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Quantum Electrodynamics and Quantum Optics
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Exercise No.7

Solution: Semiclassical Atom-Field interaction

1. The dynamic equation of a charged particle in an electromagnetic field is given by

%’:e(mvxs) 1)
Introducing the electromagnetuc potentials U and A, then
E+v><B——VU—%t—|—v><(V><A) ()
Use the relation that
x(VxA)=V(v-A)—v-VA 3)
we can rewrite the dynamic equation as
dp 0A
Since the particle is moving,
dA _ JA
Then the dynamic equation can be written as
d
dt(p+8A) —eV(U—-v-A) (6)
Comparing with the Lagrangian equation
d oL  JdL
dtoo,  ox (7)
We can easily identify the Lagrangian
L:%mvz—ell—l-eA-v (8)

describes the dynamics of this particle.

oL
Then the Hamiltonian is
_ . 1 5 1 2
H=p-t L—Emv +eU—2m(p eA)” +el (10)

. The Schrodinger equation for the new wave function ¢ is given by

A - 1p(r, ) + 9l Dlexp(SA 1) = exp(Ca -0 + V(o) (1)

This equation, after the cancellation of the exponential factor and some rearrangement, takes
the simple form

ihg(r,t) = Hp(r,t) (12)
where H = Hy + Hy, Hy = SV | y(r), H; = —er - E(xo, t)
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4. (a)Using the completeness relation, |1) (1] + |2) (2| = 1,we can write Hy as
Hy = hawy|1) (1] + hwy|2) (2| (13)
The interaction Hamiltonian can be written as
Hy = —er-E(t) (14)
= —e(ID) ]+ 12)2Dr(11) (1] + |2) (2D E(#) (15)

Note only 2 terms in the right hand side are nonzero because of the parity, i.e.,

lel1) = [[ drd 1lr) (rlalr') 1) (16)
— [ @rpry e~ 1) a7)
= [ @rig(Pr (18)
=0 (19)
Therefore,
Hp = —(di2|1) (2] + dz1[2)(1]) - E(t) (20)

where dip = dp; = (1]er|2) = (2|er|1).
Using the Schrodinger equation, the evolution of state [¥(t)) = a(t)|1) + b(t)|2) is given by

if(a|1) +b|2)) = hwya|1) + hwyb|2) — dia - Egcos(wt)b|1) — dy - Egcos(wt)al2)  (21)
Thus,

4= —iwa+ i%(eiwt ] (22)

b = —iwyb + i%(ei‘”t + e @h)g (23)

Making the substitutions a = ae~“1!, and b = e~ 2!

& = iTR(ezwt + e_lwt)ﬁe_lw21t (24)
] Qg iwt —iwt iwyrt
B = 17(6 + e pe' (25)
Then making the rotating wave approximation(ignore terms proportional to e (@*@2)t we
have
Op -
i = iTReZ(“’f“m)tﬁ (26)
. O .

B = iTRe%w*wl)tzx 27)
where Qp = % is the Rabi frequency and wy; = wy — wy is the transition frequency. From
the above two equations, we have

QZ
bz—i(w—w21)a+TRa:o (28)

The solution has the form of CjeM! + C| ]2@2‘2t, where the A and A, are the solutions to the
equation

> OF
A —z(w—wzl)/\+T:0 (29)
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z(w — le) + \/—(w — w21)2 — Q%{ (w — w21) + \/Q% + (w — w21)2
Al,Z = 5 =1 5 (30)

Define A = w — wy1 and Q) = \/Q%{ + A2, the solution of « and B (similar to a but with a
sign different) can then be written as

o = (Cleiﬂt/Z + Cze—iﬂt/Z)eiAt/Z (31)
‘3 — (C3eiﬂt/2 + C4efiQt/2)efiAt/2 (32)

Cy, Cy, C3, Cy is determined by the initial condition and . If ['¥(t = 0)) = |1), we have

CG+C=1 (33)
C+Cy=0 (34)
CGOQA+A)+C(-Q+A)=0 (35)
Ci(QA—A)+C(—Q—-A) =0 (36)

which gives

(@AY
== (37)
Q+A
C=nt (39)
G =54 (39)
—Og
G=—-5 (40)
® Q) Q) Ot
_ VIR i0t/2  —iQt/2y st 2R (2D A
B(t) = 20(6 e )e A sm( 5 )e (41)
The probability of being in the excited states is
0% Ot 1 Ot
Py(t) — 2 "Rgin2(-Z)= — —__gin?(— 42

. For the resonant case,{) = g, A = w — w71 = 0,the expectation value of the dipole moment
is given by

e(Y(B)|r|p(t)) = a*Bdyse 2t + aB*dy e/t = 2Re{a* Bdy pe 21t} (43)
— 2Re{(ci<efiﬂt/2 + C;eiﬂf/2> (C3ei0t/2 + C4efiﬂt/2)dllze*iwt} (44)
= 2Re{(C}C3 + C3Cy + C;Cye ™™ + C3C3e' M) dy pe @} (45)

Obvisouly, the dipole moment exhibits a fast modulation at the oscillation frequency(w) of
the field as well as a slow amplitude modulation at Rabi frequency.

