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Quantum Electrodynamics and Quantum Optics
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Exercise No.5

5.1 Balanced Homodyne Detection
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Figure 1: Scheme of a balanced homodyne detection.

The balanced homodyne detection! is simply the balanced version of homodyne detection. It has
the great practical advantage of canceling technical amplitude noise in the local oscillator. The
principle scheme of the balanced homodyne detector is depicted in Fig. 1. The signal interferes
with a coherent laser beam (local oscillator) |a o) with much larger intensity at a well-balanced
50 : 50 beam splitter. After the optical mixing of the signal with the local oscillator, each emerg-
ing beam is directed to a photodetector. The photocurrents I; and I, are measured, electronically
processed and finally subtracted from each other. The difference I; = I, — I; is the quantity of in-
terest because it contains the interference term of the local oscillator and the signal. We assume for
the ideal case that the measured photocurrents I; and I, are proportional to the photon numbers
711 and 71, of the beams incident on each detector.

1. First by neglecting the added beam splitter at the signal path, and assuming perfect de-
tection efficiencies of both detectors, try to calculate the fluctuation of the photon number
difference (A73,) = (A(fip — 71)?) = (A(\zxLo\}A(Zngo )?) which is proportional to the detected
photocurrent I;. Here we consider a perfect 50 : 50 ratio beam splitter and a much stronger
coherent local oscillator.

2. Now show that at the presence of classical local oscillator amplitude noise (Gaussian) of the
mean photon flux (N1 o) = (n0) + JN, the balanced scheme suppresses the classical noise
compared to a normal homodyne scheme with just a single detector.

3. In real experiment, the detection efficiency are not perfect, and signal loss can affect the de-
tection noise feature. Here we model the signal loss by inserting a beam splitter with Fresnel

IThe exercise was made based on “Measuring the quantum state of light” by Ulf Leonhardt Chap 4.
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coefficients r and t. The other input port of the beam splitter is vacuum as illustrated in
Fig. 1. Calculate and show that if the signal is a squeezed coherent state |, ¢), the squeezing
effect detected by the balanced homodyne at different optical quadratures will degrade due
to the vacuum input through the added beam splitter.

5.2 Squeezing in homodyne detection

Consider a homodyne detection setup as shown in figure 2. The signal is injected into the beam-
splitter through port a (with annihilation operator @), and local oscillator is injected through port b
(with annihilation operator b). The output light at port ¢ (with annihilation operator ¢) is detected
with a photodetector. For simplicity assume the beamsplitter to be 50:50 (1 = 0.5). The local oscil-
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Figure 2: a homodyne detection setup

lator is a strong coherent state |B). The output photocurrent of the photodetector, I is proportional
to ¢*é (for simplicity assume [ = ¢*¢).

(a) Consider the input signal is a coherent state |«). Compute mean and variance for the pho-

tocurrent, (I) and AI> = ((I — (I))?). Compute the signal to noise ratio (SNR) defined as

SNR = \/%2 and simplify it for |B| > |«|.

(b) Repeat the previous part for a squeezed input state |0, &) = $(¢) |0).

5.3 Wigner function marginal distributions

1. An arbitary state |a) can be projected on coordinate and momentum states |x) and |p) to
obtain coordinate- and momentum-state wavefunctions ¢(x) = (x|a) and ¥(p) = (pla).
These wafefunctions are related to each other through Fourier transform:

(p) = dx

| (x)|? and | (p)|? represent the probability distribution functions for position and momen-
tum. Can these distributions be obtained as marginal distributions from a joint probability
for position and momentum? No, since the existence of such a function would imply that
position and momentum may be simultaneously well defined! However, the Wigner func-
tion is very close to such an entity for a pure state p = |¢) (¢|:

e P M (x). 1)

I A u
Wi p) = [ orge ™M (x=3) w (x+3), @
since it indeed gives the marginals upon integration:
[ap Wis,p) = [p(), (3a)
[axwixp) = lg(p)P (3b)

Show the results from Egs. (3).
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The dynamics of W(x, p) is quite remarkable, since it is very similar to classical transport equation:

oW

ot
where { H, W} is a Poisson bracket. However, one should still keep in mind that W cannot be consid-
ered a classical function, since it may be negative in some regions of phase space.

= —{H,W}+0(1?), (4)

2. Now let us consider some particular examples.

(a) For a momentum state
e~ ipx/h
O ®)

one can obtain the following Wigner function:

W(g,p) = 5.50(p ~ P, ©)

(b) For a stationary wave, which is a coherent superposition of two states of opposite mo-
mentum,

P(x) = \/Zihcospx/h, (7)

one can obtain:
1 2px
W(g.p) = gz 1600 )+ 0(p + )] - cos (22 o), ®
Show the results from Egs. (6) and (8) and try to explain why these two cases are different.

5.4 Wigner-Ville distribution(*)?

The Wigner distribution was introduced to signal analysis by Ville* inspired by the Wigner paper.
In this area of science, it is called Wigner-Ville distribution, defined in terms of signal, s(t), and its
spectrum, S(w):°

W(t,w) = % /drs*(t —1/2)s(t+1/2)eWT (9a)

— % /dGS*(w +6/2)S(w —6/2)e ", (9b)

1. Knowing that signal and its spectrum are related to each other via Fourier transform:

1 .
s(t :—/Swe“"tdw, 10
()= [s(@) (10
prove the equivalence of Egs. (9a) and (9b).
2. Show that the Wigner distribution is real, even if the signal is complex.

3. For which condition on s(t), the Wigner-Ville distribution will be equal for frequencies w and
—w? And, on the other side, which condition must be satisfied for S(w) to have Wigner-Ville
distribution symmetric in time ¢? Hint: real signals have symmetrical spectra and vice versa.

2For more information, see Nonequilibrium Quantum Field Theory book by Calzetta and Bei-Lok (part 3.3.1 Wigner
functions)

3Graded exercise

4Ville, J. “Theorie et application dela notion de signal analytique.” Cables et transmissions 2.1 (1948): 61-74.

5For more information, see Time-Frequency Analysis book by Cohen (Chapter 8 The Wigner distribution)
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4. Show that the Wigner-Ville distribution satisfies time-frequency marginals:

/ W(tw)dw = [s(t)2, (11a)

/ W(t,w)dt = |S(w)]2. (11b)
Hint: do it in the same manner as for the quantum-mechanical Wigner function relatively to coordinate-
and momentum-domain probabilities.

5. Show that the first mixed moment of the Wigner-Ville function,

(tw) = // tw W(t,w) dtdw, (12)

gives the covariance of the signal Covy, o (tw;), where w; is an instantaneous frequency.
Hint: integrate over one of the variables.

6. Try to plot the Wigner-Ville distribution of the following example signal:

O<t<t A cos wqt
hh<t<t 0
fy <t <t A cos wyt

with A =1 wp =21 x10 xk, k € {1,2}



