptual understanding of the photon are the subject of this
concluding section of this chapter.

1.5.1 Vacuum fluctuations and the photon concept

While the formal quantum theory of radiation and quantum elec-
trodynamics has had amazing success in explaining the interaction
of electromagnetic radiation with matter, there are certain conceptual
problems. For example, the various infinities associated with the calcu-
lations of quantities, such as the Lamb shift, the anomalous magnetic
moment.

On the other hand, as we shall see in later chapters of this book,
there are many processes associated with the radiation—matter inter-
action which can be well explained by a semiclassical theory in which
the field is treated classically and the matter is treated quantum me-
chanically. Examples of physical phenomena which can be explained
either totally or largely by semiclassical theory include the photoelec-
tric effect which was first explained semiclassically by Wentzel in 1927.
Stimulated emission, resonance fluorescence, and many other effects

* In: Negative Probabilities in Quantum Mechgnics, ed. B. Hiley and F. Peat (Routledge, London,
1978).
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do not require the full machinery of the quantum theory of radiation
for their explanation; they can rather be explained by a semiclassical
analysis.

In the same spirit, it is interesting to note that the two clouds
on the horizon of physics at the beginning of the twentieth century
both involved electromagnetic radiation. As the reader will no doubt
recall, it was stated that the only two issues that were not com-
pletely understood in physics at that time were the null result of the
Michelson-Morley experiment and the Rayleigh-Jeans catastrophe
associated with black-body radiation. The Michelson—-Morley experi-
ment, of course, led to special relativity, which was the logical capstone
of classical mechanics and electrodynamics, and the Planck solution
to the Rayleigh-Jeans catastrophe was the beginning of quantum
mechanics.

It is, however, interesting and important to realize that neither
of these phenomena involved the concept of a photon. In the first
instance, Einstein was thinking essentially of transformations involving
Maxwell’s equations and in the second instance, Planck was thinking
in terms of quantizing the energies of the oscillators in the walls of
his cavity, not quantizing the radiation field. Up to this point, neither
the quantum theory of radiation nor the ideal concept of the photon
had been conceived.

The first introduction of the photon concept was Einstein’s utiliza-
tion of the idea to explain the photoelectric effect. It 1s again interesting
to note, as we alluded to earlier, that most of the photoelectric ef-
fect can be understood semiclassically. We recall for the reader that
there are three issues associated with the photoelectric effect that any
theory needs to explain. First, when light of frequency v falls on a
photoemissive surface, the energy of the ejected electrons T, obeys the
expression

=0+T, (1.5.1)

where @ is a work function and is a parameter characterizing the par-
ticular material under discussion. Second, the rate of electron ejection
is proportional to the square of the electric field of the incident light.
Third, there is no time delay between the time in which the field begins
falling on the photoactive surface and the instance of photoelectron
emission. The first two of these phenomena can, in contrast to what
we read in most textbooks, be explained fully by simply quantizing
the atoms associated with the photodetector. However, the third point,
namely, the lack of a delay is a bit more subtle. [t may be reasonably
argued that quantum mechanics teaches us that the rate of ejection is
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finite even for small times, i.e., times involving a few optical cycles of
the radiation field. Nevertheless, one may argue that the concept of the
photon is really explicit here in the sense that conservation of energy
is at stake. That is, if we have only a short period of time t elapsing
between the instants that the radiation field begins to interact with
the photoemitting atoms and the emission of the photoelectron, the
amount of energy which has fallen on the surface would be governed
by e9E*At, where A is the cross-section of the incident beam. For
sufficiently short times, the energy which has fallen on the photode-
tector may not exceed ®. This clearly shows that we are not able to
conserve energy if we take a semiclassical point of view. However, the
photon concept in which the ejection of the photoelectron implies that
a photon is annihilated gets around this problem completely. This is
one of the triumphs of the quantum field theory.

In any case, it is a tribute to Einstein’s deep understanding of
physics that he was able to introduce the photon concept from such
limited, and in some ways, misleading information. Having listed some
of the virtues of the semiclassical theory, we now turn to the question
of where it breaks down. In many arguments of this type, one hears
the statement that it is the lack of the back-action of the field on the
atom that is missing in semiclassical theory. This is, of course, not
the case, as this back-action is contained by forcing the theory to be
self-consistent as shown in Fig. 1.4. There we see that the existence
of a field enters into the Schrdodinger equation in such a way as
to induce a dipole in an otherwise unperturbed atom. This dipole
then radiates and is the source of absorption, stimulated emission,
resonance fluorescence, etc. Now, the radiation which is emitted by
the dipole is itself a source of perturbation of the atomic. wave function
(ie., back-action) in a self-consistent analysis, as indicated in Fig. 1.4.
However, the success of the semiclassical theory can only go so far
and we now turn to the problems in which it breaks down and indicate
how these examples can be understood by supplementing semiclassical
theory with fluctuations due to the vacuum.

1.5.2 Vacuum fluctuations

Perhaps the most important example of a situation which is not
covered by the semiclassical theory of Fig. 1.4 is the spontaneous
emission of light. We note that an atom, which is initially in the
excited state, will remain in the excited state since there is no dipole
associated with an atom in any pure quantum state and therefore
the atom never starts radiating. The situation is that of unstable
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Fig. 1.4
Self-consistent
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demonstrating that
an assumed field
E'(ro, t) perturbs the
ith atom according to
the laws of quantum
mechanics and
induces an electric
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are added to yield
the macroscopic
polarization, P(ro,t).
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produced, E.
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equilibrium and the atom remains in the excited state for a long,
potentially infinite, time if there are no fluctuations to get things
started. Furthermore, the Lamb shift is a good example of a physical
situation which is only understood with the introduction of the vacuum
into the problem. As we recall, the Dirac solution of the hydrogen
atom shows a complete degeneracy between the 22S; /2 and the 22Py )
levels of the hydrogen atom. However, when vacuum fluctuations are
included, as in Section 1.3, we see that the Lamb shift is qualitatively
accounted for and conceptually understood. Other phenomena, such
as the Planck distribution of black-body radiation and the linewidth
of the laser, can be understood by such semiclassical plus vacuum
fluctuation arguments.

