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Quantum Electrodynamics and Quantum Optics
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Solutions to Exercise No.2

Solution: Evolution of a coherent wavepacket

Consider the wavefunction expansion and the initial displaced ground state (or vacuum state)
expression given by

ψ(x, t) =
∞

∑
n=0

anϕn(x)e−iEnt/h̄ = ⟨x|ψ(t)⟩

ψ(x, t = 0) =
( ω

πh̄

)1/4
exp

[
− ω

2h̄
(x − x0)

2
]
=

1√
σ
√

π
exp

[
− 1

2σ2 (x − x0)
2
]

,
(1)

where σ2 = h̄/ω.

(a) First, we try to give some interpretation on the initial condition by considering the action of â
onto it. Indeed recall that the destruction operator has the form (recall here m = 1)

â =
1√
2h̄ω

(ωx̂ + i p̂) (2)

Now computing the action of â onto the initial wavefunction in the position basis yields

⟨x|â|ψ(t = 0)⟩ = 1√
2h̄ω

⟨x| (ωx̂ + i p̂) |ψ(t = 0)⟩

= x
√

ω

2h̄
⟨x|ψ(t = 0)⟩+ i√

2h̄ω

(
−ih̄

d
dx

)
⟨x|ψ(t = 0)⟩

= x
√

ω

2h̄
⟨x|ψ(t = 0)⟩+ h̄√

2h̄ω

d
dx

⟨x|ψ(t = 0)⟩

= x
√

ω

2h̄
⟨x|ψ(t = 0)⟩ − h̄√

2h̄ω

x − x0

σ2 ⟨x|ψ(t = 0)⟩

=

√
ω

2h̄
x0 ⟨x|ψ(t = 0)⟩ = x0

σ
√

2
⟨x|ψ(t = 0)⟩ .

(3)

Therefore |ψ(t = 0)⟩ is an eigenstate of â with eigenvalue α = x0
σ
√

2
. It is a coherent state! In

what follows, we denote |ψ(t = 0)⟩ = |α⟩.

(b) Using the Baker-Campbell-Hausdorff formula (or properties of coherent states), we rewrite

|α⟩ = eαâ†−α∗ â |0⟩ = e−|α|2/2eαâ†
e−α∗ â |0⟩ = e−|α|2/2eαâ† |0⟩

= e−|α|2/2
∞

∑
n=0

αn

n!

(
â†
)n

|0⟩ = e−|α|2/2
∞

∑
n=0

αn
√

n!
|n⟩

(4)

which gives the decomposition of the initial wavefunction in the orthogonal Fock state basis.
Together with the orthogonality condition, we find the amplitude as

an = ⟨n|α⟩ = e−|α|2/2 αn
√

n!
= e−(x0/2σ)2 (x0/

√
2)n

σn
√

n!
(5)

1



Prof. T.J. Kippenberg
Fall Term 2024

(c) From the superposition principle and with the energies En = h̄ω(n + 1/2), the time evolution
of the coherent state is given by

|ψ(t)⟩ =
∞

∑
n=0

ane−iEnt/h̄ |n⟩ =
∞

∑
n=0

e−|α|2/2e−iEnt/h̄ αn
√

n!
|n⟩

=
∞

∑
n=0

e−|α|2/2e−inωte−iωt/2 αn
√

n!
|n⟩

= e−|α|2/2e−iωt/2
∞

∑
n=0

(
αe−iωt)n

√
n!

|n⟩

= e−|α|2/2e−iωt/2
∞

∑
n=0

(
αe−iωt â†)n

n!
|0⟩

= e−iωt/2e−|αe−iωt|2/2eαe−iωt â† |0⟩

(6)

We define the time-dependent evolution of the coherent amplitude as α(t) = αe−iωt, giving

|ψ(t)⟩ = e−iωt/2e−|α(t)|2/2eα(t)â† |0⟩

= e−iωt/2e−|α(t)|2/2eα(t)â†
e−α∗(t)â |0⟩

= e−iωt/2eα(t)â†−α∗(t)â |0⟩

(7)

The complex phase will disappear in the norm of the wavefunction, so will concentrate on the
operator part eD̂, where

D̂ = α(t)â† − α∗(t)â =
α(t)√

2

(
x̂
σ
− σ

∂

∂x

)
− α∗(t)√

2

(
x̂
σ
+ σ

∂

∂x

)
=

√
2i Im(α(t))

x̂
σ
−
√

2 Re(α(t))σ
∂

∂x

=
√

2
(

i Im(α(t))ŷ − Re(α(t))
∂

∂y

)
.

