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Solutions to Exercise No.3

3.1 Beamsplitter scattering matrix

Since we know the reflection and transmission coefficients are (7, t) and (+/,#') for mode 1 and 2
respectively, we have

E3 = tEl + r’Ez
Ey =tEy+rE;

or in the form of matrix multiplication
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For a lossless beam splitter, we have a contraint for conservation of energy
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We have

as = ta; +1'ap
ay =ray +t'ap
al = t*al +1"*a}

ay = r*al +t"™al
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In order to make (ﬂg, ag,a4, al) satisfy the same bosonic commutation relationship, then we
can derive the following constraints

[@,aﬂ = [a4,a1] = |H2 +rP=1
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3.1.2

From the above equation of a3, a4 we obtain the operator evolved after 50/50 beam splitter
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So, the output state should be
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3.2 Solution: Beamsplitter treatment in phase space representation

(a) Let |$),, = |2);]0), = Di(a)[0);]0), with Dy(a) = exp(adl —a*d;). Using the technique
explained in the exercise Beamsplitter scattering matrix, we write the raising operator 4} as

at = \f (a3 +ial). Then we can express the displacement operator D («) as

IX*

Dy (a) = e¥=0'0 = exp <\% (ag n iaz) - (43 — iﬁ4)>
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where in the lasts steps we used the fact that operators on system 3 commute with operators
on system 4 and the definition of the displacement operator. This means that the final state is
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(b) In the Heisenberg picture, the density operator is constant, because the time dependency rests

(10)

onto the operators themselves. Therefore, starting from the P-representation of the coherent

state
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where we performed the change a = 1/2 to obtain the P-representation of the output field

Pout(B) = Zpin(\ﬁﬁ) and |B)3y = [B)3 [iB)s-

3.3 Phase measurements with multiphoton entangled states

In this exercise we demonstrate how the use of multiphoton entangled states of light can improve
the phase sensitivity in interferometry experiments (i.e. demonstrating the principle of Quantum
Metrology). Figure (1) shows a scheme of a Mach-Zehnder interferometer. The input light is split
into two paths (1 and 2) on the first beamsplitter (BS1) and then recombined on the second beam-
splitter (BS2) and then detected on the photodetectors (PD1 and PD2). The interferometer arms
have the lengths of L; and L, with difference of AL. For simplicity assume that the beamsplitters
are 50:50. The input light has angular frequency of w and propagates in the interferometer arms
with speed of c.
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Figure 1: A Mach-Zehnder interferometer. BS: Beamsplitter, PD: Photodetector

1. Consider we send one photon through input port one (inl) and zero through port 2 (in2). The input
state of the interferometer would be

[Win) = 1)1 @ 10) 10 = [1)11 0) 112 (13)

What is the joint state of the light in paths 1 and 2 right after the first beamsplitter? You may use the
trick explained in the exercise Beamsplitter scattering matrix. Denote this joint state as kets of the
form 1)y

As we have learned from the Beamsplitter scattering matrix exercise, the scattering matrix
that transforms the creation and annihilation operators of the two input modes into the two
output modes of a beamsplitter are the same as the scattering matrices for the electromag-
netic field. For the first beamsplitter BS1 we have

) _ 1 (1 1) (0 (14
fin2 V2 \i 1)\
We now have to express the input state in terms of 4in1, din2, 45, 41, and apply the unitary
transformation described by the scattering matrix

1 . 1 .
D in1 [0)in2 = @i [0) = \ﬁ(fﬁ +iag) 0) = \ﬁ(llh +1i[1)y) (15)

2. The path length difference will cause the photons propagating in different paths to acquire a phase
difference. Compute the joint state after propagation along the interferometer arms (which is at the
input of the second beamsplitter).

