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Exercise No.6

6.1 Quantization of coupled resonators

6.1.1

The Lagrangian of a classical LC circuit writes

L =
1
2

LI2 − q2

2C
=

1
2

Lq̇2 − q2

2C
(1)

6.1.2

Introduce the flux of the inductor by

Φ =
∂L
∂q̇

= LI (2)

which is the conjugate momentum of q. Hence the Lagrangian can be rewritten in terms of Φ
and q by

L =
Φ2

2L
− q2

2C
(3)

The Hamiltonian of the system is given by

H = Φq̇ − L =
Φ2

2L
+

q2

2C
(4)

6.1.3

Due to commutation relation [q, Φ] = ih̄, introduce ladder operators by

a =
1√

2Lh̄ω
Φ + i

1√
2Ch̄ω

q

a† =
1√

2Lh̄ω
Φ − i

1√
2Ch̄ω

q
(5)

where ω = 1/
√

LC is the resonance frequency of the LC circuit. The Hamiltonian is thus
rewritten by

H = h̄ω

(
a†a +

1
2

)
= h̄ω

(
n +

1
2

)
(6)

6.1.4

Let |n⟩ be the energy eigenstate with eigenvalue En, so

H|n⟩ = h̄ω

(
n +

1
2

)
|n⟩ (7)

Therefore the energy level is given by

En = h̄ω

(
n +

1
2

)
, n ∈ N (8)

At ground state |0⟩, we have
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⟨0|Φ|0⟩ =
√

2Ch̄ω

〈
0
∣∣∣∣ a + a†

2

∣∣∣∣ 0
〉

= 0

⟨0|q|0⟩ =
√

2Lh̄ω

〈
0
∣∣∣∣ a − a†

2i

∣∣∣∣ 0
〉

= 0

〈
0
∣∣Φ2∣∣ 0

〉
= 2Ch̄ω

〈
0
∣∣∣∣ a2 + a†2 + aa† + a†a

4

∣∣∣∣ 0
〉

=
1
2

Lh̄ω

〈
0
∣∣q2∣∣ 0

〉
= −2Lh̄ω

〈
0
∣∣∣∣ a2 + a†2 − aa† − a†a

4

∣∣∣∣ 0
〉

=
1
2

Ch̄ω

(9)

So the zero-point fluctuations for q and Φ are

qZPF = ⟨0|∆q|0⟩1/2 =
(〈

0
∣∣q2∣∣ 0

〉
− ⟨0|q|0⟩2)1/2

=

√
1
2

Ch̄ω

ΦZPF = ⟨0|∆Φ|0⟩1/2 =
(〈

0
∣∣Φ2∣∣ 0

〉
− ⟨0|Φ|0⟩2)1/2

=

√
1
2

Lh̄ω

(10)

6.1.5

The Lagrangian reads

L =
1
2

C1Φ̇2
1 +

1
2

C2Φ̇2 +
1
2

C0
(
Φ̇1 − Φ̇2

)2 − Φ2
1

2L1
− Φ2

2
2L2

(11)

or in a matrix form

L =
1
2

Φ̇CΦ̇ − 1
2

ΦL−1Φ (12)

where

C =

(
C1 + C0 −C0
−C0 C2 + C0

)
(13)

and

L−1 =

(
1
L1

0
0 1

L2

)
(14)

6.1.6

The canonical conjugate of Φ is

Qi =
∂L
∂Φ̇i

= CijΦ̇j (15)

Therefore Φ̇ = C−1Q and the Hamiltonian can be given in matrix form in terms of Q and Φ by

H =
1
2

QC−1Q − 1
2

ΦL−1Φ (16)

where

C−1 =
1

C1C2 + C1C0 + C2C0

(
C2 + C0 C0

C0 C1 + C0

)
(17)

and

L−1 =

(
1
L1

0
0 1

L2

)
(18)
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6.1.7

The Hamiltonian can be written in terms of matrix components by

H =
Q2

1
2

C−1
11 +

Φ2
1

2
L−1

11 +
Q2

2
2

C−1
22 +

Φ2
2

2
L−1

22 +
Q1Q2

2

(
C−1

12 + C−1
21

)
(19)

where the first 4 terms represent the contribution of two independent systems and the last
term represents the coupling term. Define for i = 1, 2

ai =

√
L−1

ii
2h̄ωi

Φi + i

√
C−1

ii
2h̄ωi

Qi

a†
i =

√
L−1

ii
2h̄ωi

Φi − i

√
C−1

ii
2h̄ωi

Qi

(20)

