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Exercise No.6

6.1 Quantization of coupled resonators1

In this exercise we aim to quantize a coupled pair of electrical oscillators using the second quanti-
zation principle.

1. Consider a single LC circuit. Write down the Lagrangian of the system in terms of q (the
capacitor’s charge), and I (the inductor’s current). (Hint: you may use the circuit-mechanics
analogy of L ∼ ”mass” and 1

C ∼ ”spring constant”)

2. Rewrite the Lagrangian in terms of inductor’s flux Φ and q. Show that Φ and q are canoni-
cally conjugate variables, by checking the derivatives of the Lagrangian. Then, express the
Hamiltonian of the system.

3. Following the second quantization principle, consider canonical conjugate variables as oper-
ators with the standard canonical commutation relation ([q̂, Φ̂] = −ih̄). Derive the quantized
Hamiltonian and express it in terms of unit-less creation and annihilation operators (â† and
â). Write down the definition of â† and â in terms of q̂ and Φ̂.

4. Calculate energy levels of the system and zero-point-fluctuation of charge qZPF and flux
ΦZPF, i.e. ⟨0|∆Ô2|0⟩1/2.

5. Now consider a pair of capacitively coupled resonators (Fig. 1). Write down the Lagrangian
of the system in terms of Φ1, Φ2, Φ̇1, and Φ̇2. Express it in the matrix form (L = 1

2 Φ̇CΦ̇ −
1
2 ΦL−1Φ), and find C and L−1 matrices. (Hint: Φ̇i is the voltage difference of Li)

Figure 1: Capacitively coupled electricalresonators.

6. Show that the canonical conjugate is Q = CΦ̇, and derive the Hamiltonian in the matrix
form in terms of canonical conjugate variables.

7. Given the definitions below, expand the Hamiltonian in terms of Q1, Q2, Φ1, and Φ2. Show
that the Hamiltonian can be expressed as system and coupling terms (H = H1 + H2 + V).

ω2
i ≡ (C−1)ii

Lii
, β ≡ C0√

(C1 + C0)(C2 + C0)
1Circuit QED Girvin Les Houches - chap 2-4
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8. Using the second quantization principle, express the quantized Hamiltonian in terms of
annihilation an creation operators. Find energy levels of the system Hamiltonians (Ĥ1 and
Ĥ2) and the coupling coefficient in V̂.

6.2 Anharmonicity of transmon qubits2

The name ’Transmon qubit’ is an abbreviation of the term transmission line shunted plasma os-
cillation qubit. It is closely related to a Cooper-pair box, while operating in a regime where
EJ/EC ≫ 1. The Hamiltonian of a transmon qubit is3

H = 4ECn̂2 − EJ cos φ̂,

where n̂ = −i
(

EJ
8EC

)1/4
1√
2

(
â − â†) and φ̂ =

(
2EC
EJ

)1/4 (
â + â†) is the conjugate pair of position

and momentum, EC = e2

2CΣ
is the Coulomb charging energy corresponding to one electron on the

total junction capacitance CΣ
4, and EJ is the Josephson energy. 5

(a) Expand for small φ̂ and show the Hamiltonian to the lowest order is Ĥ0 ≈
√

8EJEC(â† â +
1/2). Therefore, under the lowest level of approximation, energy levels are equally spaced
and anharmonicity is absent.

(b) Now we apply perturbation theory to calculate the anharmonicity defined as η ≡ (E21 −
E10)/h̄. Expand cos φ̂ up to the fourth order of φ̂ in the Hamiltonian, derive the corrected
energy level for transmon qubit. (in terms of EC, EJ , and state index m)

(c) Define relative anharmonicity ηr as ηr ≡ h̄η/E10. Show how ηr scales with EJ/EC as EJ/EC ≫
1.

Figure 2: Circuit diagram of the transmon qubit.2

6.3 Numerical solution of the Cooper-pair box Hamiltonian(*)6

The Hamiltonian of a Cooper-pair box with bias voltage Vg is

H = 4EC(n̂ − ng)
2 − EJ cos φ̂,

2Koch, Jens, et al. ”Charge-insensitive qubit design derived from the Cooper pair box.” Physical Review A 76.4
(2007): 042319.

3Note that in some literature φ̂ is refered to as δ̂. Also φ̂ is not to be confused with the magnetic flux Φ.
4The definition of EC may vary in different literatures. If EC is defined as the charging energy of one cooper-pair,

i.e. EC = (2e)2

2CΣ
, the factor 4 will be omitted.

5refer to M. H. Devoret et al., Superconducting Qubits: A Short Review, for more information
6Graded exercise
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where ng =
CgVg

2e is the reduced gate charge.
In this exercise, we will numerically diagnolise the CPB Hamiltonian in charge basis and plot

the energy levels. To diagnolise the CPB Hamiltonian, we need to obtain the representation of
cos φ̂ in charge basis.

(a) Show that U±n̂U†
± = n̂ ∓ 1, where U± = e±iφ̂ ≡ 1

2π

∫ 2π
0 dφeiφ|φ⟩⟨φ|. Further show that the

Hamiltonian in charge basis is

H = ∑
n
[4EC(n − ng)

2|n⟩⟨n| − EJ

2
(|n⟩⟨n + 1|+ |n + 1⟩⟨n|)]

(Hint: use conjugation relationships |φ⟩ = ∑+∞
n=−∞ einφ|n⟩, |n⟩ = 1

2π

∫ 2π
0 dφe−inφ|φ⟩ to show that

eiφ̂|n⟩ = |n − 1⟩)

(b) Numerically diagnolise the Hamiltonian obtained in (a), plot the first 3 energy levels in terms
of ng for EJ/EC = {1, 5, 10, 50}.

(c) Finally compare the numerical result to the asymptotic expressions of the charge dispersion
and anharmonicity given in the Koch 2007 paper7. Reproduce fig. 4(a) and fig. 5(a) shown in
the paper.

Figure 3: Electrical scheme of a Cooper-pair box.8

7Koch, Jens, et al. ”Charge-insensitive qubit design derived from the Cooper pair box.” Physical Review A 76.4
(2007): 042319.
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