
Prof. T.J. Kippenberg
Fall Term 2024

Quantum Electrodynamics and Quantum Optics
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE (EPFL)

Exercise No.7

Solution: Semiclassical Atom-Field interaction

1. The dynamic equation of a charged particle in an electromagnetic field is given by

dp
dt

= e(E + v × B) (1)

Introducing the electromagnetuc potentials U and A, then

E + v × B = −∇U − ∂A
∂t

+ v × (∇× A) (2)

Use the relation that
v × (∇× A) = ∇(v · A)− v · ∇A (3)

we can rewrite the dynamic equation as

dp
dt

= e(−∇(U − v · A)− ∂A
∂t

− v · ∇A) (4)

Since the particle is moving,
dA
dt

=
∂A
∂t

+ v · ∇A (5)

Then the dynamic equation can be written as

d
dt
(p + eA) = −e∇(U − v · A) (6)

Comparing with the Lagrangian equation

d
dt

∂L
∂vi

− ∂L
∂xi

= 0 (7)

We can easily identify the Lagrangian

L =
1
2

mv2 − eU + eA · v (8)

describes the dynamics of this particle.

2.
p =

∂L
∂ṙ

= mv + eA (9)

Then the Hamiltonian is

H = p · ṙ − L =
1
2

mv2 + eU =
1

2m
(p − eA)2 + eU (10)

3. The Schrodinger equation for the new wave function ϕ is given by

ih̄[i
e
h̄

Ȧ · rϕ(r, t) + ϕ̇(r, t)]exp(
ie
h̄

A · r) = exp(
ie
h̄

A · r)[
p2

2m
+ V(r)]ϕ(r, t) (11)

This equation, after the cancellation of the exponential factor and some rearrangement, takes
the simple form

ih̄ϕ̇(r, t) = Hϕ(r, t) (12)

where H = H0 + HI , H0 = (−ih̄∇)2

2m + V(r), HI = −er · E(r0, t)
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4. (a)Using the completeness relation, |1⟩⟨1|+ |2⟩⟨2| = 1,we can write H0 as

H0 = h̄ω1|1⟩⟨1|+ h̄ω2|2⟩⟨2| (13)

The interaction Hamiltonian can be written as

HI = −er · E(t) (14)
= −e(|1⟩⟨1|+ |2⟩⟨2|)r(|1⟩⟨1|+ |2⟩⟨2|)E(t) (15)

Note only 2 terms in the right hand side are nonzero because of the parity, i.e.,

⟨1|r̂|1⟩ =
∫∫

d3rd3r′⟨1|r⟩⟨r|r̂|r′⟩⟨r′|1⟩ (16)

=
∫

d3rψ(r)∗ψ(r′)δ(r − r′)r (17)

=
∫

d3r|ψ(r)|2r (18)

= 0 (19)

Therefore,
HI = −(d12|1⟩⟨2|+ d21|2⟩⟨1|) · E(t) (20)

where d12 = d21 = ⟨1|er|2⟩ = ⟨2|er|1⟩.
Using the Schrodinger equation, the evolution of state |Ψ(t)⟩ = a(t)|1⟩+ b(t)|2⟩ is given by

ih̄(ȧ|1⟩+ ḃ|2⟩) = h̄ω1a|1⟩+ h̄ω2b|2⟩ − d12 · E0 cos(ωt)b|1⟩ − d21 · E0 cos(ωt)a|2⟩ (21)

Thus,

ȧ = −iω1a + i
ΩR

2
(eiωt + e−iωt)β (22)

ḃ = −iω2b + i
ΩR

2
(eiωt + e−iωt)a (23)

Making the substitutions a = αe−iω1t, and b = βe−iω2t

α̇ = i
ΩR

2
(eiωt + e−iωt)βe−iω21t (24)

β̇ = i
ΩR

2
(eiωt + e−iωt)αeiω21t (25)

Then making the rotating wave approximation(ignore terms proportional to e±i(ω+ω21)t, we
have

α̇ = i
ΩR

2
ei(ω−ω21)tβ (26)

β̇ = i
ΩR

2
e−i(ω−ω21)tα (27)

where ΩR = d21·E0
h̄ is the Rabi frequency and ω21 = ω2 −ω1 is the transition frequency. From

the above two equations, we have

α̈ − i(ω − ω21)α̇ +
Ω2

R
4

α = 0 (28)

