

Quantum Electrodynamics and Quantum Optics

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Solutions to Exercise No.4

4.1 Quasi-probability distributions: Wigner-Weyl distribution

First focus on the definition of the characteristic function:

$$C^{(s)}(\beta, \beta^*) = \text{Tr}\left(e^{i\beta\hat{a}^{\dagger} + i\beta^*\hat{a}}\rho\right) \tag{1}$$

Expand the exponential term inside:

$$e^{i\beta a^{\dagger} + i\beta^{*}a} = \sum_{m=0}^{\infty} \frac{1}{m!} \left(i\beta a^{\dagger} + i\beta^{*}a \right)^{m}$$

$$= \sum_{m=0}^{\infty} \frac{1}{m!} \sum_{n=0}^{m} \frac{m!}{n!(m-n)!} (i\beta)^{n} (i\beta^{*})^{m-n} \left(a^{\dagger n}a^{m-n} \right)_{S}$$

$$= \sum_{n=0}^{\infty} \sum_{m=n}^{\infty} \frac{(i\beta)^{n} (i\beta^{*})^{m-n}}{n!(m-n)!} \left(a^{\dagger n}a^{m-n} \right)_{S}$$

$$= \sum_{n=0}^{\infty} \sum_{m=0}^{\infty} \frac{(i\beta)^{n} (i\beta^{*})^{m}}{n!m!} \left(a^{\dagger n}a^{m} \right)_{S}$$
(2)

Where the () $_S$ means symmetry ordered, for example:

$$(a^{\dagger}a)_{S} \equiv \frac{1}{2} (a^{\dagger}a + aa^{\dagger})$$

$$(a^{\dagger 2}a)_{S} \equiv \frac{1}{3} (a^{\dagger 2}a + a^{\dagger}aa^{\dagger} + aa^{\dagger 2})$$

$$(a^{\dagger}a^{2})_{S} \equiv \frac{1}{3} (a^{\dagger}a^{2} + aa^{\dagger}a + a^{2}a^{\dagger})$$

$$(3)$$

Then we consider the expectation values of those operator averages, from the above expansion of the characteristic function, we know that:

$$\left\langle \left(a^{\dagger p} a^{q} \right)_{S} \right\rangle \equiv \operatorname{tr} \left[\rho \left(a^{\dagger p} a^{q} \right)_{S} \right]$$

$$= \frac{\partial^{p+q}}{\partial \left(i\beta \right)^{p} \partial \left(i\beta^{*} \right)^{q}} C^{(s)} \left(\beta, \beta^{*} \right) \Big|_{\beta^{*} = \beta = 0}$$
(4)

Now we go back to the definition of the Wigner function, which is a Fourier transform of the characteristic function:

$$W(\alpha, \alpha^*) = \frac{1}{\pi^2} \int d^2\beta e^{-i\beta\alpha^* - i\beta^*\alpha} C^{(s)}(\beta, \beta^*)$$
 (5)

Let's do an inverse Fourier transform:

$$C^{(s)}(\beta^*, \beta) = \int d^2 \alpha W(\alpha, \alpha^*) e^{i\beta\alpha^*} e^{i\beta^*\alpha}$$
(6)

Now it becomes obvious that:

$$\left\langle \left(a^{+p} a^{q} \right)_{S} \right\rangle = \left. \frac{\partial^{p+q}}{\partial \left(i\beta \right)^{p} \partial \left(i\beta^{*} \right)^{q}} \int d^{2}\alpha W \left(\alpha, \alpha^{*} \right) e^{i\beta\alpha^{*}} e^{i\beta^{*}\alpha} \right|_{\beta^{*} = \beta = 0}$$

$$= \left. \left(\overline{\alpha^{*p} \alpha^{q}} \right)_{W},$$

$$(7)$$

with:

$$\left(\overline{\alpha^{*p}\alpha^{q}}\right)_{W} \equiv \int d^{2}\alpha W\left(\alpha,\alpha^{*}\right) \alpha^{*p}\alpha^{q} \tag{8}$$