The general feeling in the early 1970s then, was that vacuum fluctu-
ations play a very important role in our understanding of the photon
concept and that perhaps the best paradigm to apply to such problems
was the notion of a classical field plus a vacuum fluctuation noise or
uncertainty. The discussions of squeezing as a redistribution of this
uncertainty (as discussed in Chapter 2) and other related physical
arguments tend to support this perspective. However, we soon realize
that this concept of a ‘photon”, while useful, is incomplete and we
now turn to a deeper and more compelling argument for quantizing
the radiation field.



24 Quantum theory of radiation

1.5.3 Quantum beats, the quantum eraser, Bell’s theorem,
and more

As we discussed in Section 1.4, the existence of quantum beats in an
upper-state V' type doublet ensemble in contrast to the absence of
quantum beats associated with a lower-doublet in a A type atomic
configuration forms the basis for an alternative argument for quan-
tizing the radiation field which has nothing to do with the previous
vacuum fluctuations. The quantum beat argument provides an exam-
ple of the insufficiency of semiclassical theory plus vacuum fluctuations
to understand the physics of the phenomenon. From this early exam-
ple sprang concepts such as the quantum eraser and the two-photon
correlation interference phenomena. This eventually showed that the
early arguments and statements to the effect ‘photons interfere only
with themselves’ were to be understood only within the context of
Young’s double-slit type experiments, and should not be pushed be-
yond that limit. We here have a great example of the importance of
photon entangled states. Such entangled states are used in optical tests
of Bell’s inequalities and it could therefore be argued that they pro-
vide a deeper insight into the photon concept and indeed all quantum
mechanics. As discussed in the last chapter of this book, we have a
deeper appreciation of the nature of the quantum theory of light as a
result of recent quantum optical studies.

1.5.4 ‘Wave function for photons’

The heading of this section is put in quotes for two reasons. First, it
is the heading of a section in Power’s classic book on QED. Second,
the quotes serve to alert the reader to the fact that there is, strictly
speaking, no such a thing as a ‘photon wave function’.

For example, Power and also Kramers make the point that one may
not think™ of the ‘photon’ in the same sense as a massive (nonrelativis-
tic) particle. On the other hand, some physicists argue that a single
photon in free space is analogous to the meson if we let the meson
mass go to zero. It is therefore interesting to consider the evidence and
arguments for and against the concept of a ‘photon wave function’.

The ‘wave—particle duality’ of light was the philosophical notion
which led De Broglie to suggest that electrons might display wave-
like behavior. However from the perspective of modern quantum
optics, the wave mechanical, Maxwell-Schrodinger, treatment makes
a clear distinction between light and matter waves. The interference

* See also Bialynicki-Birula [1994].
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and diffraction of matter waves are the essence of quantum mechanics.
However the corresponding behavior in light is described by the
classical Maxwell equations.

But the question naturally rises: can we think of the electric field
of light as a kind of ‘wave function for the photon’? Specifically in
his book on quantum mechanics Kramers asks in the section entitled
‘The Photon Wave Function: Motivation and Definition’,

How far and how exactly can one consistently compare the
radiation field with an ensemble of independent particles?
When in 1924 De Broglie suggested that material particles
should show wave phenomena ... such a comparison was of
great heuristic importance. Now that wave mechanics has
become a consistent formalism one could ask whether it is
possible to consider the Maxwell equations to be a kind of
Schrodinger equation for light particles, instead of considering
them, as we have done up to now, to be classical equations of
motion which formally look like a wave equation, and which
are quantized only later on; or are both ideas equivalent?

At the end of the section Kramers answers the question as follows:

The answer to the question put at the beginning of this section
is thus that one can not speak of particles in a radiation field in
the same sense as in the (non-relativistic) quantum mechanics
of systems of point particles.

Kramers’ reason for this conclusion is the same as that clearly
stated by Power who says (in Section 5.1 entitled “‘Wave Function For
Photons’)

Thus it is natural to ask what are the ¢’s for photons? Strictly
speaking there are no such wave functions! One may not
speak of particles in a radiation field in the same sense as in
the elementary quantum mechanics of systems of particles as
used in the last chapter. The reason is that the wave equation
.. solutions of Schrodinger’s time-dependent wave function
corresponding to an energy E; have a circular frequency
w; = +E,;/h, while the monochromatic solutions of the wave
equation have both +w;. The E and B fields satisfying the
Maxwell equations in free space, and therefore satisfying the
wave equation too, are real and are not eigenfunctions of
iho/dt. A Schrodinger wave of given energy must be complex.

That is, the real electric wave (Eq. (1.1.27)) has both exp(—ivxt) and
exp(ivkt) parts while the matter wave has only exp(—iv,t) type terms.
We shall return to this point later, but let us first recall the arguments
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of Bohm in his classic Quantum Theory book on the subject. On page
98 he notes that

The probability that an electron can be found with position
between x and x + dx is

P(x) = v (x)p(x)dx.
He then compares this with the situation for light and goes on to say:

There is, strictly speaking, no function that represents the
probability of finding a light quantum at a given point. If we
choose a region large compared with a wavelength, we obtain
approximately

&% (x) + H*(x)
8mhv(x)
but if this region is defined too well, v(x) has no meaning.

