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Quantum Electrodynamics and Quantum Optics
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Solutions to Exercise No.4

4.1 Quasi-probability distributions: Wigner-Weyl distribution

First focus on the definition of the characteristic function:
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Where the ()s means symmetry ordered, for example:
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Then we consider the expectation values of those operator averages, from the above expansion of
the characteristic function, we know that:
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Now we go back to the definition of the Wigner function, which is a Fourier transform of the
characteristic function:
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Let’s do an inverse Fourier transform:
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Now it becomes obvious that:
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For a special case in the problem we thus have:

1<aa*+ﬁ*a> = /W(oc,oc*) |22 )

4.2 Solution : Hanbury Brown-Twiss effect for thermal and laser light

Considering the light emitted by to independent sources S and S’ into the modes with wave
vectors k and k' # k respectively (otherwise there is no interference pattern). Assuming that
w = c|k| = c|K| and that the polarization vectors (e;) are parallel. The electromagnetic fields can
be expressed simply by using

1 ; ol
E(+) (rif t) = E]\gaceilwt (ﬁkelk.ri + ﬁk/elk Ti)

. , (10)
E(f)(rj’ t) — E}\(Iacezwt (a e iker) + lZ e —ik -rj> )
We can now compute the second order correlation function with:
G(z) (1'1, 1;t, f) = <E(_) (1'1, t)E(_) (1'2, t)E(+) (I‘z, t)E(+) (1'1, t)> (11)

Beforehand, we notice that because this is the identical time correlation function and similar fre-
quencies, all time phases will vanish / be compensated so we will not write them. Additionally,

let us adopt the shorthand notation d;(j) = 4;e’*¥, then we compute

G(Z) (1'1, 12, t, t) = <E(_) (I‘l, t)E(_) (1‘2, t)E(+) (1‘2, t)E(+) (1'1, t)>

Using the commutation relations, (A, 4},] = 6(k — k') and [a, 4x] = [a],4],] = 0, we notice that

. . 2,
the second parentheses contains only terms such as (a,t) Ay or af,a7az or (af)” a2, Since we will

use a diagonal density matrix of the form p = Y, P(n)|n)(n|, all these non-diagonal terms will
vanish when k # K/, leaving only the diagonal elements of the first parenthesis, which we can
rewrite as

G (ry, ro;t,t) = (E}*)* <ﬁ,’§ﬁ{ﬁkak +atal agap (1 n e—i(k—k’).(rl_r2)>
(12)
i aapa + )i (140K ) >

Now if the average photon number is the same for both modes (1) = (ny) = (ny) and (n?) =
(n2) = (ni,>, using the commutation relations we get

G(z)(l‘l,l‘z; t, t) = (EZaC)4 <ﬁ% — ﬁk + ﬁ%/ — ﬁk/ + 2ﬁkﬁk/ (1 + COS{(k — k/) . (1‘1 — 1‘2)}) >
(13)
=2 (Ey*)* <<ﬁ2> —(A) + ()* {1+ cos[(k — K') - (11 — )]} )
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1. For a thermal light, which follows the Bose-Einstein statistics given by the density matrix
P = ZW\”)( n| = Y(1—e P)e"Pln)(n|, where (n) = 1/(e"/"T —1) = 1/(ef — 1),
n
we compute the average (n?) as
n)"
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It follows that the correlation function can now be expressed as

(14)

G (ry, 15t t) = 2 (Ey*)* (2<ﬁ>2 + ()2 {1+ cos[(k —K) - (r; — )]} ) (15)

2. Finally, we use an identical procedure for a laser source high above threshold (i.e. a phase-
diffused coherent state) given by the density matrix p = e~ % % |n) (n| (notice that it is

not possible to express the density matrix as p = |a)(«| due to the phase diffusion). Since
the probabilities now follow the Poisson distribution, we use the property (An?) = (An?) —
(n)? = (n) to infer the value of (n?) = (n) + (n)?. Therefore, the correlation function is

G (ry, rp;t,t) = 2 (Ey*)* <(ﬁ>2 + (M2 {1+ cos[(k — k') - (11 — 12)]} ) (16)

Solution: ¢(?) (1), second order intensity autocorrelation: Measuring quantum statistics
and effects of light

One of the applications of the second order correlation function is to distinguish between dif-
ferent light sources, particularly classical from non-classical light. The normalized second order
correlation function is defined as:

