

Quantum Electrodynamics and Quantum Optics

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE (EPFL)

Exercise No.9

Solution: Quantum Langevin equation for a harmonic oscillator interacting with a heat bath

1. The full interaction Hamiltonian will contain terms like:

$$\sum_{k} (\hat{a} + \hat{a}^{\dagger})(\hat{b}_{k} - \hat{b}_{k}^{\dagger}) = \sum_{k} \hat{a}\hat{b}_{k} - \hat{a}\hat{b}_{k}^{\dagger} + \hat{a}^{\dagger}\hat{b}_{k} - \hat{a}^{\dagger}\hat{b}_{k}^{\dagger}.$$
(1)

We can change reference frame (or, equivalently, go to the interaction picture) and do the following substitutions: $\hat{a} \to \hat{a}e^{-i\omega_s t}$ and $\hat{b} \to \hat{b}e^{-i\omega_k t}$. So that the terms above become:

$$\sum_{k} \hat{a}\hat{b}_{k}e^{-i(\omega_{k}+\omega_{s})t} - \hat{a}\hat{b}_{k}^{\dagger}e^{i(\omega_{k}-\omega_{s})t} + \hat{a}^{\dagger}\hat{b}_{k}e^{-i(\omega_{k}-\omega_{s})t} - \hat{a}^{\dagger}\hat{b}_{k}^{\dagger}e^{i(\omega_{k}+\omega_{s})t} . \tag{2}$$

Now if $|\omega_k + \omega_s| \gg |\omega_k - \omega_s|$, the terms with $e^{\pm i(\omega_k + \omega_s)t}$ will average to zero over much shorter time scales than the terms with $e^{\pm i(\omega_k - \omega_s)t}$, thus the former terms can be neglected. This is the rotating wave approximation.

2. We calculate the equations of motion using $\partial_t \hat{O} = \frac{i}{\hbar} [H, \hat{O}]$. A straightforward calculation leads to:

$$\partial_t \hat{a} = -i\omega_s \hat{a} - i\sum_k g_k \hat{b}_k \tag{3}$$

$$\partial_t \hat{b}_k = -i\omega_k \hat{b}_k - ig_k \hat{a} \tag{4}$$

3. First we formally integrate the equation for \hat{b}_k . We obtain (can be verified by substitution or derived using variation of the constant):

$$\hat{b}_k(t) = \hat{b}_k(t)e^{-i\omega_k t} - ig_k \int_0^t dt' \,\hat{a}(t')e^{i\omega_k(t-t')} \,. \tag{5}$$

We now insert this back into the expression for \hat{a} :

$$\partial_t \hat{a} = -i\omega_s \hat{a}(t) \underbrace{-i\sum_k g_k \hat{b}_k(0) e^{-i\omega_k t}}_{\hat{f}_a(t)} - \sum_k g_k^2 \int_0^t dt' \, \hat{a}(t') e^{i\omega_k (t-t')} \,. \tag{6}$$

Now we transform the sum into an integral:

$$\sum_{k} g_k^2 \to \int_{0}^{\infty} d\omega_k D(\omega_k) |g(\omega_k)|^2;$$
 (7)

and apply the 1st Markov approximation $g_k = g(\omega_k) = g$ and make the assumption that the

density of states is slowly varying $D(\omega) = D(\omega_s)$:

$$\sum_{k} g_k^2 \int_0^t dt' \, \hat{a}(t') e^{-i\omega_k(t-t')} = \int_0^\infty d\omega_k \, D(\omega_k) |g(\omega_k)|^2 \int_0^t dt' \, \hat{a}(t') e^{-i\omega_k(t-t')}$$
(8)

$$= D(\omega)|g(\omega)|^2 \int_0^t dt' \, \hat{a}(t') \int_0^\infty d\omega_k \, e^{-i\omega_k(t-t')} \tag{9}$$

$$= D(\omega)|g(\omega)|^2 \int_0^t dt' \, \hat{a}(t') 2\pi \delta(t - t') \tag{10}$$

$$=2\pi D(\omega)|g(\omega)|^2 \frac{1}{2}\hat{a}(t) \equiv \frac{\kappa}{2}\hat{a}(t). \tag{11}$$

Finally we obtain the QLE for \hat{a} :

$$\partial_t \hat{a}(t) = -i\omega_s \hat{a}(t) - \frac{\kappa}{2} \hat{a}(t) + \hat{f}_a(t). \tag{12}$$

4. Take an operator \hat{a} whose equation of motion is given by $\partial_t \hat{a} = \frac{i}{\hbar} [H, \hat{a}]$. Then $\hat{a} = \hat{a}e^{-i\omega t}$ has the equation of motion:

$$\partial_t \hat{a} = i\omega \hat{a} + \frac{i}{\hbar} [H, \hat{a}] . \tag{13}$$

So with going to a frame rotating with ω_s ($\hat{a} = \hat{a}e^{i\omega_s t}$):

$$\partial_t \hat{\tilde{a}} = -\frac{\kappa}{2} \hat{\tilde{a}}(t) + \hat{f}_{\tilde{a}}(t) \tag{14}$$

