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Introduction

▶ measurement of the complete Wigner function of the
single-photon state |1⟩

▶ method : homodyne tomography
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Optical Quadratures

▶ definition :

X̂1 = 1
2(â+ â†) [X̂1, X̂2] =

i
2

X̂2 = 1
2i (â− â†)

▶ or more generally :

X̂φ = âe iφ + â†e−iφ [X̂φ, X̂φ+π
2
] = 2i
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Balanced Homodyne detection

▶ 50:50 beam splitter
▶ mode b̂ : |β⟩ =

∣∣|β|e iφ〉
▶ output operators :

ĉ =
1√
2
(â+ b̂)

d̂ =
1√
2
(â− b̂)

▶ Difference in photocurrent :

Ic − Id ∝
〈
ĉ†ĉ − d̂†d̂

〉
= |β| ⟨âe−iφ + â†e iφ⟩︸ ︷︷ ︸

∝⟨X̂φ⟩
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Wigner Function

▶ phase-space quasi-probability density
▶ uniquely defines the state
▶ Definition :

W (p, q) =
1
2π

∫ ∞

−∞
e ipx

〈
q − x

2

∣∣∣ρ̂∣∣∣q +
x

2

〉
dx

▶ Marginal distributions :

|ψ(p)|2 =

∫ ∞

−∞
W (p, q)dq

|ψ(q)|2 =

∫ ∞

−∞
W (p, q)dp
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Wigner Function

Figure 1: Wigner Functions of the four fock states. (a) n = 0 , (b) n = 1
, (c) n = 2 , (d) n = 3.

Reference: Andreas Ketterer (Oct. 2016). “Modular variables in quantum information”. PhD thesis
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Wigner Function

▶ Physical intuition / meaning of Wigner Function :
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Wigner Function

▶ Wigner function :

f (r , p) =
2
h

∫
ds exp

−2ips
ℏ

ψ∗(r − s)ψ(r + s)

=
2
h

∫
dk exp

−2ikr
ℏ

ψ̃(p + k)ψ̃∗(p − k)

▶ Operator Πrp :

Πrp =

∫
ds exp

−2ips
ℏ

|r − s⟩ ⟨r + s|

=

∫
dk exp

−2ikr
ℏ

|p + k⟩ ⟨p − k|

▶ we get :

f (r , p) =
2
h
⟨ψ|Πrp|ψ⟩
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Wigner Function
▶ r = 0, p = 0

Π ≡ Π00 =

∫
dr |−r⟩ ⟨r | =

∫
dp |p⟩ ⟨−p|

▶ D(r , p) ≡ exp i
ℏ(pR̂ − r P̂)

D−1(r , p)R̂D(r , p) = R̂ + r

D−1(r , p)P̂D(r , p) = P̂ + p

and
Πrp = D(r , p)ΠD−1(r , p)

▶ we get :

Πrp(R̂ − r)Πrp = −(R̂ − r)

Πrp(P̂ − p)Πrp = −(P̂ − p)
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Wigner Function

f (r , p) =
2
h
⟨ψ|Πrp|ψ⟩

▶ measure of how much ψ is centered about (r , p)
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Preparation of the single-photon state

▶ Experimental setup :
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Preparation of the single-photon state
▶ Two-photon down conversion :

|Ψ⟩ = N

(
|0, 0⟩+

∫
dk⃗sdk⃗tΦ(k⃗s , k⃗t)

∣∣∣1k⃗s , 1k⃗t〉
)

▶ State ensemble selected by the trigger :

ρ̂t =

∫
dk⃗tT (k⃗t)

∣∣∣1k⃗t〉〈
1
k⃗t

∣∣∣
where T (k⃗t) is the transmission function of the filter.

