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Solutions to Exercise No.4

4.1 Quasi-probability distributions: Wigner-Weyl distribution

First focus on the definition of the characteristic function:

C(s) (β, β∗) = Tr
(

eiβâ†+iβ∗ âρ
)

(1)

Expand the exponential term inside:

eiβa†+iβ∗a =
∞

∑
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1
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(
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=
∞
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1
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(
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S
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∞
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∞
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(
a†nam−n

)
S

=
∞
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n=0

∞
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(
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(2)

Where the ()S means symmetry ordered, for example:(
a†a

)
S
≡ 1

2

(
a†a + aa†

)
(

a†2a
)

S
≡ 1

3

(
a†2a + a†aa† + aa†2

)
(

a†a2
)

S
≡ 1

3

(
a†a2 + aa†a + a2a†

) (3)

Then we consider the expectation values of those operator averages, from the above expansion of
the characteristic function, we know that:〈(

a†paq
)

S

〉
≡ tr

[
ρ
(

a†paq
)

S

]
=

∂p+q

∂ (iβ)p ∂(iβ∗)q C(s) (β, β∗)

∣∣∣∣
β∗=β=0

(4)

Now we go back to the definition of the Wigner function, which is a Fourier transform of the
characteristic function:

W (α, α∗) =
1

π2

∫
d2βe−iβα∗−iβ∗αC(s) (β, β∗) (5)

Let’s do an inverse Fourier transform:

C(s) (β∗, β) =
∫

d2αW (α, α∗) eiβα∗eiβ∗α (6)

Now it becomes obvious that:〈(
a†paq

)
S

〉
=

∂p+q

∂ (iβ)p ∂(iβ∗)q

∫
d2αW (α, α∗) eiβα∗eiβ∗α

∣∣∣∣
β∗=β=0

=
(
α∗pαq

)
W ,

(7)

with: (
α∗pαq

)
W ≡

∫
d2αW (α, α∗) α∗pαq (8)
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For a special case in the problem we thus have:

1
2

〈
ââ† + â† â

〉
=

∫
W (α, α∗) |α|2d2α (9)

4.2 Solution : Hanbury Brown–Twiss effect for thermal and laser light

Considering the light emitted by to independent sources S and S′ into the modes with wave
vectors k and k′ ̸= k respectively (otherwise there is no interference pattern). Assuming that
ω = c|k| = c|k′| and that the polarization vectors (ϵk) are parallel. The electromagnetic fields can
be expressed simply by using

E(+)(ri, t) = Evac
k e−iωt

(
âkeik·ri + âk′eik′·ri

)
E(−)(rj, t) = Evac

k eiωt
(

â†
k e−ik·rj + â†

k′e
−ik′·rj

)
.

(10)

We can now compute the second order correlation function with:

G(2)(r1, r2; t, t) = ⟨E(−)(r1, t)E(−)(r2, t)E(+)(r2, t)E(+)(r1, t)⟩ (11)

Beforehand, we notice that because this is the identical time correlation function and similar fre-
quencies, all time phases will vanish / be compensated so we will not write them. Additionally,
let us adopt the shorthand notation âk(j) = âkeik·rj , then we compute

G(2)(r1, r2; t, t) = ⟨E(−)(r1, t)E(−)(r2, t)E(+)(r2, t)E(+)(r1, t)⟩

= (Evac
k )4

〈(
â†

k(1) + â†
k′(1)

) (
â†

k(2) + â†
k′(2)

)
(âk(2) + âk′(2)) (âk(1) + âk′(1))

〉
= (Evac

k )4
〈(

â†
k(1)â†

k(2)âk(2)âk(1) + â†
k(1)â†

k′(2)âk(2)âk′(1) + â†
k′(1)â†

k(2)âk′(2)âk(1)

+â†
k(1)â†

k′(2)âk′(2)âk(1) + â†
k′(1)â†

k(2)âk(2)âk′(1) + â†
k′(1)â†

k′(2)âk′(2)âk′(1)
)

