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Quantum Electrodynamics and Quantum Optics
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Exercise No.9

Solution: Quantum Langevin equation for a harmonic oscillator interacting with a heat
bath

1. The full interaction Hamiltonian will contain terms like:

Y (a+a%) (b —bf) =Y aby — abf + a'b — a'b} . 1)
k k

We can change reference frame (or, equivalently, go to the interaction picture) and do the
following substitutions: & — de'“s! and b — be~'“¥!. So that the terms above become:

Zﬁ@kefi(wwrws)t . m’;]’gei(wkfws)t + ﬁfz‘)kefi(wkfws)t o ﬁ+l§;ei(wk+ws)t ) (2)
k

Now if |wy + ws| > |wy — ws|, the terms with e (@ +@)t will average to zero over much
shorter time scales than the terms with ei’(wk*ws)t, thus the former terms can be neglected.
This is the rotating wave approximation.

2. We calculate the equations of motion using 9;0 = % [H, O]. A straightforward calculation
leads to:

I = —iwsd—1iY giby (3)
k
by = —iwpby —iged 4)

3. First we formally integrate the equation for by. We obtain (can be verified by substitution or
derived using variation of the constant):

t
bi(t) = by(t)e ot — igk/dt’a(t’)e"wk(t*” : (5)
0

We now insert this back into the expression for a:

t
o = —iwsd(t) —i y_ gebr(0)e ¥ — Zgi/dt’ﬁ(t’)ei“’k(t’t/) . (6)
k ko)

fa(t)

Now we transform the sum into an integral:

Y8t~ [ denD(wd)lglwd)l; )
k 0

and apply the 1st Markov approximation gy = g(wy) = g and make the assumption that the
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density of states is slowly varying D(w) = D(ws):

t

t
Zgi/dt’ﬁ(t' g iwi(t=t) /dka wk)\g(wk)| /dt,ﬁ(tl)e*iwk(tft/)
koo

w)|g(w)| /dta /dwke iy (t=t)

Finally we obtain the QLE for a:
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4. Take an operator @ whose equation of motion is given by d;4 = %[H, a]. Then @ = de~ ! has

the equation of motion:

0/ = iwd + — [H al .

h

So with going to a frame rotating with w;s (4 = de'“s*):

(FOFE)) = L g (B0 (0)

= 27 giagelrt=t)
k

o), d (] = —x[an),& W]+ [F),E W] + 50, F (1]

To compute [4(t), Ft(t)] we use &(t) = 4(0)e 3! + [ dt' e 2(*"!)F(#') and obtain:
0
a0, (1] = / dt' e~ 8O F(K), FH(1)]
0
= 2= [Fm.d )]

So

knowing that [4(0),a%(0)].
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(aid) = a1 (3) = ~% (3() + (F() = ~5 (4(0) = (3()) = (40))e ¥ 3)

8. Using all the information up until now it is a straightforward calculation to find the equation
of motion

(NI = =k (N(1) + (FF (DA ) + (T (OF()) = —x (N(B) +xit (24)
which solves to:
(N(t)) = ((N(0)) — fign) e + figy (25)
9.1 Purcell enhancement

9.1.1 D(w) of vacuum

c.f. Solution for Homework 1. The answer is:

w
D(w) =53 (26)
9.1.2 D.(w) in cavity
The Langevin equation for cavity mode a reads:
o = —iwea — Ea +F (27)
From the above Langevin equation, we can solve out the cavity mode:
e t e
a(t) = a(0)e” w0l / dt a(0)e” (50D p(7) (28)
0
Thus: . .
(a*(1)a(0)) = (a" (0)a(0))e™ " HN - (m)e™ (o) (29)

The power spectral density reads:

S(w) = 1% 30)
- (w = we)? + (55)?
Thus: w.
S(w) _ 1 20
D (w) = == (31)
A=) T AP T (5P
9.1.3 High-Q limit and two-level system decay rate
In the high-Q limit,
2Q
D N —— 2
c(w) T we (32)
Thus the decay rate enhancement:
Mo _ 2 Q 7% €0
Tose Twe w? /v = zn(a)) v 33)