(8)

We introduced ŷ = x̂/σ to simplify the notation. Now we expand the exponantial operator
to orders of D̂ and compute their action onto the wavefunction in the y basis : eD̂ ⟨y|0⟩ =

∑∞
n=0

1
n! D̂

n ⟨y|0⟩. We will use ⟨y|0⟩ = ϕ0(y) = 1√
σ
√

π
e−y2/2

n = 0
ϕ0(y) (9)

n = 1
D̂ϕ0(y) =

√
2 (i Im(α(t))y + Re(α(t))y) ϕ0(y)

=
√

2α(t)yϕ0(y)
(10)

n = 2
D̂2

2!
ϕ0(y) =

√
2α(t)
2!

D̂(yϕ0(y)) = α(t)
(

i Im(α(t))ŷ − Re(α(t))
∂

∂y

)
(yϕ0(y))

= α(t)
(
α(t)y2 − Re(α(t))

)
ϕ0(y)

(11)

n = 3

D̂3

3!
ϕ0(y) =

α(t)
3

D̂
((

α(t)y2 − α(t)Re(α(t))
)

ϕ0(y)
)
=

α(t)
3
(
α(t)D̂

(
y2ϕ0(y)

)
− Re(α(t))D̂ (ϕ0(y))

)
= · · · =

√
2α2(t)

3
(
α(t)y3 − 3 Re(α(t)y)

)
ϕ0(y)

(12)
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n = 4
D̂4

4!
ϕ0(y) = · · · = α2(t)

6

(
α2(t)y4 − 6α(t)Re(α(t)y2 + 3 Re2(α(t)))

)
ϕ0(y) (13)

. . .

Compiling the results, we obtain

eD̂ϕ0(y) =
[

1 + α(t)
(√

2y − Re(α(t)
)
+ α2(t)

(
y2 −

√
2 Re(α(t))y +

1
2

Re2(α(t))
)
+ . . .

]
ϕ0(y)

=

[
1 + α(t)

(√
2y − Re(α(t)

)
+

α2(t)
2!

(√
2y − Re(α(t))

)2
+ . . .

]
ϕ0(y)

= exp
{

α(t)
(√

2y − Re(α(t)
)}

ϕ0(y).
(14)

Finally, we can derive the probability density function through

|ψ(y, t)|2 = ⟨ψ(t)|y⟩ ⟨y|ψ(t)⟩ = ⟨0|(eD̂)†|y⟩ ⟨y|eD̂|0⟩

= exp
{

α(t)∗
(√

2y − Re(α(t)
)}

exp
{

α(t)
(√

2y − Re(α(t)
)}

|ϕ0(y)|2

=
1

σ
√

π
exp

{
−y2 + 2

√
2y Re(α(t))− 2 Re2(α(t))

}
=

1
σ
√

π
exp

{
−
(

y −
√

2 Re(α(t))
)2
}

(15)

Returning to the original variable x = σy, using σ2 = h̄/ω and plugging in the value of
Re(α(t)) = x0

σ
√

2
cos(ωt), we get the final result

|ψ(x, t)|2 =
1

σ
√

π
exp

{
− (x − x0 cos(ωt))2

σ2

}

=

√
ω

πh̄
exp

{
−ω

h̄
(x − x0 cos ωt)2

}
.

(16)

2.1 Properties of coherent and squeezed states

In this exercise we want to calculate the basic properties of coherent1 and squeezed states of light. Here we
focus on an electromagnetic field mode described by the creation â† and annihilation operators â.