5. $F(t) = \hat{f}_{\tilde{a}}(t)$

$$\left\langle F^{\dagger}(t)F(t')\right\rangle = \sum_{k} \sum_{k'} g_{k}g_{k'}e^{i\omega_{k}t - i\omega_{k'}t'} \left\langle \hat{b}_{k}^{\dagger}(0)\hat{b}_{k'}(0)\right\rangle \tag{15}$$

$$= 2\pi \sum_{k} g_k^2 \bar{n}_k e^{i\omega_k(t-t')} \tag{16}$$

$$= \int_{0}^{\infty} d\omega \, g^{2} \bar{n}(\omega) e^{i\omega_{k}(t-t')} D(\omega)$$
 (17)

$$= \kappa \bar{n}_{\rm th} \delta(t - t') \tag{18}$$

6.

$$\partial_t \left[\hat{\tilde{a}}(t), \hat{\tilde{a}}^{\dagger}(t) \right] = -\kappa \left[\hat{\tilde{a}}(t), \hat{\tilde{a}}^{\dagger}(t) \right] + \left[F(t), \hat{\tilde{a}}^{\dagger}(t) \right] + \left[\hat{\tilde{a}}(t), F^{\dagger}(t) \right]$$
(19)

To compute $\left[\hat{a}(t), F^{\dagger}(t)\right]$ we use $\hat{a}(t) = \hat{a}(0)e^{-\frac{\kappa}{2}t} + \int_{0}^{t} dt' e^{-\frac{\kappa}{2}(t-t')}F(t')$ and obtain:

$$\left[\hat{a}(t), F^{\dagger}(t)\right] = \int_{0}^{t} dt' \, e^{-\frac{\kappa}{2}(t-t')} \left[F(t'), F^{\dagger}(t)\right] \tag{20}$$

$$= \frac{\kappa}{2} = \left[F(t), \hat{a}^{\dagger}(t) \right]. \tag{21}$$

So

$$\partial_t \left[\hat{a}(t), \hat{a}^{\dagger}(t) \right] = -\kappa \left[\hat{a}(t), \hat{a}^{\dagger}(t) \right] + \kappa = 0 \,\forall t \tag{22}$$

knowing that $[\hat{a}(0), \hat{a}^{\dagger}(0)]$.

7.
$$\left\langle \partial_t \hat{\tilde{a}} \right\rangle = \partial_t \left\langle \hat{\tilde{a}} \right\rangle = -\frac{\kappa}{2} \left\langle \hat{\tilde{a}}(t) \right\rangle + \left\langle F(t) \right\rangle = -\frac{\kappa}{2} \left\langle \hat{\tilde{a}}(t) \right\rangle \Rightarrow \left\langle \hat{\tilde{a}}(t) \right\rangle = \left\langle \hat{\tilde{a}}(0) \right\rangle e^{-\frac{\kappa}{2}t} \tag{23}$$

8. Using all the information up until now it is a straightforward calculation to find the equation of motion

$$\langle t|N|t\rangle = -\kappa \langle N(t)\rangle + \left\langle F^{\dagger}(t)\hat{a}(t)\right\rangle + \left\langle \hat{a}^{\dagger}(t)F(t)\right\rangle = -\kappa \langle N(t)\rangle + \kappa \bar{n}_{\text{th}}$$
 (24)

which solves to:

$$\langle N(t)\rangle = (\langle N(0)\rangle - \bar{n}_{\rm th}) e^{-\kappa t} + \bar{n}_{\rm th}$$
 (25)

9.1 Purcell enhancement

9.1.1 $D(\omega)$ of vacuum

c.f. Solution for Homework 1. The answer is:

$$D(\omega) = \frac{\omega^2}{\pi^2 c^3} \tag{26}$$

9.1.2 $D_c(\omega)$ in cavity

The Langevin equation for cavity mode *a* reads:

$$\partial_t a = -i\omega_c a - \frac{\omega_c}{2O} a + F \tag{27}$$

From the above Langevin equation, we can solve out the cavity mode:

$$a(t) = a(0)e^{-(i\omega_c + \frac{\omega_c}{2Q})t} + \int_0^t d\tau \ a(0)e^{-(i\omega_c + \frac{\omega_c}{2Q})(t-\tau)}F(\tau)$$
(28)

Thus:

$$\langle a^{\dagger}(t)a(0)\rangle = \langle a^{\dagger}(0)a(0)\rangle e^{-(i\omega_c + \frac{\omega_c}{2Q})t} + \langle n\rangle e^{-(i\omega_c + \frac{\omega_c}{2Q})t}$$
(29)

The power spectral density reads:

$$S(\omega) = \frac{1}{\pi} \frac{\langle n \rangle \frac{\omega_c}{2Q}}{(\omega - \omega_c)^2 + (\frac{\omega_c}{2Q})^2}$$
(30)

Thus:

$$D_c(\omega) = \frac{S(\omega)}{\langle n \rangle} = \frac{1}{\pi} \frac{\frac{\omega_c}{2Q}}{(\omega - \omega_c)^2 + (\frac{\omega_c}{2Q})^2}$$
(31)

9.1.3 High-Q limit and two-level system decay rate

In the high-Q limit,

$$D_c(\omega) \approx \frac{2}{\pi} \frac{Q}{\omega_c} \tag{32}$$

Thus the decay rate enhancement:

$$\frac{\Gamma_{cav}}{\Gamma_{vac}} = \frac{2}{\pi} \frac{Q}{\omega_c} \frac{\pi^2 c^3}{\omega^2} 1/V = 2\pi (\frac{c}{\omega})^3 \frac{Q}{V}$$
(33)