Quantum State Reconstruction of the Single-Photon Fock State

Zayneb El Omari El Alaoui

EPFL

October 17,2024

Introduction

- \blacktriangleright measurement of the complete Wigner function of the single-photon state $|1\rangle$
- method : homodyne tomography

VOLUME 87, NUMBER 5

PHYSICAL REVIEW LETTERS

30 July 2001

Quantum State Reconstruction of the Single-Photon Fock State

A.I. Lvovsky,* H. Hansen, T. Aichele, O. Benson, J. Mlynek,† and S. Schiller[‡]

Fachbereich Physik, Universität Konstanz, D-78457 Konstanz, Germany
(Received 14 March 2001; published 11 July 2001)

We have reconstructed the quantum state of optical pulses containing single photons using the method of phase-randomized pulsed optical homodyne tomography. The single-photon Fock state [1] was prepared using conditional measurements on photon pairs born in the process of parametric down-conversion. A probability distribution of the phase-averaged electric field amplitudes with a strongly non-Gaussian shape is obtained with the total detection efficiency of (55 ± 19%. The angle-averaged Wigner function reconstructed from this distribution shows a strong dip reaching classically impossible negative values around the origin of the phase space.

DOI: 10.1103/PhysRevLett.87.050402

PACS numbers: 03.65.Wj, 42.50.Dv

Optical Quadratures

definition :

$$\hat{X}_1 = rac{1}{2}(\hat{a} + \hat{a}^{\dagger}) \qquad [\hat{X}_1, \hat{X}_2] = rac{i}{2} \ \hat{X}_2 = rac{1}{2i}(\hat{a} - \hat{a}^{\dagger})$$

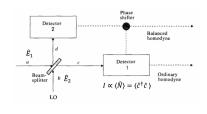
or more generally :

$$\hat{X}_{arphi} = \hat{a} \mathrm{e}^{i arphi} + \hat{a}^{\dagger} \mathrm{e}^{-i arphi} \qquad [\hat{X}_{arphi}, \hat{X}_{arphi + \frac{\pi}{2}}] = 2i$$

Balanced Homodyne detection

- 50:50 beam splitter
- ightharpoonup mode $\hat{b}: |\beta\rangle = |\beta| e^{i\varphi}$
- output operators :

$$\hat{c}=rac{1}{\sqrt{2}}(\hat{a}+\hat{b})$$
 $\hat{d}=rac{1}{\sqrt{2}}(\hat{a}-\hat{b})$



Difference in photocurrent :

$$I_c - I_d \propto \left\langle \hat{c}^\dagger \hat{c} - \hat{d}^\dagger \hat{d} \right\rangle = |\beta| \underbrace{\left\langle \hat{a} e^{-i\varphi} + \hat{a}^\dagger e^{i\varphi} \right\rangle}_{\propto \left\langle \hat{X}_\varphi \right\rangle}$$

- phase-space quasi-probability density
- uniquely defines the state
- Definition :

$$W(p,q) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ipx} \left\langle q - \frac{x}{2} \middle| \hat{\rho} \middle| q + \frac{x}{2} \right\rangle dx$$

Marginal distributions :

$$|\psi(p)|^2 = \int_{-\infty}^{\infty} W(p, q) dq$$

 $|\psi(q)|^2 = \int_{-\infty}^{\infty} W(p, q) dp$

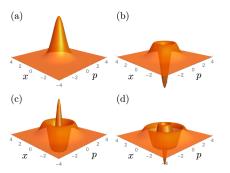


Figure 1: Wigner Functions of the four fock states. (a) n=0, (b) n=1, (c) n=2, (d) n=3.

Reference: Andreas Ketterer (Oct. 2016). "Modular variables in quantum information". PhD thesis

Physical intuition / meaning of Wigner Function :

PHYSICAL REVIEW A

VOLUME 15, NUMBER 2

FEBRUARY 1977

Wigner function as the expectation value of a parity operator

Antoine Rover

Centre de Recherches Mathématiques, Université de Montréal, Montréal H3C 3J7, Canada (Received 30 August 1976)

It is pointed out that the Wigner function f(r, p) is 2/h times the expectation value of the parity operator that performs reflections about the phase-space point r, p. Thus f(r, p) is proportional to the overlap of the wave function ψ with its mirror image about r, p; this is clearly a measure of how much ψ is centered about r, p, and the Wigner distribution function now appears physically more meaningful and natural than it did previously.