1. Calculate [X̂1(ϕ), X̂2(ϕ)]. What do they refer to in case of ϕ = 0?
In case ϕ = 0:

X̂1(ϕ) =
1
2

(
âeiϕ + â†e−iϕ

)∣∣∣∣
ϕ=0

=
1√
2

x̂
xZPF

(17)

X̂2(ϕ) =
1
2i

(
âeiϕ − â†e−iϕ

)∣∣∣∣
ϕ=0

=
1√
2

p̂
pZPF

(18)

The commutator is calculated using the linearity

[X̂1(ϕ), X̂2(ϕ)] = − i
4
[â, â†] +

i
4
[â†, â] = − i

2
(19)

1Glauber, Roy J. ”Coherent and incoherent states of the radiation field.” Physical Review 131.6 (1963): 2766.
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2. The time evolution of an operator in Heisenberg picture is determined by the Heisenberg
equation

dÔ
dt

=
i
h̄
[Ĥ, Ô] +

∂Ô
∂t

(20)

Applying it to the quadratures (17, 18) we obtain

˙̂X1 = − i
h̄

h̄ω

2
[âeiϕ + â†e−iϕ, â† â] = − iω

2
(âeiϕ − â†e−iϕ) = −ωX̂2 (21)

and similarly
˙̂X2 = · · · = ωX̂1 (22)

Solving these coupled differential equations we derive that

X̂1(ϕ, t) = X̂1(ϕ + ωt, 0) (23)

X̂2(ϕ, t) = X̂2(ϕ + ωt, 0) (24)

Another way to arrive to this solition is to first derive the creation and annihilation operators
in the Heisenberg picture and then substitute them in equations (17, 18). Note that later in
the course we will extensively use the Heisenberg picture, without always mentioning it
explicitly.

3. A coherent state (|α⟩) is defined as: â |α⟩ = α |α⟩.
Show that a coherent state is a minimum uncertainty state for every pair of X̂1(ϕ) and X̂2(ϕ).

Uncertainty for a hermitian operator is defined as ∆Â =
√〈

(Â −
〈
Â
〉
)2
〉
=
√〈

Â2
〉
−
〈
Â
〉2

.
Minimal uncertainty implies that for a pair of non-commuting operators the Heisenberg
uncertainty inequality ∆Â∆B̂ ≥ 1

2 |
〈
[Â, B̂]

〉
| is saturated2. A straightforward calculation of

the respective expectation values for the quadratures yields the following〈
α|X̂1(ϕ)|α

〉
= Re(αeiϕ) (25)〈

α|X̂2(ϕ)|α
〉
= Im(αeiϕ) (26)〈

α|X̂2
1(ϕ)|α

〉
=

1
4
(α2ei2ϕ + α∗2e−i2ϕ + 2|α|2 + 1) (27)〈

α|X̂2
1(ϕ)|α

〉
= −1

4
(α2ei2ϕ + α∗2e−i2ϕ − 2|α|2 − 1) (28)

and finally

(∆X̂1(ϕ))
2 =

1
4

(29)

(∆X̂2(ϕ))
2 =

1
4

(30)

which confirms that
∆X̂1∆X̂2 =

1
2
|
〈
[X̂1, X̂2]

〉
| (31)

4. For simplicity, consider a state |ψ⟩ with vanishing mean for all times: ⟨ψ| â |ψ⟩ = ⟨â⟩ = ⟨â†⟩ =
⟨X̂1⟩ = ⟨X̂2⟩ = 0

(a) Express the variance of the field quadratures (∆X̂2
i ) with respect to ⟨â† â⟩, ⟨ââ⟩ and ϕ.