For a special case in the problem we thus have:

$$\frac{1}{2} \left\langle \hat{a} \hat{a}^{\dagger} + \hat{a}^{\dagger} \hat{a} \right\rangle = \int W(\alpha, \alpha^*) |\alpha|^2 d^2 \alpha \tag{9}$$

4.2 Solution: Hanbury Brown-Twiss effect for thermal and laser light

Considering the light emitted by to independent sources S and S' into the modes with wave vectors \mathbf{k} and $\mathbf{k}' \neq \mathbf{k}$ respectively (otherwise there is no interference pattern). Assuming that $\omega = c|\mathbf{k}| = c|\mathbf{k}'|$ and that the polarization vectors (ϵ_k) are parallel. The electromagnetic fields can be expressed simply by using

$$E^{(+)}(\mathbf{r}_{i},t) = E_{k}^{\text{vac}} e^{-i\omega t} \left(\hat{a}_{k} e^{i\mathbf{k}\cdot\mathbf{r}_{i}} + \hat{a}_{k'} e^{i\mathbf{k}'\cdot\mathbf{r}_{i}} \right)$$

$$E^{(-)}(\mathbf{r}_{j},t) = E_{k}^{\text{vac}} e^{i\omega t} \left(\hat{a}_{k}^{\dagger} e^{-i\mathbf{k}\cdot\mathbf{r}_{j}} + \hat{a}_{k'}^{\dagger} e^{-i\mathbf{k}'\cdot\mathbf{r}_{j}} \right).$$
(10)

We can now compute the second order correlation function with:

$$G^{(2)}(\mathbf{r}_1, \mathbf{r}_2; t, t) = \langle E^{(-)}(\mathbf{r}_1, t) E^{(-)}(\mathbf{r}_2, t) E^{(+)}(\mathbf{r}_2, t) E^{(+)}(\mathbf{r}_1, t) \rangle$$
(11)

Beforehand, we notice that because this is the identical time correlation function and similar frequencies, all time phases will vanish / be compensated so we will not write them. Additionally, let us adopt the shorthand notation $\hat{a}_k(j) = \hat{a}_k e^{i\mathbf{k}\cdot\mathbf{r}_j}$, then we compute

