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Quantum Electrodynamics and Quantum Optics
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Solutions to Exercise No.2

Solution: Evolution of a coherent wavepacket

Consider the wavefunction expansion and the initial displaced ground state (or vacuum state)
expression given by

[ee]

P(x,t) = Y anpu(x)e B = (x|y(t))
"= (1)

P(x,t=0) = (;;;1)1/4 exp [—% (x — xo)z} = al\/E exp [—2}'2 (x — xo)z} ,

where 02 = 1/ w.

(a) First, we try to give some interpretation on the initial condition by considering the action of 4
onto it. Indeed recall that the destruction operator has the form (recall here m = 1)

s 1 s oA
a_\/%(wx—i_lp) (2)

Now computing the action of 4 onto the initial wavefunction in the position basis yields

(elalp(t = 0) = = (x] (w2 +ip) [p(t = 0)

i d
=y 55 o1t = 00) + 2 (—in ) (sl = 0)
w hod
=X ﬁ(x\¢(t:0)>+ﬁa<x’l/’(t:0)> 3)

Therefore |¢(t = 0)) is an eigenstate of 4 with eigenvalue & = Ux—\% It is a coherent state! In
what follows, we denote |(t = 0)) = |a).

(b) Using the Baker-Campbell-Hausdorff formula (or properties of coherent states), we rewrite

o) = eaa*—a*ﬁ 0) = e—|a|2/2€aﬁ+e—zx*ﬁ 0) = e—\zx|2/2€¢xﬁ+ 10)

o] n (o) n
_ a2y & (+) 0) = e~ lal?/2 x
—e a 0> =e |Tl>

|
=0 n:

(4)

which gives the decomposition of the initial wavefunction in the orthogonal Fock state basis.
Together with the orthogonality condition, we find the amplitude as

= g_‘“|2/2£ — e—(JCo/ZU)2 <x0/ﬁ>n

\/m o \/E (5)

a, = (nla)
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(c) From the superposition principle and with the energies E,, = hiw(n + 1/2), the time evolution
of the coherent state is given by

e} o0 n
— Z unefiEnt/h |n> — Z ef|,x|2/2€—iEnt/h 114 ‘1’1>

n=0 m
o
_ Ee—|¢x|2/26—inwt —iwt/2 a | >
7f
_ o lal2/2icts2 i Wt) (6)
|a?/2 ,—icwt /2 0_0
— e o e*lwt Z

n=0
i _ —iwt |2 —iwt 5t
1wt/2€ |ace |/Zeuce a |0>

=e
We define the time-dependent evolution of the coherent amplitude as a(t) = ae~*, giving
|1,U(t)> — piwt/2p—alt )|2/2 a |0>
— piwt/2,—|a(t )|2/2 it )a —a* ‘O) ?)

—e —iwt/2 :x( Yat—a*(t)a |O>

The complex phase will disappear in the norm of the wavefunction, so will concentrate on the
operator part e, where

A

_ . wrna  &(t) (% 0 a*(t) (% 0

D =a(t)at —a*(t)a = w3 <(7 - Uax> Y (U —|—0’ax>
= V/2i Im(a(t (>)§ V2Re(a(t))o aax 8)
= ﬁ(ilm( ()9 Re(tx(t))fy).

We introduced § = £/¢ to simplify the notation. Now we expand the exponantial operator

to orders of D and compute their action onto the wavefunction in the y basis : e” (y|0) =
[e3) B . 12

Lo wD" (410). We will use (y]0) = go(y) = —=e™¥"/2

N
n=40
$o(y) )
n=1
Depo(y) = V2 (ilm(a(t) )y + Re(a(t))y) go(y) (10
= V2a(t)yo(y)
n=2
S0 = V2O 00g0(0) = (1) (m(a(0)g —Re(a() 2 ) )
= () (a()3* — Re(a(1)) o)
n=3
3 [ A 14 A N
Do) = D (@ — a() Re(w(®)) o)) = “2 (w(1)D (390()) ~ Re(a(t))D
= Y220 ()48 3Re(a(t) o)
1)
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D) == (20— ou(t) Re(a(t)? + 3RS w(1) ) toly) (19

Compiling the results, we obtain

ePo(y) = [1 +a(t) (xfzy - Re(oc(t)) +a?(t) <y2 — V2Re(a(t))y + ;Rez(a(t))> +.. ] ¢o(y)

a?(t)

:[Ha(t) (V2y — Re(w(t)) + 4 (ﬁy—Re(a(t)))z—i-..lq)O(y)
= exp{a(t) (Vay — Re(a(t)) bgo(v).