(∆X̂1)
2 =

〈
X̂2

1
〉
|ψ⟩ =

1
4

(〈
â2〉 ei2ϕ +

〈
(â†)2

〉
e−i2ϕ + 2

〈
â† â
〉
+ 1
)

(32)

(∆X̂2)
2 =

〈
X̂2

2
〉
|ψ⟩ = −1

4

(〈
â2〉 ei2ϕ +

〈
(â†)2

〉
e−i2ϕ − 2

〈
â† â
〉
− 1
)

(33)

2Note that there are many inequalities that express uncertainty principle, refer e.g. to wikipedia.org/wiki/
Uncertainty principle
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combining these two expressions we obtain

(∆X̂j)
2 =

(−1)j+1

2
(
Re
〈

â2〉 cos 2ϕ − Im
〈

â2〉 sin 2ϕ
)
+

1
4
(2
〈

â† â
〉
+ 1) (34)

where j = 1, 2.
(b) Show that the minimal and maximal variances are corresponding to two conjugate quadratures.

Give their expressions.
To analyse the extrema of the quadratures we find the derivatives

∂

∂ϕ

{
(∆X̂j)

2} = (−1)j (Re
〈

â2〉 sin 2ϕ + Im
〈

â2〉 cos 2ϕ
)

(35)

∂2

∂ϕ2

{
(∆X̂j)

2} = (−1)j · 2
(
Re
〈

â2〉 cos 2ϕ − Im
〈

â2〉 sin 2ϕ
)

(36)

The extrema of the ∆X̂j are reached when

∂

∂ϕ

{
(∆X̂j)

2} = 0 ⇒ sin 2ϕ

cos 2ϕ
= −

Im
〈

â2〉
Re ⟨â2⟩ (37)

and the sign of the second derivative determines wheather it is a maximum or a mini-
mum

∂2

∂ϕ2

{
(∆X̂j)

2}∣∣∣∣
extremum

= (−1)j · 2
|
〈

â2〉 |2
Re ⟨â2⟩ cos 2ϕ (38)

Note that the factor of (−1)j guarantees that when one of the quadratures has a mini-
mum the other has a maximum and vice versa.

(c) The state is squeezed if there exists at least a pair of conjugated quadratures for which the uncer-
tainty of one of the quadratures is smaller than 1

4 . Deduce a sufficient and necessary condition
to have a squeezed state.
Let us consentrate on the first quadrature. By definition a squeezed state is such that

(∆X̂1)
2 =

1
4

(
Re
〈

â2〉 cos 2ϕ − Im
〈

â2〉 sin 2ϕ + 2
〈

â† â
〉
+ 1
)
<

1
4

(39)

Which is equivalent to

cos

(
2ϕ + atan

(
Im
〈

â2〉
Re ⟨â2⟩

))
< −

〈
â† â
〉

| ⟨â2⟩ | (40)

5. In order to obtain a squeezed state, one may apply the squeezing operator with squeezing parameter
r:

Ŝ(ϵ) = eϵâ†2−ϵ∗ â2
, ϵ =

1
2

re−2iϕ (41)

(a) Derive the transformation of â and â† under the squeezing operator. (Heisenberg picture formu-
lation) Here we use Baker-Campbell-Hausdorff formula for any opertors Â and B̂:

e−ÂB̂eÂ =
∞

∑
n=0

(−1)n

n!
[Â, [Â, · · · [Â, B̂]]]︸ ︷︷ ︸

n brackets

(42)

Let Â = ϵâ†2 − ϵ∗ â2 and B̂ = â, we find

[Â, B̂] =
[
ϵâ†2 − ϵ∗ â2, â

]
= −2ϵâ† = −re−2iϕ â†

[Â, [Â, B̂]] =
[
ϵâ†2 − ϵ∗ â2,−2ϵâ†

]
= 4ϵϵ∗ â† = r2a†

[Â, [Â, [Â, B̂]]] =
[
ϵ∗ â2 − ϵâ†2, 4|ϵ|2 â

]
= r3e−2iϕ â†

(43)
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Therefore, we have

Ŝ†(ϵ)âŜ(ϵ) = e−ϵâ†2+ϵ∗ â2
âeϵâ†2−ϵ∗ â2

= â − re−2iϕ â† +
1
2!

r2 â − 1
3!

r3e−2iϕ â† + · · ·

= â
(

1 +
1
2!

r2 + · · ·
)
− â†e−2iϕ

(
1 +

1
3!

r3 + · · ·
)

= â cosh(r)− a†e−2iϕ sinh(r)