P(x) =

Later on Bohm makes the statement that for matter

There is a probability current

h
= — (v Ay — PAY"
S 2ml.(w y—ypAy’)

which satisfies the relation

0P .
—(3_? + divS = 0,

but he notes that
There is no corresponding quantity for light.

We agree with the conclusion of Kramers and Bohm, namely that
the concept of a photon wave function must be used with care and
can be very misleading. However as we shall see, each of the above
objections to the concept can be overcome.

We begin by noting that, from the perspective of a semiclassical
theory, we are dealing with a wave description of the (classical) ra-
diation, and (quantum) matter systems. Only when we proceed to
quantize the radiation field are the radiation—-matter equations treated
on the same footing. In this fully quantized theory, it is instructive to
consider matter from a second quantized vantage. Recall the quan-
tization procedure of Section 1.1 in which we replaced the Fourier
amplitudes of the field by operators. Consider the classical complex
field E(r,t) for polarized light. Since the light is polarized, we can
ignore the vector character of the field. In passing from the classical
to the quantum description of the field we replace the coefficients of
the field eigenfunctions, Uk(r), by operators, i.e.,
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E(rt) = Srone ™ Uk(r), (15.2)
k
where ax are classical field amplitudes, is replaced by
ED(rt) = srae ™ Ui(r), (1.5.3)
k

where ax are quantum field operators.

Now, a corresponding quantization procedure can be, and is, applied
to matter. For example, the wave function of a massive system (atom,
electron, meson, etc.) is described by the superposition of states

p(rt) =Y cpe " y(r), (1.5.4)
p

where v, = E,/h and ¢p is the probability amplitude for a particle
being in state ¢p(r), €.g., for a particle of momentum p we have

Pp(r) = —l—e""'f. (1.5.5)
Nz
The (second) quantization procedure now is to turn each probability
amplitude ¢, into an annihilation operator ¢, obeying Fermi-Dirac
or Bose—FEinstein commutation relations, etc. In such a case, the wave
function becomes an operator

D(rt) = Zpe "' Pp(r), (1.5.6)
p

which annihilates a particle at r and the state of the system is described
by a state vector |p). At this level both the matter and photons are
described by quantized fields and the state of the photon and/or meson
field is described by a state vector |p). The logic of semiclassical and
fully second quantized treatments of the radiation—matter system is
summarized in Fig. 1.5.

Notice that the terminology ‘second’ quantization is appropriate for
the matter field, since we are introducing operators for the second
time; ie., we first set p, — (A/i)d/0x, etc., and second we replace
probability amplitudes by operators cy(t) — ¢p(r). However, this does
not appear to be the case for the photon since % appears only once.
In this sense, the quantization of the radiation field can be argued to
be a ‘first’ quantization procedure.

We now turn the picture around and pretend that we first learn of
photons and mesons, etc., from a fully quantized field perspective. The
particle wave function is obtained from the state vector by taking the
inner product between the position eigenstate |r) and the state vector

(1))
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Light Matter

E(r,t) w(r,t)
Semiclassical 02E = —poP P(r,t) = "%’H%’U(r,t)

Maxwell Schrédinger
9r) = = Hy o) [Ym) = =3 Hon i)
Quantum field Er,f) =Y ax®Uk(r) h(r, ) =) épt)gp(r)
k P
Dirac Schwinger

Y(r,t) = (rjy(2)). (1.5.7)
We recall that the state |r) can be written as
r) = (r)0), (1.5.8)
that is, the creation operator
(1.5.9)

EUUED P
p

acting on the vacuum creates a particle at r. So from Egs. (1.5.7) and
(1.5.8), we have the usual result for the matter wave function

W(r, 1) = (O[p(r)lw(z)).

Now it is natural to ask: can we write something like Eq. (1.5.7) for
the photon? The answer is, strictly speaking, ‘no’; because there is no
r) state for the photon. :

With that in mind, let us push on and ask the operational question:
what is the probability that a single-photon state of the radiation field,
that is

(1.5.10)

W) = cm®l{n}),
{n}
where {n} stands for the set of states with one (and only one) photon
in each mode k, will lead to the ejection of a photoelectron by a
detector (atom) placed at point r?

For example, the state Eq. (1.5.11) might be produced by an excited
atom decaying to a ground state, an example we will return to later. In
any case, we have in mind a wave packet representing a single photon
propagating through space and the probability amplitudes c(,, contain

(1.5.11)

Fig. 1.5
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radiation and matter
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Maxwell and
Schrodinger
equations. Both fields
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behavior but &
appears only in the
matter equation.
Applying the full
quantum field theory
of, e.g., Dirac and
Schwinger, the
radiation and matter
are treated on the
same footing.
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the information normally associated with the Fourier coefficients for
the single-photon pulse.

Now, as we will discuss in Section 4.2, the probability of exciting
an atom (a detector atom) at r is governed by

Py(r,1) oc (| ET () EV(r, 0)l), (1.5.12)
where the annihilation operator E®(r, t) is given by
E™)(r, t) = Z Exaxe ™ Ux(r), (1.5.13)
k

and the creation operator EC)(r, ) is just the adjoint of Eq. (1.5.13).
We insert a sum over a complete set of states, 3, [{n'}){{n'}| =1 in
Eq. (1.5.12) and write

Py(rt) oc Y (WIED®O{W N HNED (nly).  (1.5.14)
{n}
But since there is only one photon in y and E™)(r,t) annihilates it,

only the vacuum term |0) (0| will contribute to Eq. (1.5.14). Hence we
have

Py(r,t) oc (| EC(r, £)[0)(O|EP(x, 1)), (1.5.15)
and we are therefore led to define the ‘electric field’ associated with
the single photon state |yp,) as

Ws(r, 1) = (OED(r, 1)lpy). (1.5.16)

Now for the state |p,) prepared by atomic decay, Eq. (6.3.24), we
find

W(r,t) = -‘5;—"@) (- o) enteratenit, (1.5.17)

where & is a constant, r is the distance from the atom to the detector,
®(x) is the usual step function and I" is the atomic decay rate. We
note that the wave packet (1.5.17) is sharply peaked about the atomic
transition frequency w. This will be the case in all the packets we
consider in this section.