Approach is the same, first identify the scattering matrx

a e’ 0 a'
) 90

then decompose the state in terms of creation and annihilation operators and apply the trans-
formation
(eay’ +ia3') |0) =

|1>in1 |0>in2 == (el¢ |1>I1 +i ‘1>/2) (17)
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3. Compute the state of the light at the output ports of the interferometer (Use the notation | )11 | ) ouz)-

1 O n 1 .
Dint [0)ipp = -+ = 2 <€Z‘Pﬁ<ﬂ:§ut1 +idl,) + Zﬁ(mgutl +“$utz)) |0) =

= 2((E* = 1) M) g + (0% +1) D)

4. What is the probability of detecting 1 photon in PD1? What is the probability of detecting 1 photon
in PD2? Sketch these probabilities as functions of ¢ = “AL.
For now we will just compute the probability of the detecting 1 photon in PD1 as absolute
value squared of the overlap of the |1)_,, state with the output state computed above. Note
however, that to properly describe a real photodetector used in experiments the signal from
the detector (photocurrent) should be computed as the expectation of a normally ordered
operator corresponding to the PD 1.

(18)

So in our simplified treatment

—_

| (Louet [in) [ = (e = 1)(e7 = 1) = 2 (1~ cos ¢) (19)

| (Louta|in) |* = ~(e? +1)(e7 P +1) = 5(1 + cos ¢) (20)
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Note, the probabilities add to 1 and they oscillate with a 27t period as they would for a
classical interfereometer

5. Next we use a different input state for the interferometry. We send 1 photon in each of the input ports,
meaning the input state would be

[Win) = 1)1 1) iz (21)

repeat the steps (a) to (c) and compute the probability of detecting 2 photons in PD1?. Sketch this
probability as a function of ¢.
Following the same algorithm outlined above

|1>in1 |1>in2 ﬁfnlﬁfrﬂ |0> = (22)
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Before computing the probabilities of two-photon detection, note two things First, the state
after the first beamsplitter is exactly a two photon NOON state discussed below. Second, the
computation even with two photons becoum notoriously complex. Now let us compute the

LCoherent and Incoherent States of the Radiation Field”, Roy J. Glauber, Phys. Rev. 1963
2Note: Photodetectors normally do not resolve photon numbers as assumed here. As it will be discussed later a
conventional detector (i.e. photoelectric effect) produces a current I « (a*2)
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two-photon detection probabilities for PD1 and PD2

—_

| (Zoun[in) ? = g (1 = cos 2¢) (28)

| Coualiin) = {1+ cos29) 29)

They oscillate with a perioud of 7, providing a 2-times enhancement of the phase sensitivity
compared to a single photon case.

6. Now consider a case that we have managed to create a NOON state (as defined below) right after the
first beamsplitter (before propagation)

1
V2

repeat the steps (b) and (c) to calculate the probability of detecting N photons in PD1 2. Sketch this
probability as a function of ¢. Show that this is equivalent to interferometry with light with wave-
length of A/ N (i.e. the so called photonic de Broglie wavelength).

As we noted in the previous question computation even for the 2 photon state is difficult
to keep track of. Solution is easy, istead of propagating the input state through the interfer-
ometer, we can do the inverse and compute the probabilities in the Fock space of the input

lh12) = [N 2 0) = (IN)110), +10); [N),) (30)

modes
‘ <Nout1|lpin> ‘2 = ‘ <O’ (ﬁoutl)N ’¢in> ’2’ = (31)
o (= ia2\N [N 100y [0)y [N, [* [N (<N
0] V2 V2 ON/2+1 (32)

Without going into any further calculation we note that for any N the detection probability
will have terms that oscillate as cos N¢, providing N-times enhancement of the phase sesi-
tivity, which could be achieved by using classical light with an N-times shorter wavelenght.

The improvement in the phase sensitivity in the interferometers has been experimentally demonstrated with
3 photon NOON states * and also four photon NOON states *. The biggest challenge though, for going for
higher order NOON states is the generation process. However there are theoretical proposals for systematic
methods to generate large photon number entangled states °.

3Mitchell et.al. “Super-resolving phase measurements with a multiphoton entangled state”, Nature 429, 161-164
(2004)

4Walther et.al. “De Broglie wavelength of a non-local four-photon state”, Nature 429, 158-161 (2004)

Kok et.al. “Creation of large-photon-number path entanglement conditioned on photodetection”, Phys. Rev. A 65,
052104