(44)

Treating the same for â†, we have

Ŝ†(ϵ)â†Ŝ(ϵ) = e−ϵâ†2+ϵ∗ â2
â†eϵâ†2−ϵ∗ â2

= â† − re2iϕ â +
1
2!

r2 â† − 1
3!

r3e2iϕ â + · · ·

= â†
(

1 +
1
2!

r2 + · · ·
)
− âe2iϕ

(
1 +

1
3!

r3 + · · ·
)

= â† cosh(r)− âe2iϕ sinh(r)

(45)

(b) Then deduce the transformation for the quadratures X̂1(ϕ) and X̂2(ϕ)

From the definition shown in Eq. 17, Eq. 18, we have

S†(ϵ)X1S(ϵ) =
1
2

eiϕS†(ϵ)aS(ϵ) +
1
2

e−iϕS†(ϵ)a†S(ϵ)

=
1
2

(
eiϕa cosh(r)− e−iϕa† sinh(r)

)
+

1
2

(
e−iϕa† cosh(r)− eiϕa sinh(r)

)
=

eiϕa + e−iϕa†

2
(cosh(r)− sinh(r))

= X1e−r

(46)
and

S†(ϵ)X2S(ϵ) =
i
2

eiϕS†(ϵ)aS(ϵ)− i
2

e−iϕS†(ϵ)a†S(ϵ)

=
i
2

(
eiϕa cosh(r)− e−iϕa† sinh(r)

)
− i

2

(
e−iϕa† cosh(r)− eiϕa sinh(r)

)
= i

eiϕa − e−iϕa†

2
(cosh(r) + sinh(r))

= X2er

(47)
Therefore, we find one of the quadrature is amplified by er while the other one is
shrinked by er.

(c) Apply the squeezing operator on a coherent state |α⟩ and derive the following quantities for the
transformed state: ⟨X̂1⟩, ⟨X̂2⟩, ∆X̂1 and ∆X̂2.
For a squeezed coherent state Ŝ |α⟩, the expectation values of X̂1 and X̂2 directly follow
from equations 46, 47:

⟨α|Ŝ†X̂1Ŝ|α⟩ = er ⟨α|X̂1|α⟩ = e−r Re
{

αeiϕ
}

(48)

⟨α|Ŝ†X̂2Ŝ|α⟩ = er ⟨α|X̂2|α⟩ = er Im
{

αeiϕ
}

(49)
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To calculate the standard deviation of X̂1 and X̂2, we first calculate the expectation value
of X̂2

1 and X̂2
2 :

⟨α|Ŝ†X̂2
1 Ŝ|α⟩ = ⟨α|Ŝ†X̂1ŜŜ†X̂1Ŝ|α⟩

=e−2r ⟨α|X2
1 |α⟩

=
e−2r

4
(α2ei2ϕ + α∗2e−i2ϕ + 2|α|2 + 1)

(50)

⟨α|Ŝ†X̂2
2 Ŝ|α⟩ = ⟨α|Ŝ†X̂2ŜŜ†X̂2Ŝ|α⟩

=e2r ⟨α|X2
2 |α⟩

=− e2r

4
(α2ei2ϕ + α∗2e−i2ϕ − 2|α|2 − 1)

(51)

Finally, we have

∆X1 =
√〈

X2
1

〉
− ⟨X1⟩2 =

e−r

2
(52)

∆X2 =
√〈

X2
2

〉
− ⟨X2⟩2 =

er

2
(53)

The squeezing operator effectively produces a squeezed state from a coherent state.
A quadrature (average value and variance) is amplified by the squeezing factor er

whereas the conjugated quadrature is “de-amplified” by the same factor. In practice,
this can be used to enhance the sensitivity in interferometric measurements of electro-
magnetic field fluctuations3, such as in Gravitational Wave detectors4. In fact, squeezed
states are now being used in Advanced LIGO for gravitational wave detection5.