▶ Signal state :
ρ̂s = Trt [|Ψ⟩ ⟨Ψ| ρ̂t ]

▶ Tight filtering : pure single-photon state

ρ̂s = |1⟩ ⟨1|
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Measurement of the single-photon state

▶ perfect experiment : ρ̂meas = |1⟩ ⟨1|
▶ inneficiencies : ρ̂meas = η |1⟩ ⟨1|+ (1 − η) |0⟩ ⟨0|

where η the measurement efficiency.
▶ Balanced homodyne detection : ∆I ∝ X̂θ ≡ X̂ cos θ + P̂ sin θ

▶ For each phase θ , large number of measurement to get pr(X̂θ)
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Reconstruction of the single-photon state

▶ Wigner function :

pr(X̂θ) =

∫ ∞

−∞
W (X cos θ − P sin θ,X cos θ + P sin θ)dP

▶ WF can be reconstructed from pr(X̂θ) for a large number of θ
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Reconstruction of the Wigner function

▶ θ varied randomly
▶ single phase-randomized marginal distribution

prav(X ) =
〈
pr(X̂θ)

〉
θ

▶ fine for rotationally symmetric Wigner functions
▶ phase-averaged Wigner function :

W (R) =
−1
π

∫ ∞

R

dprav(X )

dX
(X 2 − R2)−1/2dX
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Reconstruction of the density matrix

▶ diagonal elements in Fock basis :

ρnn = π

∫ ∞

−∞
prav(X )fnn(X )dX

where fnn(X ) are the amplitude pattern functions
(independent of optical state).

Reference: G. M. D’Ariano, U. Leonhardt, and H. Paul (Sept. 1995). “Homodyne detection of the
density matrix of the radiation field”. In: Phys. Rev. A 52 (3), R1801–R1804. DOI:
10.1103/PhysRevA.52.R1801. URL: https://link.aps.org/doi/10.1103/PhysRevA.52.R1801
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Effect of measurement efficiency

▶ ρ̂meas = η |1⟩ ⟨1|+ (1 − η) |0⟩ ⟨0|

Figure 2: Effect of the nonperfect measurement efficiency η on the
marginal distribution (a) and the reconstructed WF (b).

▶ negative values require η > 0.5
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Results

Figure 3: Experimental results : (a) raw quantum noise data for the
vacuum (left) and Fock (right) states along with their his- tograms
corresponding to the phase-randomized marginal distri- butions; (b)
diagonal elements of the density matrix of the state measured; (c)
reconstructed WF which is negative near the origin point. The
measurement efficiency is 55%.
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Signal-LO mode-matching

▶ ρ̂meas = η |1⟩ ⟨1|+ (1 − η) |0⟩ ⟨0|
▶ Homodyne detection : interference between signal and LO

fields at the BS
▶ overlap : spatial , temporal and spectral

▶ effective quantum efficiency : ηeff = |⟨εLO|ε⟩|2
⟨εLO|εLO⟩⟨ε|ε⟩
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Spectral mode matching : Use of the doubler

▶ signal photon has to have
same frequency as local
oscillator

▶ need to double the frequency
before SPDC

▶ Second Harmonic Generation
(SHG)
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SHG
▶ Linear optics :

P = ϵ0χ
(1)E

▶ Non-linear optics :

Pi = ϵ0

(
χ
(1)
ij EiEj + χ

(2)
ijk EiEjEk + χ

(3)
ijklEiEjEkEl + ...

)
▶ monochromatic incoming wave :

E ∝ cos(ωt − kx)

▶ Second order non-linear polarizaion :

P(2) ∝ 1
2
ϵ0χ

(2)(cos(2ωt − 2kx) + 1)
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Conclusion

▶ first quantum tomography measurement of a highly
nonclassical state of the electromagnetic field

▶ Preparation of the single-photon state in a well-defined mode
thanks to measurement on photon pairs

▶ reconstruction of the phase-averaged Wigner function and
density matrix diagonal elements of a single-photon Fock state
with 55% measurement efficiency

▶ non gaussian shape and negative values around the origin
(signature of non-classiality)
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