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Exercise No.9

9.1 Quantum Langevin equation for an optical cavity interacting with a heat bath 1

Consider a cavity coupled to a heat bath, consisting of a large ensemble of harmonic oscillators.
The Hamiltonian of the system and the bath can be expressed as (for simplicity we consider only
one cavity mode)

Ĥsys = h̄ωs

(
â† â +

1
2

)
(1)

Ĥbath = ∑
k

h̄ωk

(
b̂k

†
b̂k +

1
2

)
(2)

Here, â and (â†) are the annihilation and creation operators which satisfy the commutator rela-
tion [â, â†] = 1. Assume that the bath and system are interacting in a bilinear way, i.e. that the
interaction Hamiltonian takes the form:

Ĥint = h̄ ∑
k

gk(âb̂†
k + b̂k â†) (3)

We also assume that the heat bath is in thermal equilibrium and has a finite temperature. This
implies that ⟨b̂†

k (0)⟩ = ⟨b̂k(0)⟩ = 0, as well as ⟨b̂†
k (0)b̂l(0)⟩ = δk,l n̄k and ⟨b̂k(0)b̂†

l (0)⟩ = δk,l(n̄k + 1)
where n̄k is the effective occupation number of the kth mode. Finally, we assume that the bath
modes are initially uncorrelated with each other, i.e. ⟨b̂k(0)b̂†

l (0)⟩ = 0 for k ̸= l.

1. Derive the Heisenberg equations of motion for the bath and system operators separately.

2. Next, eliminate the bath operators from the equation of motion for â(t) by inserting the
equation of the bath. Moreover, introduce the density of states D(ω) (that is, the number of
modes in a given volume between ω and ω + dω) of the bath modes and convert the sum-
mation over k to an integral over ω, assuming that the coupling is frequency independent,
i.e. gk = g(ωk) = g (this is called the 1st Markov approximation). Carry out the integration
over ω using

∫ ∞
−∞ dωe−iω(t−t′) = 2πδ(t − t′).2

3. Transform the equations of motion to a frame rotating with ωs with respect to the original
Hamiltonian H0 = Hsys + Hbath. Show that the equation of motion for the system operator
obeys the Quantum Langevin Equation:

d
dt

â(t) = −κ

2
â(t) +

√
κâin(t)

Give an expression for the input noise term âin(t) in terms of the bath operators. What is the
physical intuition behind the “input noise” term?

4. Show that the input noise operator âin(t) satisfies

⟨â†
in(t)âin(t′)⟩ = n̄thδ(t − t′),

⟨âin(t)⟩ = 0 and show that the system’s decay rate (κ) is given by: κ = 2πD(ωs)|g|2.

1See e.g. Scully, Quantum Optics, Chapter 9 or Gardiner and Collet, “Input and output in damped quantum systems:
Quantum stochastic differential equations and the master equation’’, Physical Review A (1984)

2Note that this property also gives rise to the equality
∫ t

t0
c(t′)δ(t − t′)dt′ = 1

2 c(t), which is needed to derive the
exact form of the quantum Langevin equation (see next point).
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5. Show that the quantum Langevin equation - despite containing now dissipation and damp-
ing of the system operator - preserves the commutator, [â(t), â†(t)] = 1. We have achieved a
quantum mechanically consistent description of damping.

6. Derive and solve the equations of motion for the mean field ⟨â(t)⟩.

7. How does the (average) number of photons evolve in time? Calculate d
dt N̂ = d

dt

(
â† â

)
and

d
dt

〈
N̂
〉
= d

dt

〈
â† â

〉
.

9.2 Purcell enhancement

In this exercise we study the Purcell effect 3 4.
Consider a two-level system in vacuum. The spontaneous emission rate is given by:

Γ = 2π⟨|g(ω)|2⟩D(ω)

Where g(ω) is atom-cavity coupling and D(ω) is the density of states at the atomic transition
frequency ω.

(a) Find D(ω) for the vacuum in terms of mode volume V, and express vacuum spontaneous
emission rate (You may check the exercise 1 in HW 1).