Figure 1: Strain sensitivity of LIGO homodyne detection measured with and without squeezing
injection [Aasi, Junaid, et al. Nature Photonics (2013)]

(d) Plot the following states in the quadrature plane (X̂1(ϕ), X̂2(ϕ)):

i. A coherent state |α⟩.
ii. A squeezed state Ŝ(ϵ) |α⟩ for r = 2.

See FIG. 2
3Caves, Carlton M. ”Quantum-mechanical noise in an interferometer.” Physical Review D 23.8 (1981): 1693.
4Abadie, J., et al. ”A gravitational wave observatory operating beyond the quantum shot-noise limit.” Nature

Physics 7.12 (2011): 962.
5Aasi, Junaid, et al. ”Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of

light.” Nature Photonics 7.8 (2013): 613.
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Figure 2: Left: coherent state; Right: squeeze coherent state. Parameters are chosen as: α = 5,
ϵ = 1.2. Plotted by QuTip.

(e) Show that the average amplitude |β|2 = ⟨X̂1⟩2 + ⟨X̂2⟩2 for the squeezed state satisfies:

|β|2 = |α|2 cosh(2r) + Re
(

α2e2iϕ sinh(2r)
)

(54)

By summing Eq. 50 and Eq. 51, we can directly obtain the result.
(f) From the result of the previous part justify the names “amplitude squeezed state” and “phase

squeezed state”.
By analogy with a complex number we can think of |β| as the amplitude of a squeezed
state, while X1 and X2 as its real and imaginary parts. Also in 5b we established that
operator Ŝ(ϵ = 1

2 re−2iϕ) squeezes the coherent state along the X1 and X2 quadratures
(see FIG. 2). In a special case when in the initial coherent state

〈
X̂1
〉
|α⟩ ̸= 0 and

〈
X̂2
〉
|α⟩ =

0 (i.e. Im αeiϕ = 0), X1 is called the amplitude quadrature and X2 is called the phase
quadrature. Then a squeezed state with ∆X1 < 1/2 is called amplitude squeezed state,
while the one with ∆X1 > 1/2 is calles phase squeezed state.

6. Next we can calculate the effects of the squeezing operator on the photon numbers n̂:

(a) Give the average value ⟨n̂⟩ of the photon number for a squeezed state. Express the result with
respect to the average amplitude |β|2 of the squeezed field. Comment in particular the case of
β = 0.
From Eq. 44 and Eq. 45, the averaged photon number of a squeezed state can be calcu-
lated as

⟨n̂⟩ = ⟨α|Ŝ† â† âŜ|α⟩ = |α|2 cosh(2r) + sinh2(r) + Re
(

α2e2iϕ sinh(2r)
)
= |β|2 + sinh2(r)

(55)
Specifically, if |β| = 0, we have

⟨n̂⟩ = sinh2(r) (56)

(b) A similar derivation gives the variance of the photon number ⟨∆n̂2⟩:

⟨∆n̂2⟩ = |β|2
(
e−2r cos2(θ − ϕ) + e2r sin2(θ − ϕ))

)
+

sinh2(2r)
2

(57)
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i. Simplify this expression when squeezing is weak with respect to the average value of the
field(|β|2 ≫ e2r).
When the squeezing is weak, we can assume r ≈ 0, thus e−2r ≈ e2r ≈ 1. So, we find

〈
∆n̂2〉 ≈ |β|2 + sinh2(2r)

2
(58)

ii. Deduce the conditions for which the distribution is subpoissonnian, poissonnian or super-
poissonnian.
For poissonnian distribution, ⟨n̂⟩ =

〈
∆n̂2〉, which yields

sinh2(r) =
sinh2(2r)

2
(59)

Similarly, sinh2(r) >
sinh2(2r)

2
for superpoissonnian and sinh2(r) <

sinh2(2r)
2

for
subpoissonnian.

iii. Use your result from part (i) and show that the squeezed vacuum has counter intuitively
non-zero photon number fluctuation (in contrast to |0⟩ i.e. vacuum).
For a squeezed vacuum α = 0, we naturally have |β| = 0 and

〈
∆n̂2〉 = sinh2(2r)

2
(60)

which is non-zero for r ̸= 0.
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