The solution has the form of C1eλ1t + C||2eλ2t, where the λ1 and λ2 are the solutions to the
equation

λ2 − i(ω − ω21)λ +
Ω2

R
4

= 0 (29)
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λ1,2 =
i(ω − ω21)±

√
−(ω − ω21)2 − Ω2

R

2
= i

(ω − ω21)±
√

Ω2
R + (ω − ω21)2

2
(30)

Define ∆ = ω − ω21 and Ω =
√

Ω2
R + ∆2, the solution of α and β (similar to α but with a

sign different) can then be written as

α = (C1eiΩt/2 + C2e−iΩt/2)ei∆t/2 (31)

β = (C3eiΩt/2 + C4e−iΩt/2)e−i∆t/2 (32)

C1, C2, C3, C4 is determined by the initial condition and . If |Ψ(t = 0)⟩ = |1⟩, we have

C1 + C2 = 1 (33)
C3 + C4 = 0 (34)
C1(Ω + ∆) + C2(−Ω + ∆) = 0 (35)
C3(Ω − ∆) + C4(−Ω − ∆) = ΩR (36)

which gives

C1 =
Ω − ∆

2Ω
(37)

C2 =
Ω + ∆

2Ω
(38)

C3 =
ΩR

2Ω
(39)

C4 =
−ΩR

2Ω
(40)

(b)

β(t) =
ΩR

2Ω
(eiΩt/2 − e−iΩt/2)e−i∆t = i

ΩR

Ω
sin

(
Ωt
2

)
e−i∆t (41)

The probability of being in the excited states is

P2(t) = |β(t)|2 =
Ω2

R
Ω2 sin2(

Ωt
2
) =

1
1 + (∆/ΩR)2 sin2(

Ωt
2
) (42)

5. For the resonant case,Ω = ΩR, ∆ = ω − ω21 = 0,the expectation value of the dipole moment
is given by

e⟨ψ(t)|r|ψ(t)⟩ = α∗βd1,2e−iω21 t + αβ∗d2,1eiω21 t = 2Re{α∗βd1,2e−iω21 t} (43)

= 2Re{(C∗
1 e−iΩt/2 + C∗

2 eiΩt/2)(C3eiΩt/2 + C4e−iΩt/2)d1,2e−iωt} (44)

= 2Re{(C∗
1 C3 + C∗

2 C4 + C∗
1 C4e−iΩt + C∗

2 C3eiΩt)d1,2e−iωt} (45)

Obvisouly, the dipole moment exhibits a fast modulation at the oscillation frequency(ω) of
the field as well as a slow amplitude modulation at Rabi frequency.

6. When is on resonace and if the initial condition is |Ψ(t = 0)⟩ = |1⟩, C1 = C2 = C3 = −C4 =
1/2.

e⟨ψ(t)|r|ψ(t)⟩ = 2 sin(Ωt/2) cos(Ωt/2) sin ωtd1,2 = sin(Ωt) sin ωtd1,2 (46)

U =
∫ π/Ω

0

∫
V

E(r0, t)
d
dt
⟨P(r0, t)⟩dVdt (47)
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Using the definition of Rabi frequency and integration over the space, U can be writtern as

U =
∫ π/Ω

0
h̄Ω cos(ωt){Ω cos(Ωt) sin(ωt) + ω sin(Ωt) cos(ωt)}dt (48)

Typically ω ≫ Ω, thus we could use sin(ωt) cos(ωt) = 0 and cos(ωt) cos(ωt) = 1
2 . There-

fore, from 0 to π/Ω ,

U =
∫ π/Ω

0
h̄Ωω sin(Ωt)dt = h̄ω (49)

atom absorb energy from the field. Similarly, from π/Ω to 2π/Ω

U =
∫ 2π/Ω

π/Ω
h̄Ωω sin(Ωt)dt = −h̄ω (50)

same amount of energy is given back to the field.