$$\begin{split} G^{(2)}(\mathbf{r}_{1},\mathbf{r}_{2};t,t) &= \langle E^{(-)}(\mathbf{r}_{1},t)E^{(-)}(\mathbf{r}_{2},t)E^{(+)}(\mathbf{r}_{2},t)E^{(+)}(\mathbf{r}_{1},t) \rangle \\ &= (E_{k}^{\mathrm{vac}})^{4} \left\langle \left(\hat{a}_{k}^{\dagger}(1) + \hat{a}_{k'}^{\dagger}(1) \right) \left(\hat{a}_{k}^{\dagger}(2) + \hat{a}_{k'}^{\dagger}(2) \right) \left(\hat{a}_{k}(2) + \hat{a}_{k'}(2) \right) \left(\hat{a}_{k}(1) + \hat{a}_{k'}(1) \right) \right\rangle \\ &= (E_{k}^{\mathrm{vac}})^{4} \left\langle \left(\hat{a}_{k}^{\dagger}(1) \hat{a}_{k}^{\dagger}(2) \hat{a}_{k}(2) \hat{a}_{k}(1) + \hat{a}_{k}^{\dagger}(1) \hat{a}_{k'}^{\dagger}(2) \hat{a}_{k}(2) \hat{a}_{k'}(1) + \hat{a}_{k'}^{\dagger}(1) \hat{a}_{k}^{\dagger}(2) \hat{a}_{k'}(2) \hat{a}_{k'}(1) \right. \\ &\quad \left. + \hat{a}_{k}^{\dagger}(1) \hat{a}_{k'}^{\dagger}(2) \hat{a}_{k'}(2) \hat{a}_{k}(1) + \hat{a}_{k'}^{\dagger}(1) \hat{a}_{k}^{\dagger}(2) \hat{a}_{k'}(2) \hat{a}_{k'}(1) + \hat{a}_{k'}^{\dagger}(1) \hat{a}_{k'}^{\dagger}(2) \hat{a}_{k'}(2) \hat{a}_{k'}(1) \right. \\ &\quad \left. + \left(\hat{a}_{k}^{\dagger}(1) \hat{a}_{k}^{\dagger}(2) \hat{a}_{k}(2) \hat{a}_{k'}(1) + \hat{a}_{k'}^{\dagger}(1) \hat{a}_{k'}^{\dagger}(2) \hat{a}_{k'}(2) \hat{a}_{k'}(1) + \hat{a}_{k'}^{\dagger}(1) \hat{a}_{k}^{\dagger}(2) \hat{a}_{k'}(2) \hat{a}_{k'}(1) \right. \\ &\quad \left. + \hat{a}_{k'}^{\dagger}(1) \hat{a}_{k'}^{\dagger}(2) \hat{a}_{k}(2) \hat{a}_{k'}(1) + \hat{a}_{k}^{\dagger}(1) \hat{a}_{k'}^{\dagger}(2) \hat{a}_{k}(2) \hat{a}_{k'}(1) + \hat{a}_{k'}^{\dagger}(1) \hat{a}_{k}^{\dagger}(2) \hat{a}_{k'}(2) \hat{a}_{k'}(1) \right. \\ &\quad \left. + \hat{a}_{k'}^{\dagger}(1) \hat{a}_{k}^{\dagger}(2) \hat{a}_{k'}(2) \hat{a}_{k'}(1) + \hat{a}_{k}^{\dagger}(1) \hat{a}_{k'}^{\dagger}(2) \hat{a}_{k}(2) \hat{a}_{k}(1) + \hat{a}_{k}^{\dagger}(1) \hat{a}_{k'}^{\dagger}(2) \hat{a}_{k'}(2) \hat{a}_{k'}(1) \right. \\ &\quad \left. + \hat{a}_{k'}^{\dagger}(1) \hat{a}_{k'}^{\dagger}(2) \hat{a}_{k}(2) \hat{a}_{k'}(1) \right) \right\rangle \end{split}$$

Using the commutation relations, $[\hat{a}_k, \hat{a}_{k'}^{\dagger}] = \delta(\mathbf{k} - \mathbf{k}')$ and $[\hat{a}_k, \hat{a}_{k'}] = [\hat{a}_k^{\dagger}, \hat{a}_{k'}^{\dagger}] = 0$, we notice that the second parentheses contains only terms such as $(\hat{a}_k^{\dagger})^2 \hat{a}_k \hat{a}_{k'}$ or $(\hat{a}_k^{\dagger}, \hat{a}_k^{\dagger}, \hat{a}_k^{\dagger})^2 \hat{a}_{k'}^2$. Since we will use a diagonal density matrix of the form $\hat{\rho} = \sum_n P(n)|n\rangle\langle n|$, all these non-diagonal terms will vanish when $\mathbf{k} \neq \mathbf{k}'$, leaving only the diagonal elements of the first parenthesis, which we can rewrite as

$$G^{(2)}(\mathbf{r}_{1},\mathbf{r}_{2};t,t) = (E_{k}^{\text{vac}})^{4} \left\langle \hat{a}_{k}^{\dagger} \hat{a}_{k}^{\dagger} \hat{a}_{k} \hat{a}_{k} + \hat{a}_{k}^{\dagger} \hat{a}_{k'}^{\dagger} \hat{a}_{k} \hat{a}_{k'} \left(1 + e^{-i(\mathbf{k} - \mathbf{k}') \cdot (\mathbf{r}_{1} - \mathbf{r}_{2})} \right) + \hat{a}_{k'}^{\dagger} \hat{a}_{k'}^{\dagger} \hat{a}_{k'} \hat{a}_{k'} + \hat{a}_{k'}^{\dagger} \hat{a}_{k'}^{\dagger} \hat{a}_{k'} \hat{a}_{k} \left(1 + e^{i(\mathbf{k} - \mathbf{k}') \cdot (\mathbf{r}_{1} - \mathbf{r}_{2})} \right) \right\rangle$$