Let us write Eq. (1.5.16) more explicitly using the positive fre-
quency part in Eq. (1.1.32) for the electric field annihilation operator,
that 1s

¥(r, 1) = (O[E™(x,1)lyp,)

A hv —'v i :
= (03 &0 5 praie ™ ) (1.5.18)
k,A

As discussed in the previous paragraph, the field is sharply peaked
about the frequency @ so that we may replace the slowly varying




30 Quantum theory of radiation

frequency v, as it appears in the square-root factor by w and write

‘I’g(r,t)z,/ ey mz*“ kT ) (1.5.19)

Comparing (1.5.19) with the wave function (1.5.4) we are led to define
the photodetection probability amplitude as
—ivgt+ikr

@y(r, t) = ZA(A Ojak17|wy>, (1.5.20)

which is to say

We(r,t) =4/ ge—a;(py(r, t). (1.5.21)

We may write an equation of motion for ¢,(r, t) by using Maxwell’s
equations, which couple together the electric field (1.5.16) with the
magnetic field

¥ (1, 1) = (O HP(r, 1), ), (1.5.22)

where HH(r, 1) is the positive frequency part of the magnetic field
operator (1.1.33), which we here write in the form

k h
H*(r,1) = Z - 2 2Vk o e
kA Ho

—ivg t+ik-r
vV

Using Eqgs. (1.5.22) and (1.5.23) and proceeding as in the case of
We(r, t) we find

how R e —ivit+iker
Yor(nt) =1 /5 OJZ g <A

how
= [ , 152

Now we may write Maxwell’s equations (1.1.1) in terms of ¢, (Eq.
(1.5.21)) and 7, (Eq. (1.5.24)) as

(1.5.23)

10¢
V X x.y = 'C- ?tz, (1.5.253)
10y
Vg, =———1, (1.5.25b)
V-z,=0, (1.5.25¢)
Vg, =0 (1.5.25d)

We proceed to express Egs. (1.5.25a-1.5.25d) in an aesthetically pleasing
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matrix form by writing ¢ and y as 1 x 3 column matrices

Ox Ax
‘p'y = Qoy s l’y = Xy (1526)
@ Az

in terms of which, see Problem 1.7, Maxwell’s equations (1.5.25a-
1.5.25d) may be written as

inl ["’v] | Y “’S’P] l‘”v], (1.5.27a)
ot [ 2, cS'p 0 %
and
V- [%] =0, (1.5.27b)
X

where sy, s,, and s, are the 3 x 3 matrices given in Problem 1.7, and
p is the usual momentum operator (%/i)V.

It is interesting to compare Maxwell’s equations in the form (1.5.27a,
1.5.27b) to the Dirac equations® for the neutrino

o (P O cop||o
s []-[.2, Pl [o]. (1525

where the two-component spinors ¢, and g, make up the Dirac wave
function for the neutrino

v, = l‘::] . (1.5.29)

With equations of motion (1.5.27a,1.5.27b) in hand we easily derive
the equation of continuity

d
E‘I’I‘l‘y =-V-j, (1.5.30)
where
v, = l"’v] , (1.5.31)
zy

and the current density j is found, see Problem 1.8, to be

j=Yivy, (1.5.32)

* The correspondence between the Maxwell and Dirac equations is well known. See, for example,
Bialynicki-Birula, [1994].
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Photon Neutrino
Quantum - i . i
field theory ¥} = _'ﬁH’r l+) |ton) = _‘fl'Hn {10n)
\Il,r = ¢'y ] \Ilfl — ¢r]]
“Wave” X‘Y Xr]
mechanics i __i[ 0 =-—e-p o g —_L] 0 —copiy
T hles-p 0 ”’ " Rleo-p 0 n
’@ n(r) /@ V(r)
Classical limit: Ray optics Classical mechanics
Eikonal physics
6/nds=0 6/Ldt=0
Fermat’s principle Hamilton’s principle

with the ‘velocity’ operator given by

v=c [0 M
s O
The comparison between ¥, and ¥, is summarized in Fig. 1.6.
While it is amusing to note the similarities between the photon
and the neutrino equations of motion, important and basic differences
must be noted. For example, if we consider the electronic cousin to

(1.5.28) in the nonrelativistic limit we have, for example, a plane wave
relation of the form

(1.5.33)

ei(kzz—-mkt),

@electron(T, 1) = \/V
where k; = p,/h and wy = p?/2mh. Now to give the electron a
momentum kick in the X-direction we need only apply the boost
operation exp(ik,x) where now x = J/0k,. Thus the new momentum
is given by

(1.5.34)

k = 8,ky + &:k;. (1.5.35)

But now consider the same sort of operation applied to (1.5.20).
That is if we initially write ¢(r,t) for a plane wave propagating in the
z-direction with polarization in the X-direction, that is

I(kz Z—Wy I)
NI

and we then apply a boost operation as before, we might think we

o(r, t) = €, (1536)

Fig. 1.6

A symmetric
description for a
photon and a
neutrino. In the
classical limit (Last
row), light is
described by ray
optics whereas
matter is described
by the analogous
classical Hamilton’s
principle. The
quantum field
theoretical
description of a
photon and a
neutrino in the first
row is also quite
symmetric. The
‘wave’ mechanics row
indicates the
equations of motion
for W,(r,t) and
Y, (r,t).
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could write the new function

ei(k,z+kxx——a)z)

But now the Maxwell equation (1.5.27b) is no longer satisfied

0 ei(kzz+kxx—a)t)

This is just one example of how the photon ‘wave function’ is different
from that of a nonrelativistic massive particle, and a ‘photon-as-a-
particle’ picture can be misleading.

