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Exercise No.8

8.1 Equivalence of rE- and pA-Hamiltonians

Show that the two forms of interaction Hamiltonians, i.e. rE-Hamiltonian:

ĤrE
int = −qr̂Ê(a0, t), (1)

and pA-Hamiltonian:

ĤpA
int = − q

m
p̂Â(a0, t), (2)

have similar transition matrix element, by calculating their off-diagonal elements ⟨ f | · · · |i⟩.
We assume |i⟩ and | f ⟩ are two eigenstates of the particle free-Hamiltonian H0|i⟩ = h̄ωi|i⟩ and

H0|i⟩ = h̄ω f | f ⟩, and we assume

Ê(a0, t) = Ê cos ωt Â(a0, t) = − 1
ω

Ê sin ωt (3)

The following relation also needs to be used:

p̂ = m
i
h̄
[
Ĥ0, r̂

]
, (4)

8.2 Wigner-Weisskopf theory

The interaction picture Hamiltonian of a two-level excited system in multimode (vacuum) field
has the following form:

Ĥint = h̄ ∑
k

[
g∗k(r0)σ̂+akei(ω0−ωk)t + H.c.

]
, (5)

where gk(r0) is the coupling between levels, and r0 and ω0 are the location and resonance fre-
quency of an atom. The state vector of such a system has the form:

|ψ(t)⟩ = ca(t) |a, 0⟩+ ∑
k

cb,k(t) |b, 1k⟩ , (6)

with initial conditions ca(0) = 1 and cb,k(0) = 0.

1. From the Schrödinger equation in interaction picture, derive an differential-integral equa-
tion for the population of excited state ca(t).

2. Assuming that the modes of the field are close to each other in frequency, replace the sum-
mation over wavevector by integration:

∑
k

→ 2
V

(2π)3

∫ 2π

0
dϕ

∫ π

0
dθ sin θ

∫ ∞

0
dkk2, (7)

where V is a quantization volume. Use the following relation:

|gk(r0)|2 =
ωk

2h̄ϵ0V
d2

ab cos2 θ, (8)

where θ is the angle between the atomic dipole moment dab and field polarization.
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3. Obtain the dynamics of excited state population in the form:

ċa(t) = −Γ
2

ca(t), (9)

and show the explicit expression for Γ.1

4. What is the physical meaning of Γ?

8.3 Synthesizing arbitrary quantum states

So far we have studied the basic interaction between a two level system (atom) with a bosonic
field (photons). Even though these interactions are very basic, we can already use these interaction
to create complex quantum states2 by realizing these interactions in real world experiment (e.g.
superconducting qubits coupled to microwave cavities). Imagine that we realized the following
system Hamiltonian consisting of an atom (σ) and a photon field (a) in our thought experiment:

Ĥ
h̄

=
∆(t)

2
σz +

(
ΩJC(t)

2
σ+a +

ΩRabi(t)
2

σ+ +
ΩD(t)

2
a†
)
+ h.c.,

where ∆(t) is the frequency difference between the atom and the photon field, σz = |1⟩⟨1| −
|0⟩⟨0|, σ+ = |1⟩⟨0|, σ− = |0⟩⟨1| are the operators that act on the two level system, and a is the
annihilation operator acting on the photon field. Worth noticing that the coupling coefficients Ω
are complex valued.

1. Briefly describe what the effect of the Hamiltonian interaction terms ΩJC(t)
2 σ+a+h.c., ΩRabi(t)

2 σ++

h.c., ΩD(t)
2 a† + h.c. is when they are applied to our atom-photon system.

2. Assuming that initially the state of the system is prepared in the ground state |1atom, 0photon⟩
and ∆(t) = 0, derive the state evolution when only the following interactions are applied
seperately (assuming constant interaction strength and keep in mind the Fock state depen-
dent Rabi frequency):

• ΩRabi
2 σ+ + h.c.

• ΩJC
2 σ+a + h.c.

• ΩD
2 a† + h.c.

3. Now that we understand how different interaction terms evolve the quantum state of the
system, try to design an experimental interaction sequence (e.g. draw a sequence diagram
with graphic illustration of how the state of the system evolves through your designed inter-
action sequence) that could generate the following states of the photon field (keep in mind
that if your photon is entangled with the atom, the photon state will actually be a mixed
state):

• |3⟩
• |1⟩+i|2⟩√

2

• |1⟩−i|3⟩√
2

1for help see Scully, Marlan O., and M. Suhail Zubairy Quantum optics (1999), Chapter 6.
2Hofheinz, Max, et al.“Synthesizing arbitrary quantum states in a superconducting resonator.” Nature 459.7246

(2009): 546.
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8.4 Bloch-Siegert shift: An example of non-RWA effect

The rotating wave approximation (RWA) is not always correct, since counter-rotating terms can
contribute to the evolution of atomic states. For instance, they produce a small shift in atomic
levels, known in literature as the Bloch-Siegert shift.3 The exact version of non-RWA Hamiltonian
has the following form:

Ĥint = −1
2

ih̄ ∑
k

gk

[
σ̂+ âk(t)− σ̂− â†

k(t) + σ̂− âk(t)− σ̂+ â†
k(t)

]
. (10)

Using this Hamiltonian, one can obtain the equations for coherences:

{
ρ̇12 = iω0ρ12 − 1

2 Γρ12 + Γρ21,
ρ̇21 = −iω0ρ21 − 1

2 Γρ21 + Γρ12,
(11)

where ω0 is a resonance frequency and Γ is a spontaneous emission rate. Due to the fact that
counter-propogating terms are now included into consideration, these equations imply mutual
transfer between coherences ρ12 and ρ21.