$$(12)$$

Now if the average photon number is the same for both modes $\langle n \rangle = \langle n_{\mathbf{k}} \rangle = \langle n_{\mathbf{k}'} \rangle$ and $\langle n^2 \rangle = \langle n_{\mathbf{k}}^2 \rangle = \langle n_{\mathbf{k}'}^2 \rangle$, using the commutation relations we get

$$G^{(2)}(\mathbf{r}_{1},\mathbf{r}_{2};t,t) = (E_{k}^{\text{vac}})^{4} \left\langle \hat{n}_{k}^{2} - \hat{n}_{k} + \hat{n}_{k'}^{2} - \hat{n}_{k'} + 2\hat{n}_{k}\hat{n}_{k'} \left(1 + \cos\{(\mathbf{k} - \mathbf{k}') \cdot (\mathbf{r}_{1} - \mathbf{r}_{2})\} \right) \right\rangle$$

$$= 2 (E_{k}^{\text{vac}})^{4} \left(\langle \hat{n}^{2} \rangle - \langle \hat{n} \rangle + \langle \hat{n} \rangle^{2} \left\{ 1 + \cos[(\mathbf{k} - \mathbf{k}') \cdot (\mathbf{r}_{1} - \mathbf{r}_{2})] \right\} \right)$$
(13)

1. For a thermal light, which follows the Bose-Einstein statistics given by the density matrix $\rho = \sum_{n} \frac{\langle n \rangle^n}{(1+\langle n \rangle)^{n+1}} |n\rangle \langle n| = \sum_{n} (1-e^{-\beta})e^{-n\beta}|n\rangle \langle n|$, where $\langle n \rangle = 1/(e^{\hbar\omega/k_BT}-1) = 1/(e^{\beta}-1)$, we compute the average $\langle n^2 \rangle$ as

$$\langle n^{2} \rangle = \text{Tr} \left\{ \hat{\rho} \hat{n}^{2} \right\} = \sum_{n} \langle n | \rho \hat{n}^{2} | n \rangle = \sum_{n} n^{2} \langle n | \rho | n \rangle = \sum_{n} n^{2} \frac{\langle n | \rho^{n} \rangle}{(1 + \langle n \rangle)^{n+1}} = \sum_{n} n^{2} (1 - e^{-\beta}) e^{-n\beta}$$

$$= (1 - e^{-\beta}) \frac{\partial^{2}}{\partial \beta^{2}} \sum_{n} e^{-n\beta} = (1 - e^{-\beta}) \frac{\partial^{2}}{\partial \beta^{2}} (1 - e^{-\beta})^{-1} = (1 - e^{-\beta})^{-2} \left[(1 - e^{-\beta}) e^{-\beta} + 2 e^{-2\beta} \right]$$

$$= \frac{1}{e^{\beta} - 1} + 2 \left(\frac{1}{e^{\beta} - 1} \right)^{2} = \langle n \rangle + 2 \langle n \rangle^{2}$$
(14)

It follows that the correlation function can now be expressed as

$$G^{(2)}(\mathbf{r}_{1},\mathbf{r}_{2};t,t) = 2(E_{k}^{\text{vac}})^{4} \left(2\langle \hat{n} \rangle^{2} + \langle \hat{n} \rangle^{2} \left\{ 1 + \cos[(\mathbf{k} - \mathbf{k}') \cdot (\mathbf{r}_{1} - \mathbf{r}_{2})] \right\} \right)$$
(15)