As another, even more dramatic example, we turn to the question of
two-photon events. Specifically we have in mind two photon emission
and detection as in Fig. 1.7. As discussed in detail in Chapter 4, the
probability of two photoelectrons being counted at detectors D; and
D, is governed by the two-photon correlation function. To that end,
we calculate the two-photon correlation function

G(ry, 1112, 12)

= (W|E)(r1, t1)ET) (02, 12) EP(rg, 22) EF)(ry, 11) ), (1.5.39)

corresponding to two detectors at points r; and r, and where the
interaction with the photon field, described by [y), is switched on at
times t; and t,, respectively as in Fig. 1.7.

We note that for the radiation from a single atom only two photons
are involved so that

(WIEES ESVElw)=) (wlEES 1{n}) ({n} E5VETw)
{n}
=(w|E{ES 10001 ESYE{P ), (1.5.40)

and therefore it is the two-photon detection amplitude

lP(z)(n, t1;r,t) = <0|E(+)(r2, tz)E(+)(l'1, t1)|1p> (1.5.41)

which we must now consider.

First consider the case in which the atomic decay rates from level
la) to level |b), y4, and from level |b) to level |c), s, are such that
Ya > Vb, that is the atom decays very quickly to level |b) and then
after some time decays to level |c). In such a case we find, see Section
214.1, that
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1'2, t2 r]’ tl

IP(2)(1'13 tl 5T, t2)

= Wul(ry, t1)¥p(r2, £2) + Wp(ry, t1)¥o(ra, £2), (1.5.42)
where
(9@ ) Ari —%Va (ti—ézri) —l(Dab( )
W, (r, t;) = Ar,® (t, . ) e e (1.5.43a)
and

W(rts) = @ (t, - ﬁ) e (h= ) gmione(n=2) | (1.5.43b)

in which i = 1,2, wy and wp. are the atomic frequencies for the
|a) — |b) and |b) — |c) transitions, Ar; is the distance from the
atom to the ith detector and &, and &) are uninteresting constants.
The immediate comparison between Egs. (1.5.43a) and (1.5.43b) and
the single photoelectron detection amplitude (1.5.17) is apparent. We
clearly have here a Bose-Einstein expression of the type we might
write for two helium atoms.

But things are very different when we make the simple change to
the case y, > 7, That is when the atoms which decay at some time
to level |b) rapidly decay to level |c). Then Section 21.4.1, we find a
two-photon detection amplitude of the form

YO (ry, 15125 12)

7K . Arq Arq
- AT]Arz ¢Xp l:_(lwac + ya) (tl - T)} C (tl - T)
X exp {—(iwbc + 7b) [(tz — %) — (tl — é})] }
X l(tz — %'2) — (t1 Azl))] +(1 & 2). (1.5.44)

Fig. 1.7

Three-level atom
located at r decays
from |a) — |b) with
rate y, and [b) — |c)
with rate y,.
Detectors D; and D,
atr; and r; are
switched on at times
t; and t;.
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The message is clear. When y, > 7, we have essentially independent
photons emitted. But when y, < y, the two events are strongly
correlated and the ‘photon-as-a-particle’ picture is very misleading,

In conclusion, we can say that while we have perhaps overcome
the main objection of Kramers (the probability amplitude (O|E|yp) ~
¢! only) and partially overcome that of Bohm (photodetection
events are indeed localized™ to distances smaller than the wavelength),
naively visualizing ¢(r,t) as a literal particle-like wave function can be
misleading. “Photon” physics is very different from that of Schrodinger
particles. '

The proper operational “photon” philosophy is well summarized
by Willis Lamb who says:

What do we do next? We can, and should, use the Quantum
Theory of Radiation. Fermi showed how to do this for the
case of Lippmann fringes. The idea is simple, but the details
are somewhat messy. A good notation and lots of practice
makes it easier. Begin by deciding how much of the universe
needs to be brought into the discussion. Decide what normal
modes are needed for an adequate treatment. Decide how to
model the light sources and work out how they drive the
system.

This is what we will be doing in the next 20 chapters.

1.A Equivalence between a many-particle Bose gas
and a set of quantized harmonic oscillators

In Section 1.1 we quantized the radiation field by associating each
mode of the field with a quantized simple harmonic oscillator. This
procedure led to the introduction of the Fock or number state of
the field containing, for each oscillator, n photons and the associated
operators a and a’ which annihilate and create photons, respectively. In
this section, we argue that a set of harmonic oscillators is dynamically
equivalent to a many-particle Bose gas.