(14)
Finally, we can derive the probability density function through
W ()2 = (@ (®)ly) (lp(e)) = (01(”) Iy) (y]e®[0)
= exp{a()” (Vay —Re(a(t)) f exp{a(t) (V2y — Re(a(t)) }Igo(y) P
_ alnexp{—y2+z\fzyRe(a(t)) ~2Re*(a(t)) } (15)
= ! = exp{— (y — \/iRe(a(t)))Z}

Returning to the original variable x = ¢y, using 0> = h/w and plugging in the value of
Re(a(t)) = U’\‘—Oﬁ cos(wt), we get the final result

— X( COS 2
\1/)(x,t)|2: ! exp{—(x XOUZ (Wt))}

-]« _Y o 2
= nhexp{ h(x X0 cos wt) }

2.1 Properties of coherent and squeezed states

(16)

In this exercise we want to calculate the basic properties of coherent' and squeezed states of light. Here we
focus on an electromagnetic field mode described by the creation 4% and annihilation operators a.

1. Calculate [X1(¢), X2(¢)]. What do they refer to in case of ¢ = 0?
In case ¢ = 0:

. 1/, ; 1 =%

Xi(p) = 5 (ae? +ae ‘ =— 17
1) =5 ( )\ o= Vv a7
. 1 ; i 1 p

Xa(¢p) = = (ae'? —ate ™ ' = ——— 18
2(9) = o ( ) o= Virmm (18)

The commutator is calculated using the linearity
(o) ()] — s Lt
[R1(9), Ral)] = — g la,a"] + L [a%,) = (19)

IGlauber, Roy J. “Coherent and incoherent states of the radiation field.” Physical Review 131.6 (1963): 2766.
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2. The time evolution of an operator in Heisenberg picture is determined by the Heisenberg

equation
d0 i A 00
18 - 2
ar RO @0)
Applying it to the quadratures (17, 18) we obtain
Xy = —;lh;‘) [ae'? + e, a%0) = —%(ﬁei‘i’ —afe ) = —wX, (21)
and similarly
X = =wX; (22)
Solving these coupled differential equations we derive that
Xl ((P, t) = X1 (4) + wt, 0) (23)
Xa(¢,t) = Xa (¢ + wt, 0) (24)

Another way to arrive to this solition is to first derive the creation and annihilation operators
in the Heisenberg picture and then substitute them in equations (17, 18). Note that later in
the course we will extensively use the Heisenberg picture, without always mentioning it
explicitly.

3. A coherent state (|«)) is defined as: 4 |a) = o |a).
Show that a coherent state is a minimum uncertainty state for every pair of X1(¢) and X (¢).

Uncertainty for a hermitian operator is defined as A4 = /(A — (A))2) = 1/ (A2) — <fl>2
Minimal uncertainty implies that for a pair of non-commuting operators the Heisenberg
uncertainty inequality AAAB > 3 <[A, B]> | is saturated?. A straightforward calculation of
the respective expectation values for the quadratures yields the following

(a|X1(¢)]a) = Re(ae'?) (25)
(0| Xo(¢)|a) = Im(ae™?) (26)
(a| X3(¢)]a) = i(wzeﬂq’ +aZe ™ + 200l +1) (27)
(] 22(¢)|a) = —%((xzeim’ + e _ g — 1) (28)
and finally

(A%(9) = 29)
(ARa(9)) = | 30)

which confirms that .
AXiAX, = §| ([X1, X2]) | 31)

4. For simplicity, consider a state |) with vanishing mean for all times: (p|a|y) = (4) = (a*) =
(X1) = (X2) =0

(a) Express the variance of the field quadratures (AX?) with respect to (a*a), (aa) and ¢.

(A%)? = (R3),) = i (<a2> e ¢ <(a*)2> e29 42 <a+ﬁ> + 1) (32)
(AR)? = (R3),) = —i ()2 + (@) e —2 (a%a) 1) (33)

’Note that there are many inequalities that express uncertainty principle, refer e.g. to wikipedia.org/wiki/
Uncertainty_ principle
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combining these two expressions we obtain

(AX))* = (_12)]+1 (Re (%) cos 2¢ — Im (2%) sin2¢) + i(z <a a> +1) (34
wherej =1,2.