2. Finally, we use an identical procedure for a laser source high above threshold (i.e. a phase-diffused coherent state) given by the density matrix $\rho = e^{-\langle n \rangle} \sum_{n} \frac{\langle n \rangle^n}{n!} |n\rangle \langle n|$ (notice that it is not possible to express the density matrix as $\hat{\rho} = |\alpha\rangle \langle \alpha|$ due to the phase diffusion). Since the probabilities now follow the Poisson distribution, we use the property $\langle \Delta n^2 \rangle = \langle \Delta n^2 \rangle - \langle n \rangle^2 = \langle n \rangle$ to infer the value of $\langle n^2 \rangle = \langle n \rangle + \langle n \rangle^2$. Therefore, the correlation function is

$$G^{(2)}(\mathbf{r}_{1},\mathbf{r}_{2};t,t) = 2 (E_{k}^{\text{vac}})^{4} \left(\langle \hat{n} \rangle^{2} + \langle \hat{n} \rangle^{2} \left\{ 1 + \cos[(\mathbf{k} - \mathbf{k}') \cdot (\mathbf{r}_{1} - \mathbf{r}_{2})] \right\} \right)$$
(16)

Solution: $g^{(2)}(\tau)$, second order intensity autocorrelation: Measuring quantum statistics and effects of light

One of the applications of the second order correlation function is to distinguish between different light sources, particularly classical from non-classical light. The normalized second order correlation function is defined as:

$$g^{(2)}(\tau) = \frac{\langle \hat{E}^{(-)}(t)\hat{E}^{(-)}(t+\tau)\hat{E}^{(+)}(t+\tau)\hat{E}^{(+)}(t)\rangle}{\langle \hat{E}^{(-)}(t)\hat{E}^{(+)}(t)\rangle^2} = \frac{\langle \hat{a}^{\dagger}(t)\hat{a}^{\dagger}(t+\tau)\hat{a}(t+\tau)\hat{a}(t+\tau)\hat{a}(t)\rangle}{\langle \hat{a}^{\dagger}(t)\hat{a}(t)\rangle^2}$$
(17)

1. Show that $g^{(2)}(\tau \to 0)$ has the following form:

$$g^{(2)}(0) = 1 + \frac{\Delta \hat{n}^2 - \langle \hat{n} \rangle}{\langle \hat{n} \rangle^2} \tag{18}$$

where \hat{n} is the number operator with $\Delta \hat{n}^2$, being the variance in photon number.

According to the definition of second order autocorrelation function Eq. 17, we have

$$g^{(2)}(0) = \frac{\left\langle \hat{a}^{\dagger} \hat{a}^{\dagger} \hat{a} \hat{a} \right\rangle}{\left\langle \hat{a}^{\dagger} \hat{a} \right\rangle^{2}} = \frac{\left\langle (\hat{a}^{\dagger} \hat{a})^{2} \right\rangle - \left\langle \hat{a}^{\dagger} \hat{a} \right\rangle}{\left\langle \hat{a}^{\dagger} \hat{a} \right\rangle^{2}} = \frac{\left\langle \hat{n}^{2} \right\rangle - \left\langle \hat{n} \right\rangle^{2} + \left\langle \hat{n} \right\rangle^{2} - \left\langle n \right\rangle}{\left\langle \hat{n} \right\rangle^{2}} = 1 + \frac{\Delta \hat{n}^{2} - \left\langle \hat{n} \right\rangle}{\left\langle \hat{n} \right\rangle^{2}} \quad (19)$$

- 2. Re-calculate Eq. (18) for:
 - (a) a coherent state $|\alpha\rangle$
 - (b) a Fock state $|n\rangle$
 - (c) a state $|\psi\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$, where $\alpha_i (i=0,1)$ are complex coefficients of vacuum and single photon states.

(d) a squeezed vacuum state $|\epsilon\rangle$

Using your results, determine if these states are classical or non-classical, knowing the fact that for a non-classical state $g^{(2)}(0) < 1$.