Consider a Bose gas of N particles inside a volume V. The N-
particle wave function can be written by symmetrizing the product of

* We note however that the localization of the photon (as opposed to the localizability of the
photon-detection probability amplitude) is qualitatively different from the localization of a
massive particle e.g,, an electron, For an electron it is possible to ‘fit’ the electron into a small box
greater than or equal to the. Compton wavelength. For the photon, however, it is not possible
to ‘fit’ or ‘force’ the photon into a box smaller than its wavelength. See Deutsch and Garrison
[1991].
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the single-particle wave functions ys(r):

N Np 'nq Noong! 12
lPn|,,nq,...,n|‘,...(r1’ r,... I'N) = l N! }

Wp(rl)ll’p(m) oo Wp(rn,)

XWq(rnPH )Wq(rn,.+2) ces 1Pq(l'nl.+n.,)
XY (1.A.1)

P XWk(ra+1 )Wk(ra+2) voo tpk(ro+m‘)

where P denotes the permutation on N objects. The integers ng (s =
P:q,..-,k,...) are the occupation numbers of the single-particle wave
functions g(r;) such that

> ng=N, (1.A.2)

and ng can take the values 0,1,2,..., N. The single-particle wave func-
tion for a free particle is given by

1

r) = ——e*". 1LA3
Ps(r) \/V ( )
Here #s is the momentum of the particle.
Let the N particles interact with each other via a potential
N
V=) o). (1.A.4)
j=1

A particle in the state ypy(rj) can go to the state yy(r;) by interact-
ing with the potential. The transition amplitude for this process is
proportional to

oy = [ (el ). (1AS)

As an example, if a free particle with momentum #k scatters with a
phonon wave with wave vector k, ie,

o(r;) = ve™ ™, (1.A.6)
to a state with momentum #p, we have

vkp = Uod(p + k — k). (1.A.7)

We now consider the many-particle analysis of the problem.
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Before considering the general case of a Bose gas of N particles
inside a volume V, we will consider the simple case of a three-boson
system. The wave function for a three-particle system initially having
np, = 2,n, = 1 is given by

V2 a1 D2, 13) = \% [0y () wp(r2)pu(r3)
+p(r3)yp(r)yi(r2)
+wp(r2)wp(r3)yk(r1)]. (LA)

An interaction between the particles via a potential (Eq. (1.A.4)) with
N =3 transforms one particle in state p to state k, ie,,

1
Wi 1 m=2(T1, 12, T3) = A [wp(r1 )y (r2)wk(rs)

+p(r3 )i (ri i (r2)
+yp(r2)wi(rs)yk(r)]. (1.A9)

The three-particle matrix element for the process is then

ﬂ3=///dl‘1dl‘2dl‘31p2:=1,nk=2(rl,rz,r3)
3

X U(ri)w3,=2,nk=1 (r]a r,r; ) (lA 10)

i=1

Now each particle in the sum 37, v(r;) contributes equally so that we
may simply choose a particle, say particle 1, and replace Z;l by the
factor 3. Then we have

My =3 / / f drldrzdr%[wi(rz)w;(u)+w.‘;(r3)w;.(rz)]

) 1
Xy (ryJo(ry )wl)(rl)ﬁ [wi(r2)wp(r3) + Yi(rs)wp(r2)].
(1.A.11)

If we multiply and divide by /2 each of the expressions in square
brackets and use the definition of ‘P5p=1’nk=](r2, r;) from Eq. (1.A.1),
we obtain

My= 3 / dr (e ol wp(r)

X //dl'zdhl‘l’i:l,n,‘:l(rz, l'3)|2. (1.A.12)
Since the two-particle wave function is normalized we have
M3 =22 v, (1.A.13)

where vy, is defined by Eq. (1.A.5).
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Consider next the same process for scattering a single particle from
the initial state (Eq. (1.A.1)) via the interaction (Eq. (1.A4)) to the
final state

(np — Dng!...(mg, +1!.. 1/2
lPN—ln.. e (ri,r,..., IN)= P L N! ki

[ Pp(r)pp(r2). .. PYp(rn,—1)
XPq(Tn, Jq(Fny+1) - - - Wq(Tnytne—1)

XY : . (1.A.14)

P XWk(ra)wk(ra+1) cee 1pk(rcr—i-nk)

Now, as in the three-particle case, we want to evaluate the matrix
element

=%’N=/ /dn drN —1nq 1. (T, TN)
X > o) e e (F1,e TN (1.A.15)
J

Again, as in the three-particle case, we recognize that all permutations
are identical and replace Zfil v(r;) by Nuv(r;). Equation (1.A.15) can
then be rewritten in terms of (N — 1)-particle wave functions as

g +1
ﬂN=/.../dl'1...dl'N kN wk( I)Tan—lln nkw(l'z,...,l'N)

XNU(rl) th(rl) np—l Agsershes (1'2, s IN)

= / dru/ nk;]‘ w;(rl)NU(rl)WP(rl)\/%. (1.A.16)

Thus we see that the multi-particle character of the problem is
contained in the /e and Jnk + 1 factors, associated with the removal
(annihilation) of a particle in state y, and addition (creation) of a
particle in state yy.

It is natural (and much easier!) to introduce a multi-particle state
vector

[y g -5 ks ), (1.A.17)

and operators which transform state vectors into one another by
changing the numbers of particles in the various states. To this end,
we introduce annihilation (or destruction or absorption) operators for
our boson system as

ap|np, ng, ..., Nk, ...) = \/ﬁ;InP —Lng,...,M...), (1.A.18)
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and the corresponding creation operators
a;r,|np,nq,...,nk,...) =/np+1np+ Lng,...,ng,...). (1A19)
From the definitions it is clear that we have the commutation relations
1 =
[ap, ay] = Opy, (1.A.20)
and
[ap, ay] = [a],al] =0, (1.A.21)

as is apparent from the action of such ordered operations on the state
vectors. In order to regain the results of our matrix element calculation
we are thus led to introduce the interaction Hamiltonian

V=) al, an (1.A.22)
kp

and the free particle Hamiltonian
P’ 1
H=> - (1.A.23)
P

To summarize: the physics is in the occupancy of the number
states where information is contained in the states |np) and the matrix
elements vy, = [dryg (r)u(r)yy(r). That is, we never have to worry
about complicated combinations, the operator formalism takes care
of all that in a very neat way.