► Wigner function :

$$f(r,p) = \frac{2}{h} \int ds \exp \frac{-2ips}{\hbar} \psi^*(r-s) \psi(r+s)$$
$$= \frac{2}{h} \int dk \exp \frac{-2ikr}{\hbar} \tilde{\psi}(p+k) \tilde{\psi}^*(p-k)$$

▶ Operator Π_{rp} :

$$\Pi_{rp} = \int ds \exp \frac{-2ips}{\hbar} |r - s\rangle \langle r + s|$$
$$= \int dk \exp \frac{-2ikr}{\hbar} |p + k\rangle \langle p - k|$$

we get :

$$f(r,p) = \frac{2}{h} \langle \psi | \Pi_{rp} | \psi \rangle$$

$$ightharpoonup r = 0, p = 0$$

$$\Pi \equiv \Pi_{00} = \int \mathrm{d}r \left| -r \right\rangle \left\langle r \right| = \int \mathrm{d}\rho \left| p \right\rangle \left\langle -\rho \right|$$

$$D(r,p) \equiv \exp \frac{i}{\hbar} (p\hat{R} - r\hat{P})$$

$$D^{-1}(r,p)\hat{R}D(r,p) = \hat{R} + r$$

 $D^{-1}(r,p)\hat{P}D(r,p) = \hat{P} + p$

and

$$\Pi_{rp} = D(r,p)\Pi D^{-1}(r,p)$$

we get :

$$\Pi_{rp}(\hat{R}-r)\Pi_{rp} = -(\hat{R}-r)$$

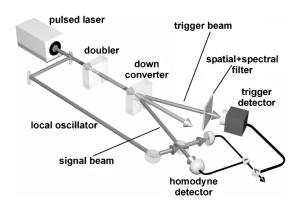
$$\Pi_{rp}(\hat{P}-p)\Pi_{rp} = -(\hat{P}-p)$$

$$f(r,p) = \frac{2}{h} \langle \psi | \Pi_{rp} | \psi \rangle$$

 \blacktriangleright measure of how much ψ is centered about (r, p)

Preparation of the single-photon state

Experimental setup :



Preparation of the single-photon state

Two-photon down conversion :

$$|\Psi\rangle = N\left(|0,0\rangle + \int d\vec{k}_s d\vec{k}_t \Phi(\vec{k}_s,\vec{k}_t) \left| 1_{\vec{k}_s}, 1_{\vec{k}_t} \right\rangle\right)$$

State ensemble selected by the trigger :

$$\hat{
ho}_t = \int d\vec{k}_t T(\vec{k}_t) \left| 1_{\vec{k}_t} \right\rangle \left\langle 1_{\vec{k}_t} \right|$$

where $T(\vec{k_t})$ is the transmission function of the filter.

► Signal state :

$$\hat{
ho}_{s} = \operatorname{Tr}_{t}[\ket{\Psi}ra{\Psi}\hat{
ho}_{t}]$$

► Tight filtering : pure single-photon state

$$\hat{
ho}_{s}=\left|1\right\rangle \left\langle 1\right|$$

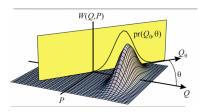
Measurement of the single-photon state

- lacktriangle perfect experiment : $\hat{
 ho}_{\mathsf{meas}} = \ket{1}ra{1}$
- ▶ inneficiencies : $\hat{\rho}_{\text{meas}} = \eta |1\rangle \langle 1| + (1 \eta) |0\rangle \langle 0|$ where η the measurement efficiency.
- ▶ Balanced homodyne detection : $\Delta I \propto \hat{X}_{\theta} \equiv \hat{X} \cos \theta + \hat{P} \sin \theta$
- lacktriangle For each phase heta , large number of measurement to get $\operatorname{pr}(\hat{X_{ heta}})$

Reconstruction of the single-photon state

Wigner function :

$$\operatorname{pr}(\hat{X}_{\theta}) = \int_{-\infty}^{\infty} W(X\cos\theta - P\sin\theta, X\cos\theta + P\sin\theta)dP$$



lacktriangle WF can be reconstructed from $\operatorname{pr}(\hat{\mathcal{X}}_{ heta})$ for a large number of heta