(a) For a coherent state $|\alpha\rangle$, $\langle \hat{n} \rangle = \Delta \hat{n}^2 = |\alpha|^2$, therefore we have

$$g^{(2)}(0) = 1 + \frac{|\alpha|^2 - |\alpha^2|}{|\alpha|^4} = 1$$
 (20)

It is a **classical state**.

(b) For a Fock state $|n\rangle$, $\langle \hat{n} \rangle = n$, $\langle \hat{n}^2 \rangle = n^2$, $\Delta \hat{n}^2 = 0$, therefore we have:

$$g^{(2)}(0) = 1 + \frac{0 - n}{n^2} = \begin{cases} 1 - \frac{1}{n} < 1 & n > 0\\ 1 & n = 0 \end{cases}$$
 (21)

It is a **non-classical state** if n > 0 and a **classical state** if n = 0, i.e. a vacuum state.

(c) For a superposition state $|\psi\rangle = \alpha_0 |0\rangle + \alpha_1 |1\rangle$, $\langle \hat{n} \rangle = |\alpha_1|^2$, $\langle \hat{n}^2 \rangle = |\alpha_1|^2$, $\Delta \hat{n}^2 = |\alpha_1|^2 - |\alpha_1|^4$, therefore we have

$$g^{(2)}(0) = 1 + \frac{|\alpha_1|^2 - |\alpha_1|^4 - |\alpha_1|^2}{|\alpha_1|^4} = 0$$
 (22)

It is a **non-classical state**.

(d) For a squeezed state $|\epsilon\rangle = \hat{S}(\epsilon)|0\rangle$, where $\epsilon = re^{i\phi}$, we have $\langle \hat{n} \rangle = \sinh^2(r)$, $\Delta \hat{n}^2 = \sinh^2(2r)/2$, therefore we have

$$g^{(2)}(0) = 1 + \frac{\sinh^{2}(2r)/2 - \sinh^{2}(r)}{\sinh^{4}(r)}$$

$$= 1 + \frac{2\sinh^{2}(r)\cosh^{2}(r) - \sinh^{2}(r)}{\sinh^{4}(r)}$$

$$= 1 + \frac{2\cosh^{2}(r) - 1}{\sinh^{2}(r)}$$

$$= 2 + \coth^{2}(r) > 1$$
(23)

Even though $g^{(2)}(0) > 1$, we cannot say that the squeezed vacuum is a classical state since squeezing is indeed a non-classical quantum signature. Here we cite a more general criterion of non-classical state: a state represented with negative or singlar value in Glauber-Sudarshan quasidistribution can be referred as a non-classical state 1 .

Solution: Hong-Ou-Mandel effect

1. (a) From the homework 3 we know the relation between annihilation/creation operators of the modes

$$\hat{a}_1^{\dagger} = \frac{1}{\sqrt{2}} (\hat{a}_3^{\dagger} + i\hat{a}_4^{\dagger}) \tag{24}$$

$$\hat{a}_2^{\dagger} = \frac{1}{\sqrt{2}} (i\hat{a}_3^{\dagger} + \hat{a}_4^{\dagger}) \tag{25}$$

¹D.N. Klyshko. Observable signs of nonclassical light. Physics Letters A, 213(1):7–15, 1996.

Therefore,

$$|\psi\rangle_{out} = \hat{a}_{1,H}^{\dagger} \hat{a}_{2,V}^{\dagger} |0\rangle_{1} |0\rangle_{2} \tag{26}$$

$$= \frac{1}{2} (\hat{a}_{3,H}^{\dagger} + i\hat{a}_{4,H}^{\dagger}) (i\hat{a}_{3,V}^{\dagger} + \hat{a}_{4,V}^{\dagger}) |0\rangle_{1} |0\rangle_{2}$$
(27)

