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Quantum Electrodynamics and Quantum Optics
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Exercise No.6

6.1 Quantization of coupled resonators
6.1.1

The Lagrangian of a classical LC circuit writes

1 ? 1. ., ¢
L= LP- 1 =L~ 1 1
2 T2c 21 7 ac @
6.1.2
Introduce the flux of the inductor by
D= oL _ LI (2)

i
which is the conjugate momentum of 4. Hence the Lagrangian can be rewritten in terms of ®
and g by

q)Z qZ
=5 " aC )
The Hamiltonian of the system is given by
_ <I)2 qZ

6.1.3

Due to commutation relation [q, ®] = ifi, introduce ladder operators by

1 1
a= D+
v2Lhw v2Chw 1
1 1
+

a = Db —
v2Lhw v2Chw 1

where w = 1/+/LC is the resonance frequency of the LC circuit. The Hamiltonian is thus

rewritten by
H=hw <a+a—|—;> = hw <n—|—;> (6)

)

6.1.4

Let |n) be the energy eigenstate with eigenvalue E,, so

H|n) = hw <n—|—;> |n) (7)
Therefore the energy level is given by
1
En:hw<n—i—2>, neN (8)

At ground state |0), we have
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a+at

(0[®]0) = v2Chw <o

0) =0
0> 0

(0[a]0) = v2Lhw <0

©)

12
(0|®2|0) = 2Chew <o @t +”” tala o> = %Lhw
2 qt2 _
(0|¢% 0) = —2Lhw <0 @ +at—ad —da > %Chw
So the zero-point fluctuations for g and P are
1/2 1
gzer = (01Aq]0)'/2 = ({0 |4?[0) — (0lg[0)%) ™~ = y/ 5 Chw 10)

®pr = (0]AD|0)/2 = ((0]®2] 0) — (0|D|0)2) " = %Lhw

6.1.5

The Lagrangian reads

L= C1<I> + CzCD + CO (D1 — Dy) oL, 2L, (11)
or in a matrix form
1. . 1. .4
L= §<I>C<I> — ECDL D (12)
where
Ci1+ Gy —Cy
C= 1
< —Cy G+ CGo > (13)
and
1
- 0
L= &b ] (14)
< 0 )
6.1.6

The canonical conjugate of @ is

oL .
Qi = % Cij®; (15)

Therefore ® = C~'Q and the Hamiltonian can be given in matrix form in terms of Q and ® by

- lacio-ler e (16)
where
_ 1 G+ G Co
cl= 17
C1C + C1Cy + GGy < Co Ci+Go A7)
and

. 1
L7t=( L
[

2

) (18)

S— o



Lol = ] Prof. T.J. Kippenberg
P L Fall Term 2024

6.1.7

The Hamiltonian can be written in terms of matrix components by

chzz —|——L22 +Q1Q2

H= 1C11 - 1L11 - (C;21+C;11) (19)

where the first 4 terms represent the contribution of two 1ndependent systems and the last
term represents the coupling term. Define fori = 1,2

— i &p. : ii
ai 2hw; i1 o lQl
(20)
Lt c:!
t ii . il
t— D; —
g 2hw; ! 2hw; Qi
Then the Hamiltonian can be rewritten as
H=H+H,+V (21)
where
t 1 )
Hi:hwi aiai+§ ’ 1:1,2
(22)

Vv = — gt (o~ af) (12— al)

where w; and B are defined by

wi =/C 'L
Cp +Cy' _ Co (23)
2\/Cﬁ1C{21 \/(Cz + Co) (C1 + Co)

B =

6.1.8
As shown in (23), the system energy can be obtained by
Esys = E1 + Ex = hawy <n1 + ;) + hwy <n2 + ;) (24)
where n; € IN; the coefficient in V is also given by (23) and (24).
6.2 Anharmonicity of transmon qubits

(a) We simply use the Taylor expansion of the cosine to the lowest order cos ¢ ~ 1 — %2. Plugin it
in the Hamiltonian together with the definition of 71 and ¢ yields

H = 4Ech® — E]COng)

EI A A-r 2Ec1 A-r 2
— _4Fc 2L L s _E
\/ 8Ec (a-a E E 2( +a) —E (25)
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(b)

(©)

The approximation that we obtain is the Hamiltonian of a Quantum Harmonic Oscillator, and
it is clear that on this level we have an equal spacing of the energy levels.

The fourth order expansion leads to an additional quartic term in the cosine as cos § ~

1-—- %2 + 2%, which corresponds to a Hamiltonian correction of H®™ = —F ]f—:. Since we
want to compute the energy correction of this term, only the contributions with an identical
number of raising 4" and lowering @ operators will be non-vanishing (terms such as 443 will
not contribute to (n|H®™|n)). Indeed, one can show that only terms in power of # = ata
contribute

N E E 4
(| A" |n) = = (n|¢*n) = =5 (nl (a+3") |n)
E 2

=5 nl (a2+(a*) —|—2ﬁ+1) 1)

_ _% (] <4ﬁ2 + 471+ 1+ 2> (ﬁ*)2 + (ﬁ*)zﬁz

N

4 2 2 2
+a4+(a*) +2ﬁ2+2(a*) +2a2ﬁ+2ﬁﬁ2+2(a*) A+ 20 (a*) )\n>

Ec

= - (| (472 + 47+ 1+ A% + 3a + 2+ 7% — 71) |n)
E E
= ‘TS (n] (60 + 67 +3) |n) = _TS (61> + 6n +3)
(26)
Hence the n-th corrected energy level becomes
corr 1 EC 2
E™ = \/8E/Ec nt s —E]—Z(Zn +2n+1) (27)

Additionnally, the energy difference between the n and the n + 1 state is

AEP™ = E° — EX°™" = /8EJEc —Ec(n+1). (28)
Now the anharmonicity is expressed as

E
n = (AEP™" — AE®™) /h = E;° — EX™ = —?C. (29)
Considering the relative anharmonicity #,, we compute that
—E 1
Hy =hy/E = 2 =

VBEEc —Ec 1—,/8E/Ec

£ (30)
C —-1/2

—  —/ o ~ (EJ/E

E]/Ec>>1 8E] ( ]/ C)