Reconstruction of the Wigner function

- $\triangleright \theta$ varied randomly
- single phase-randomized marginal distribution

$$\mathsf{pr}_{\mathsf{av}}(X) = \left\langle \mathsf{pr}(\hat{\mathcal{X}}_{\theta}) \right
angle_{ heta}$$

- fine for rotationally symmetric Wigner functions
- phase-averaged Wigner function :

$$W(R) = \frac{-1}{\pi} \int_{R}^{\infty} \frac{d \operatorname{pr}_{av}(X)}{dX} (X^2 - R^2)^{-1/2} dX$$

Reconstruction of the density matrix

diagonal elements in Fock basis :

$$\rho_{nn} = \pi \int_{-\infty}^{\infty} \operatorname{pr}_{\mathsf{av}}(X) f_{nn}(X) dX$$

where $f_{nn}(X)$ are the amplitude pattern functions (independent of optical state).

Reference: G. M. D'Ariano, U. Leonhardt, and H. Paul (Sept. 1995). "Homodyne detection of the density matrix of the radiation field". In: Phys. Rev. A 52 (3), R1801–R1804. DOI: 10.1103/PhysRevA.52.R1801. URL: https://link.aps.org/doi/10.1103/PhysRevA.52.R1801

Effect of measurement efficiency

ightharpoons $\hat{
ho}_{\mathsf{meas}} = \eta \ket{1} ra{1} + (1 - \eta) \ket{0} ra{0}$

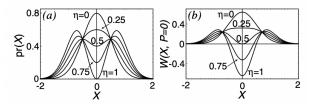


Figure 2: Effect of the nonperfect measurement efficiency η on the marginal distribution (a) and the reconstructed WF (b).

▶ negative values require $\eta > 0.5$

Results

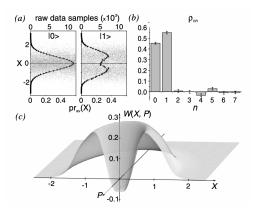


Figure 3: Experimental results: (a) raw quantum noise data for the vacuum (left) and Fock (right) states along with their his- tograms corresponding to the phase-randomized marginal distri- butions; (b) diagonal elements of the density matrix of the state measured; (c) reconstructed WF which is negative near the origin point. The measurement efficiency is 55%.

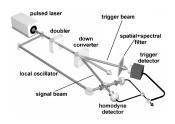
Signal-LO mode-matching

- $\hat{
 ho}_{\mathsf{meas}} = \eta \ket{1} ra{1} + (1 \eta) \ket{0} ra{0}$
- ► Homodyne detection : interference between signal and LO fields at the BS
- overlap : spatial , temporal and spectral

• effective quantum efficiency : $\eta_{\rm eff} = \frac{|\langle \varepsilon_{\rm LO}|\varepsilon_{\rangle}|^2}{\langle \varepsilon_{\rm LO}|\varepsilon_{\rm LO}\rangle\langle \varepsilon|\varepsilon\rangle}$

Spectral mode matching: Use of the doubler

- signal photon has to have same frequency as local oscillator
- need to double the frequency before SPDC
- Second Harmonic Generation (SHG)



SHG

Linear optics :

$$P = \epsilon_0 \chi^{(1)} E$$

► Non-linear optics :

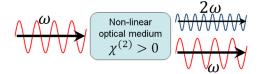
$$P_{i} = \epsilon_{0} \left(\chi_{ij}^{(1)} E_{i} E_{j} + \chi_{ijk}^{(2)} E_{i} E_{j} E_{k} + \chi_{ijkl}^{(3)} E_{i} E_{j} E_{k} E_{l} + \dots \right)$$

monochromatic incoming wave :

$$E \propto \cos(\omega t - kx)$$

Second order non-linear polarizaion :

$$P^{(2)} \propto \frac{1}{2} \epsilon_0 \chi^{(2)} (\cos(2\omega t - 2kx) + 1)$$



Conclusion

- first quantum tomography measurement of a highly nonclassical state of the electromagnetic field
- Preparation of the single-photon state in a well-defined mode thanks to measurement on photon pairs
- reconstruction of the phase-averaged Wigner function and density matrix diagonal elements of a single-photon Fock state with 55% measurement efficiency
- non gaussian shape and negative values around the origin (signature of non-classiality)