$$=\frac{1}{2}(i\hat{a}_{3,H}^{\dagger}\hat{a}_{3,V}^{\dagger}+\hat{a}_{3,H}^{\dagger}\hat{a}_{4,V}^{\dagger}-\hat{a}_{4,H}^{\dagger}\hat{a}_{3,V}^{\dagger}+i\hat{a}_{4,H}^{\dagger}\hat{a}_{4,V}^{\dagger})|0\rangle_{1}|0\rangle_{2} \tag{28}$$

$$= \frac{1}{2}(i|1,H\rangle_3|1,V\rangle_3 + |1,H\rangle_3|1,V\rangle_4 - |1,V\rangle_3|1,H\rangle_4 + i|1,H\rangle_4|1,V\rangle_4)$$
 (29)

(b) The probability of detecting one photon in each output port is

$$|(\langle 1, H|_3\langle 1, V|_4)|\psi_{out}\rangle|^2 + |(\langle 1, V|_3\langle 1, H|_4)|\psi_{out}\rangle|^2 = \frac{1}{4} + \frac{1}{4} = \frac{1}{2}$$
(30)

(c) The probability of detecting photon pairs in each output port is

$$|(\langle 1, H|_3 \langle 1, V|_3) | \psi_{out} \rangle|^2 = |(\langle 1, V|_4 \langle 1, H|_4) | \psi_{out} \rangle|^2 = \frac{1}{4}$$
(31)

2. When the two single photons are indistinguishable, the output state

$$|\psi\rangle_{out} = \hat{a}_{1.H}^{\dagger}\hat{a}_{2.H}^{\dagger}|0\rangle_{1}|0\rangle_{2} \tag{32}$$

$$= \frac{1}{2} (\hat{a}_{3,H}^{\dagger} + i\hat{a}_{4,H}^{\dagger}) (i\hat{a}_{3,H}^{\dagger} + \hat{a}_{4,H}^{\dagger}) |0\rangle_{1} |0\rangle_{2}$$
(33)

$$= \frac{1}{2} (i\hat{a}_{3,H}^{\dagger} \hat{a}_{3,H}^{\dagger} + \hat{a}_{3,H}^{\dagger} \hat{a}_{4,H}^{\dagger} - \hat{a}_{4,H}^{\dagger} \hat{a}_{3,H}^{\dagger} + i\hat{a}_{4,H}^{\dagger} \hat{a}_{4,H}^{\dagger}) |0\rangle_{1} |0\rangle_{2}$$
(34)

$$= \frac{1}{2}(i\sqrt{2}|2,H\rangle_3 + |1,H\rangle_3|1,H\rangle_4 - |1,H\rangle_3|1,H\rangle_4 + i\sqrt{2}|2,H\rangle_4)$$
 (35)

$$= \frac{i}{\sqrt{2}}(|2, H\rangle_3 |0\rangle_4 + |0, H\rangle_3 |2, H\rangle_4)$$
 (36)

is NOON state with N=2. (b) The probability of detecting one photon in each output port is obviously 0. (c) The probability of detecting photon pairs in port H is

$$|(\langle 2, H|_3 \langle 0|_4) |\psi_{out}\rangle|^2 = (\frac{1}{\sqrt{2}})^2 = \frac{1}{2}$$
 (37)

Similarly, the probability of detecting photon pairs in port V is

$$|(\langle 0|_{3}\langle 2, H|_{4})|\psi_{out}\rangle|^{2} = (\frac{1}{\sqrt{2}})^{2} = \frac{1}{2}$$
(38)

3. For figure a, the probability of detecting one photon in each output port is $11/20 \approx \frac{1}{2}$, the probability of detecting photo pairs in port H is 5/20 = 1/4, probability of detecting photo pairs in port V is $4/20 \approx 1/4$. For figure b, probability of detecting photo pairs in port H is 10/20 = 1/2, probability of detecting photo pairs in port V is $9/20 \approx 1/2$. The experimental result follows what we predicted.