+
(

â†
k(1)â†

k(2)âk(2)âk′(1) + â†
k′(1)â†

k′(2)âk′(2)âk(1) + â†
k(1)â†

k(2)âk′(2)âk(1)

+ â†
k′(1)â†

k′(2)âk(2)âk′(1) + â†
k(1)â†

k′(2)âk′(2)âk′(1) + â†
k′(1)â†

k(2)âk(2)âk(1)

+ â†
k′(1)â†

k(2)âk′(2)âk′(1) + â†
k(1)â†

k′(2)âk(2)âk(1) + â†
k(1)â†

k(2)âk′(2)âk′(1)

+ â†
k′(1)â†

k′(2)âk(2)âk(1)
)〉

Using the commutation relations, [âk, â†
k′ ] = δ(k − k′) and [âk, âk′ ] = [â†

k , â†
k′ ] = 0, we notice that

the second parentheses contains only terms such as
(
â†

k

)2 âk âk′ or â†
k′ â

†
k â2

k or
(
â†

k

)2 â2
k′ . Since we will

use a diagonal density matrix of the form ρ̂ = ∑n P(n)|n⟩⟨n|, all these non-diagonal terms will
vanish when k ̸= k′, leaving only the diagonal elements of the first parenthesis, which we can
rewrite as

G(2)(r1, r2; t, t) = (Evac
k )4

〈
â†

k â†
k âk âk + â†

k â†
k′ âk âk′

(
1 + e−i(k−k′)·(r1−r2)

)
+â†

k′ â
†
k′ âk′ âk′ + â†

k′ â
†
k âk′ âk

(
1 + ei(k−k′)·(r1−r2)

)〉 (12)

Now if the average photon number is the same for both modes ⟨n⟩ = ⟨nk⟩ = ⟨nk′⟩ and ⟨n2⟩ =
⟨n2

k⟩ = ⟨n2
k′⟩, using the commutation relations we get

G(2)(r1, r2; t, t) = (Evac
k )4

〈
n̂2

k − n̂k + n̂2
k′ − n̂k′ + 2n̂kn̂k′

(
1 + cos{(k − k′) · (r1 − r2)}

) 〉
= 2 (Evac

k )4
(
⟨n̂2⟩ − ⟨n̂⟩+ ⟨n̂⟩2 {1 + cos[(k − k′) · (r1 − r2)]

}) (13)
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1. For a thermal light, which follows the Bose-Einstein statistics given by the density matrix
ρ = ∑

n

⟨n⟩n

(1+⟨n⟩)n+1 |n⟩⟨n| = ∑
n
(1 − e−β)e−nβ|n⟩⟨n|, where ⟨n⟩ = 1/(eh̄ω/kBT − 1) = 1/(eβ − 1),

we compute the average ⟨n2⟩ as

⟨n2⟩ = Tr
{

ρ̂n̂2} = ∑
n
⟨n|ρn̂2|n⟩ = ∑

n
n2 ⟨n|ρ|n⟩ = ∑

n
n2 ⟨n⟩n

(1 + ⟨n⟩)n+1 = ∑
n

n2(1 − e−β)e−nβ

= (1 − e−β)
∂2

∂β2 ∑
n

e−nβ = (1 − e−β)
∂2

∂β2 (1 − e−β)−1 = (1 − e−β)−2
[
(1 − e−β)e−β + 2e−2β

]
=

1
eβ − 1

+ 2
(

1
eβ − 1

)2

= ⟨n⟩+ 2 ⟨n⟩2

(14)
It follows that the correlation function can now be expressed as

G(2)(r1, r2; t, t) = 2 (Evac
k )4

(
2⟨n̂⟩2 + ⟨n̂⟩2 {1 + cos[(k − k′) · (r1 − r2)]

})
(15)