(b) Find density of states Dc(ω) for a cavity with the central frequency ωc and quality factor
Q = ωc/κ (cavity frequency / line-width). Express the spontaneous emission rate Γ, for a
two-level system in a cavity. In order to derive density of states of a cavity you may follow
these steps 5 :

i. Write down the Langevin equation for the field in the cavity (a(t)). Consider the input
field as F(t) and show:

ȧ(t) = −iωca(t) −
ωc

2Q
a(t) + F(t)

ii. Calculate field’s auto-correlation ⟨a†
(t)a(t+τ)⟩ in terms of τ and mean number of photons

in the cavity ⟨n⟩.
iii. Calculate power spectral density of the field in terms of ⟨n⟩ based on the definition:

S(ω) =
1
π

Re[
∫ ∞

0
⟨a†

(t)a(t+τ)⟩eiωτ]dτ

iv. We can express energy of the system using power spectral density:

E =
1
π

∫ ∞

0
S(ω)dω

Use this property and definition of density of states to calculate Dc(ω).

(c) Calculate the previous result in the limit of the high Q cavity. Compare the spontaneous
emission rate for a two-level system in two cases and explain the difference.

9.3 Quantization of a Cooper pair box coupled to an LC resonator(*)6

Let’s consider the circuit showed in Fig.1, which shows a Cooper pair box coupled to an LC res-
onator. In this exercise we will quantize this system and recover the Jaynes-Cummings Hamilto-
nian.

3E. M. Purcell, Phys. Rev. 69, 681 (1946)
4S. Haroche; D. Kleppner (1989). ”Cavity Quantum Dynamics”. Physics Today. 42 (1): 24–30.
5Scull y, chapter 9.3
6Circuit QED Girvin Les Houches - Appendix A, Oxford University Press

2



Prof. T.J. Kippenberg
Fall Term 2024

Figure 1: Circuit Diagram of a Cooper pair box capacitively coupled to a parallel LC resonator

1. Starting from the circuit Lagrangian, derive the Hamiltonian in term of the magnetic fluxes
Φ̂1, Φ̂2 and charges Q̂1, Q̂2 as Ĥ = Ĥ1 + Ĥ2 + Ĥ12, where

H1 =
Q̂2

1
2C1Σ

− EJ cos
2e
h̄

Φ̂1,

H2 =
Q̂2

2
2C2Σ

+
1

2LB
Φ̂2

2,

H12 =
β

C2Σ
Q̂1Q̂2.

Here C1Σ = CJ +
(

1
Cg

+ 1
CB

)−1
and C2Σ = CB +

(
1

Cg
+ 1

CJ

)−1
are the capacitances seen by the

flux Φ̂1 and Φ̂2 respectively.

2. We treat the two branches differently. For the buffer branch (LC resonator), we express the
Hamiltonian in ladder operators, i.e. Q̂2 = −iQ2ZPF(â − â†). For the Josephson junction
branch, we take advantage of the sprctral theorem and expand Q̂1, Φ̂1 with the eigenstates
|i⟩ of Q̂1. Show that the full Hamiltonian reads:

Ĥ = h̄ωc â† â +
∞

∑
k=0

ϵk|k⟩⟨k| −
∞

∑
j,k=0

i
βQ2ZPFQjk

C2Σ
|j⟩

(
â − â†

)
⟨k|,

where ωc =
1√

LBC2Σ
, Q2ZPF =

√
C2Σh̄ωc/2 and Qjk = ⟨j|Q̂|k⟩.

3. Now suppose the spectrum of the qubit is sufficiently anharmonic. We restrict our attention
to its lowest two state |0⟩ and |1⟩. Represent the Hamiltonian with Pauli matrix:

|0⟩⟨0| = 1 − σz

2
,

|1⟩⟨1| = 1 + σz

2
,

|1⟩⟨0| = σ+,
|0⟩⟨1| = σ−,

and recover the celebrated Jaynes-Cummings Hamiltonian:

Ĥ = h̄ωc â† â +
h̄ω01

2
σz − ih̄g

(
â − â†

) (
σ+ + σ−) ,

where h̄ω01 ≡ ϵ1 − ϵ0. (Hint: You can choose the arbitrary phases of the eigenstates |i⟩, and set
Q01 = Q10 to be real.) Finally, give the expression of the coupling strength g.
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