Then the Hamiltonian can be rewritten as

H = H1 + H2 + V (21)

where

Hi = h̄ωi

(
a†

i ai +
1
2

)
, i = 1, 2

V = −1
2

βh̄
√

ω1ω2

(
a1 − a†

1

) (
a2 − a†

2

) (22)

where ωi and β are defined by

ωi =
√

C−1
ii L−1

i

β =
C−1

12 + C−1
21

2
√

C−1
11 C−1

22

=
C0√

(C2 + C0) (C1 + C0)

(23)

6.1.8

As shown in (23), the system energy can be obtained by

Esys = E1 + E2 = h̄ω1

(
n1 +

1
2

)
+ h̄ω2

(
n2 +

1
2

)
(24)

where ni ∈ N; the coefficient in V is also given by (23) and (24).

6.2 Anharmonicity of transmon qubits

(a) We simply use the Taylor expansion of the cosine to the lowest order cos φ̂ ≈ 1 − φ̂2

2 . Plugin it
in the Hamiltonian together with the definition of n̂ and φ̂ yields

Ĥ = 4ECn̂2 − EJ cos φ̂

≈ 4ECn̂2 + EJ
φ̂2

2
− EJ

= −4EC

√
EJ

8EC

1
2

(
â − â†

)2
+ EJ

√
2EC

EJ

1
2

(
â + â†

)2
− EJ

=

√
EJEC

2

(
−â2 + ââ† + â† â −

(
â†
)2

+ â2 + ââ† + â† â +
(

â†
)2
)
− EJ

=
√

2EJEC

(
ââ† + â† â

)
− EJ =

√
8EJEC

(
ââ† +

1
2

)
− EJ .

(25)
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The approximation that we obtain is the Hamiltonian of a Quantum Harmonic Oscillator, and
it is clear that on this level we have an equal spacing of the energy levels.

(b) The fourth order expansion leads to an additional quartic term in the cosine as cos φ̂ ≈
1 − φ̂2

2 + φ̂4

24 , which corresponds to a Hamiltonian correction of Ĥcorr = −EJ
φ̂4

24 . Since we
want to compute the energy correction of this term, only the contributions with an identical
number of raising â† and lowering â operators will be non-vanishing (terms such as â† â3 will
not contribute to ⟨n|Ĥcorr|n⟩). Indeed, one can show that only terms in power of n̂ = â† â
contribute

⟨n|Ĥcorr|n⟩ = −EJ

24
⟨n|φ̂4|n⟩ = −EC

12
⟨n|
(

â + â†
)4

|n⟩

= −EC

12
⟨n|
(

â2 +
(

â†
)2

+ 2n̂ + 1
)2

|n⟩

= −EC

12
⟨n|
(

4n̂2 + 4n̂ + 1 + â2
(

â†
)2

+
(

â†
)2

â2

+ â4 +
(

â†
)4

+ 2â2 + 2
(

â†
)2

+ 2â2n̂ + 2n̂â2 + 2
(

â†
)2

n̂ + 2n̂
(

â†
)2
)
|n⟩

= −EC

12
⟨n|
(
4n̂2 + 4n̂ + 1 + n̂2 + 3n̂ + 2 + n̂2 − n̂

)
|n⟩

= −EC

12
⟨n|
(
6n̂2 + 6n̂ + 3

)
|n⟩ = −EC

12
(
6n2 + 6n + 3

)
(26)

Hence the n-th corrected energy level becomes

Ecorr
n =

√
8EJEC

(
n +

1
2

)
− EJ −

EC

4
(
2n2 + 2n + 1

)
(27)

Additionnally, the energy difference between the n and the n + 1 state is

∆Ecorr
n = Ecorr

n+1 − Ecorr
n =

√
8EJEC − EC (n + 1) . (28)

Now the anharmonicity is expressed as

η = (∆Ecorr
1 − ∆Ecorr

0 ) /h̄ = Ecorr
n+1 − Ecorr

n = −EC

h̄
. (29)

(c) Considering the relative anharmonicity ηr, we compute that

ηr = h̄η/E10 =
−EC√

8EJEC − EC
=

1
1 −

√
8EJ/EC

−→
EJ /EC≫1

−
√

EC

8EJ
∼ (EJ/EC)

−1/2
(30)
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