2. Finally, we use an identical procedure for a laser source high above threshold (i.e. a phase-
diffused coherent state) given by the density matrix ρ = e−⟨n⟩ ∑

n

⟨n⟩n

n! |n⟩⟨n| (notice that it is

not possible to express the density matrix as ρ̂ = |α⟩⟨α| due to the phase diffusion). Since
the probabilities now follow the Poisson distribution, we use the property ⟨∆n2⟩ = ⟨∆n2⟩ −
⟨n⟩2 = ⟨n⟩ to infer the value of ⟨n2⟩ = ⟨n⟩+ ⟨n⟩2. Therefore, the correlation function is

G(2)(r1, r2; t, t) = 2 (Evac
k )4

(
⟨n̂⟩2 + ⟨n̂⟩2 {1 + cos[(k − k′) · (r1 − r2)]

})
(16)

Solution: g(2)(τ), second order intensity autocorrelation: Measuring quantum statistics
and effects of light

One of the applications of the second order correlation function is to distinguish between dif-
ferent light sources, particularly classical from non-classical light. The normalized second order
correlation function is defined as:

g(2)(τ) =
⟨Ê(−)(t)Ê(−)(t + τ)Ê(+)(t + τ)Ê(+)(t)⟩

⟨Ê(−)(t)Ê(+)(t)⟩2
=

⟨â†(t)â†(t + τ)â(t + τ)â(t)⟩
⟨â†(t)â(t)⟩2 (17)

1. Show that g(2)(τ → 0) has the following form:

g(2)(0) = 1 +
∆n̂2 − ⟨n̂⟩

⟨n̂⟩2 (18)

where n̂ is the number operator with ∆n̂2, being the variance in photon number.

According to the definition of second order autocorrelation function Eq. 17, we have

g(2)(0) =
〈

â† â† ââ
〉

⟨â† â⟩2 =

〈
(â† â)2〉− 〈

â† â
〉

⟨â† â⟩2 =

〈
n̂2〉− ⟨n̂⟩2 + ⟨n̂⟩2 − ⟨n⟩

⟨n̂⟩2 = 1 +
∆n̂2 − ⟨n̂⟩

⟨n̂⟩2 (19)

2. Re-calculate Eq. (18) for:

(a) a coherent state |α⟩
(b) a Fock state |n⟩
(c) a state |ψ⟩ = α0 |0⟩+ α1 |1⟩, where αi(i = 0, 1) are complex coefficients of vacuum and single

photon states.

3



Prof. T.J. Kippenberg
Fall Term 2024

(d) a squeezed vacuum state |ϵ⟩

Using your results, determine if these states are classical or non-classical, knowing the fact that for a
non-classical state g(2)(0) < 1.

(a) For a coherent state |α⟩, ⟨n̂⟩ = ∆n̂2 = |α|2, therefore we have

g(2)(0) = 1 +
|α|2 −

∣∣α2
∣∣

|α|4
= 1 (20)

It is a classical state.

(b) For a Fock state |n⟩, ⟨n̂⟩ = n,
〈
n̂2〉 = n2, ∆n̂2 = 0, therefore we have:

g(2)(0) = 1 +
0 − n

n2 =

1 − 1
n
< 1 n > 0

1 n = 0
(21)

It is a non-classical state if n > 0 and a classical state if n = 0, i.e. a vacuum state.

(c) For a superposition state |ψ⟩ = α0 |0⟩+ α1 |1⟩, ⟨n̂⟩ = |α1|2,
〈
n̂2〉 = |α1|2, ∆n̂2 = |α1|2 −

|α1|4, therefore we have

g(2)(0) = 1 +
|α1|2 − |α1|4 − |α1|2

|α1|4
= 0 (22)

It is a non-classical state.