(b) Show that the minimal and maximal variances are corresponding to two conjugate quadratures.
Give their expressions.
To analyse the extrema of the quadratures we find the derivatives

BEZP {(AX))*} = (1) (Re(a%) sin2¢ + Im (4*) cos 2¢) (35)
;;2 {(AXj)*} = (—1) -2 (Re (#*) cos 2¢ — Im (4*) sin 2¢)) (36)

The extrema of the A)A(]- are reached when

d 621 sin2¢  Im (4%)
¢ {(aX)") =0= cos2p  Re(a?) 57)
and the sign of the second derivative determines wheather it is a maximum or a mini-
mum
> {(AX))?} = (=1) -2| ) cos 2¢ (38)
a(f)z ! extremum Re < >

Note that the factor of (—1)/ guarantees that when one of the quadratures has a mini-
mum the other has a maximum and vice versa.

(c) The state is squeezed if there exists at least a pair of conjugated quadratures for which the uncer-
tainty of one of the quadratures is smaller than L. Deduce a sufficient and necessary condition
to have a squeezed state.

Let us consentrate on the first quadrature. By definition a squeezed state is such that

(AXy)? = i (Re (#%) cos2¢p — Im (4%) sin2¢ + 2 <a+a> + 1) < }L (39)

20 4 atan | PN L (2') (40)
s\ Re@) @]
5. In order to obtain a squeezed state, one may apply the squeezing operator with squeezing parameter
r

Which is equivalent to

~t2 * 52 1 _21'¢

S(e) =e" " e = Zre (41)

(a) Derive the transformation of @ and 4" under the squeezing operator. (Heisenberg picture formu-
lation) Here we use Baker-Campbell-Hausdorff formula for any opertors A and B:

et = 3 EVN A (4, (48] @)

n brackets

a2 — 2, a] = —2eat = —re~ 295"
(A, A, B]) = [ea*z — "2, —2edt ] = dee*at = r2at (43)

A/ [A,[4,B))) = |e"a® — ea® 4lefa] = re2¢a"
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Therefore, we have

St (e)ﬁg(e) _ it i p et el

A 2Pt = 2a = 3, 2ipat
=4a—re a -+ !7’ a 3!1’ e a —+

L t,-2ip L3 9
— A ... —_— q —<l —_— o o. .
—a<1—|—2!r—|— > a'e (1—}—3!7—1— >
= acosh(r) —a'e %’ sinh(r)

Treating the same for at, we have
§+(€>ﬁ+§<€) _ e te gt jed—etd?
, 1 1 ,
=at —re®Pa + Erch — §r3ezupﬁ +---
: ’ (45)

1 5 1
—atf 2 e ) pe2ie _{_73_}_
a <1+ 'T+ ) ae <1 3'1" )

= 4" cosh(r) — 2e*? sinh(r)

(b) Then deduce the transformation for the quadratures X1 (¢) and Xo(¢)
From the definition shown in Eq. 17, Eq. 18, we have

§'(€)Xi5(e) = 2eS" (e)as(e) + g 5 (e)a'S (e)

L (FPacomr) -t ) 4} (4 o) - o)

i¢ —igp t
= m_#(cosh(r) — sinh(7))
= Xle*r
(46)

and

St(e)XaS(e) = %e@s*(e)as@) - %e_i‘”S*(e)a*S(e)
_ (ei"’a cosh(r) — e ¥at sinh(r)) i (e_"q’a;r cosh(r) — e%a sinh(r))
2 2

ebqg — e~igt

= zf(cosh(r) + sinh(r))
= Xzer
(47)
Therefore, we find one of the quadrature is amplified by ¢” while the other one is

shrinked by e’.

(c) Apply the squeezing operator on a coherent state |a) and derive the following quantities for the
transformed state: (X1), (Xo), AXq and AX;.

For a squeezed coherent state S |a), the expectation values of X; and X, directly follow
from equations 46, 47:

(237 %18]a) = ¢ (a[%1 o) = 7 Re{ac} (48)

(23" a8 ]a) = €' (a|Xoa) = ¢’ Tm{ e} (49)
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To calculate the standard deviation of X; and X, we first calculate the expectation value
of }A(% and f(%:
(x|STX28|) = (a|STX185T X S a)

=e % (a| X7 a) (50)
2642r (22e™2P + 2620 4 2|a|? +1)
(a]|STX3S8|0) = (a|ST X285 X586 |a)
=% (a] X5 |a) (1)
o2
=_ Z((xzeﬂ"’ +a*?e 20 —2|a)? — 1)
Finally, we have
AXy = \(X3) — (X1)? = 32: (52)
AXy = \/(X3) — (X2)? = % (53)

The squeezing operator effectively produces a squeezed state from a coherent state.
A quadrature (average value and variance) is amplified by the squeezing factor e
whereas the conjugated quadrature is “de-amplified” by the same factor. In practice,
this can be used to enhance the sensitivity in interferometric measurements of electro-
magnetic field fluctuations?®, such as in Gravitational Wave detectors*. In fact, squeezed
states are now being used in Advanced LIGO for gravitational wave detection®.