7.1 Solution : Coherent population trapping

Beforehand, we start by reminding what is meant by Rotating Wave Approximation. Under a uni-
tary transformation of the quantum states |ψ(t)⟩new = Û(t) |ψ(t)⟩, the unitary part of the dynam-
ics of the system described by the Hamiltonian Ĥ = Ĥ0 + Ĥint is modified. For a general change of
frame Û(t), in the Schrödinger picture we have the usual equation ih̄∂t |ψ(t)⟩ = Ĥ |ψ(t)⟩, where
the partial derivative with respect to time is noted as ∂t. We can derive the modified Schrödinger
equation in the new frame as (we omit the explicit time dependency)

ih̄∂t |ψ(t)⟩new = ih̄∂t
(
Û |ψ⟩

)
= ih̄(∂tÛ) |ψ⟩+ ih̄Û∂t |ψ⟩
=

(
ih̄∂tÛ + ÛĤ

)
|ψ⟩

=
(

ih̄(∂tÛ)Û† + ÛĤÛ†
)
|ψ⟩new

= Ĥnew |ψ⟩new .

(51)

This equation with Ĥnew = ih̄(∂tÛ)Û† + ÛĤÛ† represents the same system but in a different
frame. In the case of the RWA, this change of frame is performed by the operator Û(t) = exp

(
iĤ0t/h̄

)
(keep only interaction terms in the Schrödinger equation) and furthermore, we neglect all the
counter rotative terms (not energy conserving). These two operations lead in our case to the
Hamiltonian ĤRWA

new = ĤD. Note that we did not go back to the original frame, we shall keep
working in this so-called new frame for this exercise and we will drop the ”new” for convenience.

1. Now that the setup is clear, we want to use the Schrödinger equation for the evolution of
|Ψ⟩ = a(t) |a⟩+ b(t) |b⟩+ c(t) |c⟩ in this new frame (under the RWA). When both fields are
resonant ω1 = ωab and ω2 = ωac, the interaction Hamiltonian simplifies to

ĤD = − h̄
2
(ΩR1 |a⟩ ⟨b|+ ΩR2 |a⟩ ⟨c|+ h.c.) (52)

Upon projection of the Schrödinger equation for |Ψ⟩ onto the three states |a⟩, |b⟩ and |c⟩, we
obtain a set of coupled differential equations for the amplitudes.

ih̄∂ta(t) = ⟨a|ĤD|Ψ(t)⟩ = − h̄ΩR1

2
b(t)− h̄ΩR2

2
c(t)

ih̄∂tb(t) = ⟨b|ĤD|Ψ(t)⟩ = − h̄ΩR1

2
a(t)

ih̄∂tc(t) = ⟨c|ĤD|Ψ(t)⟩ = − h̄ΩR2

2
a(t)

(53)
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This system can also be written in its matrix form as

ih̄∂t

a(t)
b(t)
c(t)

 = − h̄
2

 0 ΩR1 ΩR2
ΩR1 0 0
ΩR2 0 0

a(t)
b(t)
c(t)

 (54)

Now we verify that the three states given are indeed eigenstates (otherwise just diagonalise
the matrix Hamiltonian).

|Ψ+⟩ =
1√
2

(
|a⟩+ Ω∗

R1
Ω

|b⟩+ Ω∗
R2

Ω
|c⟩

)
|Ψ0⟩ =

ΩR2

Ω
|b⟩ − ΩR1

Ω
|c⟩

|Ψ−⟩ =
1√
2

(
|a⟩ − Ω∗

R1
Ω

|b⟩ − Ω∗
R2

Ω
|c⟩

) (55)

We find that they are indeed normalised eigenstates, with respective eigenvalues of + h̄Ω
2 , 0,− h̄Ω

2 ,
where Ω =

√
|ΩR1|2 + |ΩR2|2.

2. Computing the transition amplitudes on resonance from |NC⟩ and |C⟩ to |a⟩ yields

⟨a|ĤD|NC⟩ = − h̄
2
(ΩR1 ⟨b|+ ΩR2 ⟨c|)

(
ΩR2

Ω
|b⟩ − ΩR1

Ω
|c⟩

)
= − h̄

2

(
ΩR1ΩR2

Ω
− ΩR2ΩR1

Ω

)
= 0

⟨a|ĤD|C⟩ = − h̄
2
(ΩR1 ⟨b|+ ΩR2 ⟨c|)

(
ΩR1

Ω
|b⟩+ ΩR2

Ω
|c⟩

)
= − h̄

2

(
Ω2

R1
Ω

+
Ω2

R2
Ω

)
= − h̄Ω

2
̸= 0

(56)

This shows exactly what we expect, namely that the state |NC⟩ is not coupled to |a⟩, whereas
|C⟩ is. It is the superposition of the two ground states that leads to a destructive interference
of population in the excited state.
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