(d) For a squeezed state |ϵ⟩ = Ŝ(ϵ) |0⟩, where ϵ = reiϕ, we have ⟨n̂⟩ = sinh2(r), ∆n̂2 =
sinh2(2r)/2, therefore we have

g(2)(0) =1 +
sinh2(2r)/2 − sinh2(r)

sinh4(r)

=1 +
2 sinh2(r) cosh2(r)− sinh2(r)

sinh4(r)

=1 +
2 cosh2(r)− 1

sinh2(r)

=2 + coth2(r) > 1

(23)

Even though g(2)(0) > 1, we cannot say that the squeezed vacuum is a classical state
since squeezing is indeed a non-classical quantum signature. Here we cite a more gen-
eral criterion of non-classical state: a state represented with negative or singlar value in
Glauber-Sudarshan quasidistribution can be referred as a non-classical state 1.

Solution: Hong-Ou-Mandel effect

1. (a) From the homework 3 we know the relation between annihilation/creation operators of
the modes

â†
1 =

1√
2
(â†

3 + iâ†
4) (24)

â†
2 =

1√
2
(iâ†

3 + â†
4) (25)

1D.N. Klyshko. Observable signs of nonclassical light. Physics Letters A, 213(1):7–15, 1996.

4



Prof. T.J. Kippenberg
Fall Term 2024

Therefore,

|ψ⟩out = â†
1,H â†

2,V |0⟩1|0⟩2 (26)

=
1
2
(â†

3,H + iâ†
4,H)(iâ

†
3,V + â†

4,V)|0⟩1|0⟩2 (27)

=
1
2
(iâ†

3,H â†
3,V + â†

3,H â†
4,V − â†

4,H â†
3,V + iâ†

4,H â†
4,V)|0⟩1|0⟩2 (28)

=
1
2
(i|1, H⟩3|1, V⟩3 + |1, H⟩3|1, V⟩4 − |1, V⟩3|1, H⟩4 + i|1, H⟩4|1, V⟩4) (29)

(b) The probability of detecting one photon in each output port is

|(⟨1, H|3⟨1, V|4)|ψout⟩|2 + |(⟨1, V|3⟨1, H|4)|ψout⟩|2 =
1
4
+

1
4
=

1
2

(30)

(c) The probability of detecting photon pairs in each output port is

|(⟨1, H|3⟨1, V|3)|ψout⟩|2 = |(⟨1, V|4⟨1, H|4)|ψout⟩|2 =
1
4

(31)

2. When the two single photons are indistinguishable,the output state

|ψ⟩out = â†
1,H â†

2,H |0⟩1|0⟩2 (32)

=
1
2
(â†

3,H + iâ†
4,H)(iâ

†
3,H + â†

4,H)|0⟩1|0⟩2 (33)

=
1
2
(iâ†

3,H â†
3,H + â†

3,H â†
4,H − â†

4,H â†
3,H + iâ†

4,H â†
4,H)|0⟩1|0⟩2 (34)

=
1
2
(i
√

2|2, H⟩3 + |1, H⟩3|1, H⟩4 − |1, H⟩3|1, H⟩4 + i
√

2|2, H⟩4) (35)

=
i√
2
(|2, H⟩3|0⟩4 + |0, H⟩3|2, H⟩4) (36)

is NOON state with N = 2. (b) The probability of detecting one photon in each output port
is obviously 0. (c) The probability of detecting photon pairs in port H is

|(⟨2, H|3⟨0|4)|ψout⟩|2 = (
1√
2
)2 =

1
2

(37)

Similarly, the probability of detecting photon pairs in port V is

|(⟨0|3⟨2, H|4)|ψout⟩|2 = (
1√
2
)2 =

1
2

(38)

3. For figure a, the probability of detecting one photon in each output port is 11/20 ≈ 1
2 , the

probability of detecting photo pairs in port H is 5/20 = 1/4,probability of detecting photo
pairs in port V is 4/20 ≈ 1/4. For figure b, probability of detecting photo pairs in port H is
10/20 = 1/2,probability of detecting photo pairs in port V is 9/20 ≈ 1/2. The experimental
result follows what we predicted.
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