. When is on resonace and if the initial condition is [¥(t =0)) = |1),C; =C, =C3 = —C4 =
1/2.
e((t)|x|p(t)) = 2sin(Qt/2) cos(Qt/2) sinwtd; » = sin(Qf) sinwtdy o (46)

w/Q d
u= /0 /V E(to,£) 3 (P(ro, 1))Vt 47)
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Using the definition of Rabi frequency and integration over the space, U can be writtern as

u= /OH/Q hQ) cos(wt){Q cos(Ot) sin(wt) + w sin(Q) cos(wt) }dt (48)

Typically w > Q, thus we could use sin(wt) cos(wt) = 0 and cos(wt) cos(wt) = 3. There-
fore, from 0 to t/Q),

w/Q)
u= / 1w sin(Qf)dt = hw (49)
0
atom absorb energy from the field. Similarly, from 7/} to 277/

27t/Q)
u= hQew sin(Qt)dt = —hw (50)
/0

same amount of energy is given back to the field.

7.1 Solution : Coherent population trapping

Beforehand, we start by reminding what is meant by Rotating Wave Approximation. Under a uni-
tary transformation of the quantum states |(t)), .., = U(t) |¢(t)), the unitary part of the dynam-
ics of the system described by the Hamiltonian H = Hy + Hiy is modified. For a general change of
frame U(t), in the Schrodinger picture we have the usual equation i9; |(t)) = H |i(t)), where
the partial derivative with respect to time is noted as d;. We can derive the modified Schrodinger
equation in the new frame as (we omit the explicit time dependency)

Zhat |lp(t)>new = Zhat (H |l/J>)

+UH) [) (51)

This equation with Hpew = ih(ata)fﬁ +uaut represents the same system but in a different
frame. In the case of the RWA, this change of frame is performed by the operator U (t) = exp (iHot /1)
(keep only interaction terms in the Schrédinger equation) and furthermore, we neglect all the
counter rotative terms (not energy conserving). These two operations lead in our case to the
Hamiltonian ARWA = Hp. Note that we did not go back to the original frame, we shall keep
working in this so-called new frame for this exercise and we will drop the “new” for convenience.

1. Now that the setup is clear, we want to use the Schrodinger equation for the evolution of
|'¥) = a(t) |a) + b(t) |b) + c(t) |c) in this new frame (under the RWA). When both fields are
resonant wi = wyp and wy = wy,, the interaction Hamiltonian simplifies to

HD = —Z (QRl |a> <b| + QOgo \a) <C| —I—hC) (52)

Upon projection of the Schrodinger equation for [¥) onto the three states |a), |b) and |c), we
obtain a set of coupled differential equations for the amplitudes.

ChOgi,,,  hOg

ihdya(t) = (al Apl¥(1)) = "My — PO (p)
imaib() = (0| ¥ (1)) = —"XLa(t) (53)
iaye(t) = (el Bpl¥ (1) = " a(t)
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This system can also be written in its matrix form as

(a(t)) 5 ( 0 O QRz) (a(t))
g | b(t) | =—3 (O 0 0 ) [b(h) (54)
c(t) Ory O 0 c(t)

Now we verify that the three states given are indeed eigenstates (otherwise just diagonalise
the matrix Hamiltonian).

(1) = 75 (I + S8 16) + 210))
o) = 72 |p) - le 0 5)
k|\f>=%(|a> - 0)

We find that they are indeed normalised eigenstates, with respective eigenvalues of +75* 0, — —,
where () = \/|QR1|2 |QR2|2.

2. Computing the transition amplitudes on resonance from |[NC) and |C) to |a) yields

N h (@) (@)
(BpINC) =~ (O b1+ O (el) (22 16}~ 3 o))
h (QRlﬂRz QRzQR1> 0

; @ 0 (56)
_ Ok, Ok _
() -y

This shows exactly what we expect, namely that the state | NC) is not coupled to |a), whereas
|C) is. It is the superposition of the two ground states that leads to a destructive interference
of population in the excited state.