The task can be done in two ways. Either solve equations using Laplace transform method
and find for the imaginary roots, which contribute to population oscillations, the expression for
additional shift to the atomic frequency ω0, known as Bloch-Siegert shift. Another way is to
directly treat the non-RWA Hamiltonian using time-dependent perturbation theory.

8.5 A semi-classical treatment of Electromagnetically Induced Transparency (EIT) (*)4

Figure 1: Level diagram of a 3-level lambda atom

Electromagnetically induced transparency 5 (EIT) is an atomic phenomenon where an atomic
medium is rendered transparent for an electromagnetic field with a certain frequency (’probe
field’) in the presence of another field (’coupling field’). Consider an atom with 3 levels (Fig1)
with energies ω1, ω2 and ω3, interacting with an external field, E⃗(t). In a rotating frame rotating
with the frequency ω1, the Hamiltonian of the system is:

Ĥ = h̄ω21 |2⟩ ⟨2|+ h̄ω31 |3⟩ ⟨3|+ e ˆ⃗r · E⃗ (12)

where ω21 = ω2 − ω1 and ω31 = ω3 − ω1. Also consider that the states |2⟩ and |3⟩ have phe-
nomenological decay rates of Γ2 and Γ3. There are two external fields: the coupling field with
amplitude Ec and frequency ωc and the probe field with amplitude Ep and frequency ωp. The
total field then can be written as:

E⃗(t) =
1
2

E⃗ce−iωct +
1
2

E⃗pe−iωpt + C.C. (13)
3Ficek, Zbigniew, and Mohamed Ridza Wahiddin. Quantum optics for beginners. Jenny Stanford Publishing, 2016.
4Graded exercise
5c.f S. E. Harris, J. E. Field, and A. Imamoglu ”Nonlinear optical processes using electromagnetically induced

transparency” Phys. Rev. Lett. 64, 1107
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1. Write the state of the atom in the general form of |ψ(t)⟩ = a1(t) |1⟩+ a2(t) |2⟩+ a3(t) |3⟩ and
use Schrödinger equation to obtain the equations of motion for the amplitudes a1(t), a2(t)
and a3(t). Use the definitions of the dipole moments: µ⃗ij = ⟨i| e ˆ⃗r |j⟩ for i, j = 1, 2, 3 and i ̸= j.
Introduce ad hoc the terms that describe decay of levels |2⟩ and |3⟩.

2. Move to an interaction picture described by the transformations below:

a2(t) = ã2(t)e−i(ωp−ωc)t (14)

a3(t) = ã3(t)e−iωpt (15)

Consider that ωc is tuned close to ω3 − ω2 and that ωp is tuned close to ω31. Make proper
rotating wave approximations to get time-independent equations of motion for the amplitudes
in the following form:

˙̃a1 = −i
Ω∗

13
2

ã3 (16)

˙̃a2 = −i(∆2 − i
Γ2

2
)ã2 − i

Ω∗
23

2
ã3 (17)

˙̃a3 = −i(∆3 − i
Γ3

2
)ã3 − i

Ω13

2
ã1 − i

Ω23

2
ã2 (18)

3. Find the steady-state solution of the equations of motion Eq. 17,Eq. 18. Assume that probe
power is weak enough |E⃗p| ≪ |E⃗c| so that Eq. 16 is satisfied automatically, and ã1(t) = a0 is
constant.

4. The polarization vector of an atomic medium with number density of N is given by P⃗(t) =
N ⟨ψ(t)| e ˆ⃗r |ψ(t)⟩. Express P⃗(t) as a function of ã1(t), ã2(t) and ã3(t) and recast it in the
following form: ∑i P⃗(ωi)eiωit + C.C., where the sum is over different involved frequency
components.

5. The susceptibility for a frequency component ωp is defined as P⃗(ωp) = ϵ0χ(ωp)E⃗p. Use the
solution of part 3 to derive an expression for χ(ωp). Separate the real and imaginary part of
χ(ωp)and sketch them as a function of ωp.

6. For the case of a resonant pump (ωc = ω3 − ω2), compute the group velocity for the probe
field at ωp = ω31. Consider the case of a strong coupling field; i.e. where the corresponding
Rabi frequency (Ω23 = |µ23||Ec|

h̄ ) is much greater than other frequency scales in the problem
(Ω23 ≫ Γ2, Γ3, etc.). Simplify the expression for the group velocity and show it is equal to6:

vg =
h̄cϵ0

2ωp

Ω2
23

|µ13|2N
(19)

7. Can the group velocity exceed the speed of light? Under what conditions? What does it
mean for the transfer of information? Refer to the following references for more details:

• Wang, L., Kuzmich, A. & Dogariu, A. Gain-assisted superluminal light propagation.
Nature 406, 277–279 (2000)

• Stenner, M., Gauthier, D. & Neifeld, M. The speed of information in a ‘fast-light’ optical
medium. Nature 425, 695–698 (2003)

6c.f Hau, L., Harris, S., Dutton, Z. et al. Light speed reduction to 17 metres per second in an ultracold atomic gas.
Nature 397, 594-598 (1999)
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