The main point of this section, however, is not the convenience of
the operator approach but rather the deep connection between many-
boson quantum mechanics and that of quantized harmonic oscillators.
In the words of Dirac

The dynamical system consisting of an ensemble of similar
bosons is equivalent to the dynamical system consisting of
a set of oscillators — the two systems are just the same sys-
tem looked at from two different points of view. There is
one oscillator associated with each independent boson state.
We have here one of the most fundamental results of quan-
tum mechanics, which enables a unification of the wave and
corpuscular theories of light.

However, as compelling as the ‘boson’ < ‘oscillator set’ comparison
is, there are fundamental differences. For example, in the oscillator
problem we end up with a vacuum fluctuation contribution that does
not appear in the boson collection argument. In Section 1.3 we used
this vacuum state of the electromagnetic field to obtain the Lamb
shift.
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Problems

1.1

1.2

1.3

14

The radiation field in an empty cubic cavity of side L satisfies
the wave equation

10%A
2 —_——— =
VA c? 02 0,
together with the Coulomb gauge condition V- A = 0. Show
that the solution that satisfies the boundary conditions has

components

Ax(r,t) = Ax(t) cos(kyx) sin(k, y) sin(k,z),

Ay(r,t) = A, (t) sin(k.x) cos(k,y) sin(k;z),

A (r,t) = A;(t)sin(kyx) sin(k,y) cos(k,z),
where A(t) is independent of position and the wave vector k
has components given by Eq. (1.1.21). Hence show that the

integers ny,n,,n; in Eq. (1.1.21) are restricted in that only one
of them can be zero at a time.

If A and B are two noncommuting operators that satisfy the
conditions

[[4, B], 4] = [[A4, B], B] = 0,
then show that
eATB — e-;-‘z[A,B] ! eB,
= ¢T3[4B]pB oA

This is a special case of the so-called Baker—Hausdorff theo-
rem of group theory.

If A and B are two noncommuting operators and « is a
parameter, then show that

2
e~ Be* — B —o[A, B] + %[A, [4,B]] +...

If f(a,a’) is a function which can be expanded in a power
series of a and a', then show that

(@) [a f(a.a"] = 3k,
(b) [aT’ f(a» aT)] = _%55
(©) e‘““f“f(a, a’r)eaa‘fa = f(ae*, a}‘e—oc)’

where « is a parameter.
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1.5

1.6

1.7

Show that

_nat - —oal
[a, e uaa]=(e a_l)e aaaa’

—aat —aat
[a'f"e oa a]=(eoz_1)e aa aa’t’
where « is a parameter.

Show that the free-field Hamiltonian

H =hv (a*a—!— %)

can be written in terms of the number states as
H = Enn)nl,
n

and hence

ei%’t/h — ZeiE,,l/h|n><n].
n

Show that Maxwell’s equations in free space may be written
in the form of Eqgs. (1.5.27a) and (1.5.27b) by first showing
that

c Ot
_1?E= E, V-H=0,
c Ot

where E = /6o E and H = JHo H. Then prove that

s-VV=VxV,

[0 0 0 ] 0 0 1
Ss=10 0 =11, s}={0 0 0],
|0 1 0 | -1 0 0

[0 —1 0]
s;=1|1 0 O0f,
0 0 0]

where s and V on the left-hand side are regarded as 1 x 3
column vectors. Use this identity to obtain Egs. (1.5.27a) and
(1.5.27b).
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1.8 Derive the current density (1.5.32) by writing the equations of
motion for ¢, and g, in the form
¢, =cs-Vy,
b= —cs-Vo, @ = cvgl s,
1 =—cVe! s,
and noting that st = —s,
1.9 Verify that ), &e; = 1 by taking the dot product with any

vector v. Thus if & = 2—*{(1), & = éf), and €; = k/k we have

equation (1.1.36). It is also possible to prove (1.1.37) by letting
k, 8, ¢ be the polar coordinates of the wave vector k, so that

k = k(sin 0 cos ¢, sin 6 sin ¢, cos 6).

The two transverse polarization vectors can then be repre-
sented by

@E(I) = (sin ¢, —cos ¢, 0),
&% = (cos 0 cos ¢, cos 0 sin ¢, —sin 0),
and it can be verified that

M, 2.0 _ kik
G;u’ €k T € € = 0ij — 2

where i, j represent the Cartesian components. Demonstrate
this by direct substitution.



References and bibliography 43

References and bibliography

Quantization of the radiation field

P. A. M. Dirac, Proc. Roy. Soc. A 114, 243 (1927).
E. Fermi Rev. Mod. Phys. 4, 87 (1932).

Some useful books dealing with the quantum theory of radiation and quantum
optics

W. Heitler, The Quantum Theory of Radiation, (Oxford University Press, New
York 1954),

H. A. Kramers, Quantum Mechanics, (North-Holland, Amsterdam 1958).

E. A. Power, Introductory Quantum Electrodynamics, (Longman, London 1964).

J. R. Klauder and E. C. G. Sudarshan, Fundamentals of Quantum Optics, (W.
A. Benjamin, New York 1970).

J. Périna, Coherence of Light, (Van Nostrand, London 1972).

F. Haake, Statistical Treatment of Open Systems by Generalised Master Equa-
tions, (Springer Tracts in Modern Physics, Vol. 66), (Springer-Verlag, Berlin
1973).