(EOMEO+DEN (t+ )ED(1) (@' (1)a(t+ 1)
(EC(HED)(1))? N (at(t)a(t

1. Show that g'?) (T — 0) has the following form:

(0 )

2) (7} — a

AR% — (7
where fi is the number operator with AR?, being the variance in photon number.
According to the definition of second order autocorrelation function Eq. 17, we have
st At st A A . N2 /a2 . .
(g = (HA8) _ (@A) — @) _ (%)= ()4 (W)~ (m) _ | AR =) g
(ata)” (ata)* (n)° (n)®

2. Re-calculate Eq. (18) for:

(a) a coherent state |)
(b) a Fock state |n)

(c) astate |) = wg |0) + aq |1), where a;(i = 0,1) are complex coefficients of vacuum and single
photon states.
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(d) a squeezed vacuum state |€)

Using your results, determine if these states are classical or non-classical, knowing the fact that for a
non-classical state g¥(0) < 1.

(a) For a coherent state |a), (7) = A2 = |a|?, therefore we have

o’ —|a?] _

g?0) =1+ - 1 (20)

||
It is a classical state.

(b) For a Fock state |n), (1) =n, (A#?) = n? An? = 0, therefore we have:

0—mn 1—1<1 n>0
= n

n? 1 n=0

(21)

It is a non-classical state if # > 0 and a classical state if # = 0, i.e. a vacuum state.
(c) For a superposition state () = ag |0) + ay [1), () = |w1]?, (72) = ||, A2 = |ag|* —
|a1|*, therefore we have

(22)

It is a non-classical state.

(d) For a squeezed state |¢) = $(e€) |0), where € = re?, we have (1) = sinh®(r), An? =

sinh?(2r) /2, therefore we have

sinh?(2r) /2 — sinh?(r)
sinh*(r)
25sinh?(r) cosh?(r) — sinh?(r)
sinh?(r) (23)
2cosh?(r) — 1
sinh?(r)

=2 + coth?(r) > 1

g (0) =1+

=1+

=1+

Even though ¢(?)(0) > 1, we cannot say that the squeezed vacuum is a classical state
since squeezing is indeed a non-classical quantum signature. Here we cite a more gen-
eral criterion of non-classical state: a state represented with negative or singlar value in
Glauber-Sudarshan quasidistribution can be referred as a non-classical state !.

Solution: Hong-Ou-Mandel effect

1. (a) From the homework 3 we know the relation between annihilation/creation operators of

the modes
. 1 .+ .
iy = 7@( §+iaj) (24)
1 .+ .
8y = —(ial + a}) (25)

V2
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Therefore,
|)out = 1 13 17(0)1]0)2 (26)
= %(ﬁ;H +ia} ;) (103 + 44 1)]0)1|0)2 (27)
= Sy + 8y — iy + il ) |00} 28)

1,. .
= E(Z|1'H>3|1' Vis+ 1|1, H)3|1, V)s— |1, V)3|1, H)g +i|1, H)4|1, V)4) (29)

(b) The probability of detecting one photon in each output port is

(L HIs(L V1) o 2+ (1, V(L HI o) = 5+ 5 = 5 0)
(c) The probability of detecting photon pairs in each output port is
(L 5L V) ) P = (01, V1L, Hla) [our) P = @
2. When the two single photons are indistinguishable,the output state
“P)out = ﬁI,HﬁE,HIOM ’0>2 (32)
= 2@ 1) (185 4 851)[0)1]0) 33)
= 2}l + 88488 1y — &l + i8] 250) 01102 (34)
= (V212 Hys o+ [1H)slL, H)s — [LH |1 H)y + V22, H),) (39
= (2, H)al0)a-+ 10, Haf2, H)s) @)

is NOON state with N = 2. (b) The probability of detecting one photon in each output port
is obviously 0. (c) The probability of detecting photon pairs in port H is

1 1

2, H|3(0 ou 2= (=== 37
| (€2, H3(0[a) [$out) | (ﬂ) 5 (37)
Similarly, the probability of detecting photon pairs in port V is
(O, Hl) o) P = (= = 5 @)
4 \/E 2

. For figure a, the probability of detecting one photon in each output port is 11/20 ~ %, the
probability of detecting photo pairs in port H is 5/20 = 1/4,probability of detecting photo
pairs in port Vis 4/20 ~ 1/4. For figure b, probability of detecting photo pairs in port H is
10/20 = 1/2,probability of detecting photo pairs in port Vis 9/20 ~ 1/2. The experimental
result follows what we predicted.