1 I I

—— Typical noise without squeezing

— — Shot noise

Squeezing—enhanced sensitivity

1022 4

sensitivity (Hz1/2)

Strain

10-2

Frequency (Hz)

Figure 1: Strain sensitivity of LIGO homodyne detection measured with and without squeezing
injection [Aasi, Junaid, et al. Nature Photonics (2013)]

(d) Plot the following states in the quadrature plane (X1(¢), Xo(¢)):

i. A coherent state |a).
ii. A squeezed state S(e) |a) for r = 2.

See FIG. 2

3Caves, Carlton M. “Quantum-mechanical noise in an interferometer.” Physical Review D 23.8 (1981): 1693.

“Abadie, J., et al. ”A gravitational wave observatory operating beyond the quantum shot-noise limit.” Nature
Physics 7.12 (2011): 962.

5Aasi, Junaid, et al. “Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of
light.” Nature Photonics 7.8 (2013): 613.
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Figure 2: Left: coherent state; Right: squeeze coherent state. Parameters are chosen as: & = 5,
€ = 1.2. Plotted by QuTip.

(e)

(f)

Show that the average amplitude |B|? = (X1)? + (X2)? for the squeezed state satisfies:
IB[2 = |a|? cosh(2r) + Re (wZeZi‘/’ sinh(Zr)) (54)

By summing Eq. 50 and Eq. 51, we can directly obtain the result.

From the result of the previous part justify the names “amplitude squeezed state” and “phase
squeezed state”.

By analogy with a complex number we can think of || as the amplitude of a squeezed
state, while X; and Xj as its real and imaginary parts. Also in 5b we established that
operator S(e = %re*Zi‘P) squeezes the coherent state along the X; and X, quadratures
(see FIG. 2). In a special case when in the initial coherent state (X1 ) o) # 0and (%) ) =
0 (i.e. Imae® = 0), X; is called the amplitude quadrature and Xj is called the phase

quadrature. Then a squeezed state with AX; < 1/2 is called amplitude squeezed state,
while the one with AX; > 1/2 is calles phase squeezed state.

6. Next we can calculate the effects of the squeezing operator on the photon numbers i:

(a)

Give the average value (1) of the photon number for a squeezed state. Express the result with
respect to the average amplitude |B|? of the squeezed field. Comment in particular the case of

B =0.
From Eq. 44 and Eq. 45, the averaged photon number of a squeezed state can be calcu-
lated as

(1) = (x|$*a%aS|a) = |a|? cosh(2r) + sinh?(r) + Re (aZeZi‘P sinh(Zr)) = |B[? + sinh?(r)

(55)
Specifically, if || = 0, we have
() = sinh?(r) (56)
(b) A similar derivation gives the variance of the photon number (AA?):
L 12
(A7) = B (7 cos?(0— 9) + ¥ sin’(0 — ) + S (s7)
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i.

ii.

iii.

Simplify this expression when squeezing is weak with respect to the average value of the
field(|B|? > e*").
When the squeezing is weak, we can assume r ~ 0, thus e 2 ~ ¥ ~ 1. So, we find

R sinh?(2r
(an%) ~ |B” + 2( ) (58)
Deduce the conditions for which the distribution is subpoissonnian, poissonnian or super-
poissonnian.

For poissonnian distribution, (1) = (Af?), which yields

12
. 12 .12
Similarly, sinh®(r) > sinh’ (2r) for superpoissonnian and sinh?(r) < sinh”(2r) for

2 2

subpoissonnian.

Use your result from part (i) and show that the squeezed vacuum has counter intuitively
non-zero photon number fluctuation (in contrast to |0) i.e. vacuum).

For a squeezed vacuum & = 0, we naturally have |f| = 0 and

sinh?(2r)

(ai) = 0

(60)

which is non-zero for r # 0.