R. Loudon, The Quantum Theory of Light, (Oxford University Press, New
York 1973).

W. H. Louisell, Quantum Statistical Properties of Radiation, (John Wiley, New
York 1973).

G. S. Agarwal, Quantum Statistical Theories of Spontaneous Emission, (Springer
Tracts in Modern Physics, Vol. 70), (Springer-Verlag, Berlin 1974).

H. M. Nussenzveig, Introduction to Quantum Optics, (Gordon and Breach,
New York 1974).

L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms, (John
Wiley, New York 1975).

I. Bialynicki-Birula and Z. Bialynicka-Birula, Quantum Electrodynamics, (Perg-
amon Press, Oxford 1976).

M. Sargent III, M. O. Scully, and W. E. Lamb, Jr., Laser Physics, (Addison-
Wesley, Mass. 1974).

C. Itzykson and J. B. Zuber, Quantum Field Theory, (McGraw Hill, New York
1980).

H. Haken, Light, Vols. I and II, (North-Holland, Amsterdam 1981).

P. L. Knight and L. Allen, Concepts of Quantum Optics, (Pergamon Press,
Oxford 1983).

J. Périna, Quantum Statistics of Linear and Nonlinear Optical Phenomena, (D.
Reidel, Dordrecht 1984).

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms,
Introduction to Quantum Electrodynamics, (Wiley, New York 1989).

P. Meystre and M. Sargent 111, Elements of Quantum Optics, (Springer-Verlag,
Berlin 1990).

B. W. Shore, The Theory of Coherent Atomic Excitation, Vols. 1 and 2, (John
Wiley, New York 1990).

C. W. Gardiner, Quantum Noise, (Springer-Verlag, Berlin 1991).



44 Quantum theory of radiation

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Atom—Photon Interac-
tions, (Wiley, New York 1992).

H. Carmichael, An Open Systems Approach to Quantum Optics, (Springer-
Verlag, Berlin 1993).

P. W. Milonni, The Quantum Vacuum: An Introduction to Quantum Electrody-
namics, (Academic, New York 1994).

W. Vogel and D.-G. Welsch, Lectures on Quantum Optics, (Akademie Verlag,
Berlin 1994).

J. Périna, Z. Hradil, and B. Jurco, Quantum Optics and Fundamentals of Physics,
(Kluwer, Dordrecht 1994).

D. F. Walls and G. J. Milburn, Quantum Optics, (Springer-Verlag, Berlin 1994).

L. Mandel and E. Wolf, Optical Coherence and Quantum Optics, (Cambridge,
London 1995).

S. Weinberg, Theory of Quantum Fields, (Cambridge, London 1995).

E. R. Pike and S. Sarkar, Quantum Theory of Radiation, (Cambridge, London
1995).

U. Leonhardt, Measuring the Quantum State of Light, (Cambridge, London
1997).

Lamb shift

W. E. Lamb, Jr. and R. C. Retherford, Phys. Rev. 72, 241 (1947).

H. Bethe, Phys. Rev. 72, 339 (1947).

T. A. Welton, Phys. Rev. 74, 1157 (1948). We have followed the simple, though
not rigorous, approach of this paper to calculate the Lamb shift.

N. H. Kroll and W. E. Lamb, Jr., Phys. Rev. 75, 388 (1949).

J. B. French and V. F. Weisskopf, Phys. Rev. 75, 1240 (1949).

F. Dyson’s letter, in W, E. Lamb, Jr., A Festschrift on the Occasion of his 65th
Birthday, ed. D. ter Haar and M. O. Scully (North-Holland, Amsterdam
1978), p. XXXVI.

E. A. Hildum, U. Boest, D. H. Mclntyre, R. G. Beausoleil, and T. W. Hénsch,
Phys. Rev. Lett. 56, 576 (1986). This paper reports the first precise measure-
ment of the 1S—-2S energy interval in atomic hydrogen.

Quantum beats

A. Corney and G. W, Series, Proc. Phys. Soc. 83, 207 (1964).

W. W. Chow, M. O. Scully, and J. O. Stoner, Jr., Phys. Rev. A 11, 1380 (1975).

R. M. Herman, H. Groth, R. Kornblith, and J. H. Eberly, Phys. Rev. A 11,
1389 (1975).

I. C. Khoo and J. H. Eberly, Phys. Rev. A 14, 2174 (1976).

E. T. Jaynes, in Foundations of Radiation Theory and Quantum Electrodynamics,
ed. A. O. Barut (Plenum, New York 1980).

M. O. Scully, in Foundations of Radiation Theory and Quantum Electrodynam-
ics, ed. A. O. Barut (Plenum, New York 1980).

S. Svanberg, Atomic and Molecular Spectroscopy, (Springer-Verlag, Berlin,
1991).



References and bibliography

45

Localizability of photons and electrons and the photon wave function

T. D. Newton and E. P. Wigner, Rev. Mod. Phys. 21, 400 (1949).
L. Mandel, Phys. Rev. 144, 1071 (1961).

J. M. Jauch and C. Piron, Helv. Phys. Acta 40, 559 (1967).

W. O. Amrein, Helv. Phys. Acta 42, 149 (1969).

R. J. Cook, Phys. Rev. A 25, 2164 (1982); ibid 26, 2754 (1982).
E. R. Pike and S. Sarkar, Phys. Rev. A 35, 926 (1987).

I. H. Deutsch and J. C. Garrison Phys. Rev. 43, 2498 (1991).

1. Bialynicki-Birula, Acta Phys. Polonica A 86, 97 (1994).

W. E. Lamb, Jr., Appl. Phys. B 60, 77 (1995).



