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Quantum Electrodynamics and Quantum Optics
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE (EPFL)

Exercise No.2

2.1 Evolution of a coherent wavepacket

Hint: Before going through this exercise, we recommend you to carefully read Section 2.3 of M.O. Scully
book. Consider a wavefunction that is a wavefunction of a ground state of a harmonic oscillator,
displaced in the coordinate space by some arbitrary value x0 at the initial moment of time t = 0
(Note: m = 1 here):

ψ(x, t = 0) =
( ω

πh̄

)1/4
exp

[
− ω

2h̄
(x − x0)

2
]

, (1)

where ω is the frequency of a harmonic oscillator. The task is to obtain the probability density
function |ψ(x, t)|2 for any moment of time:

|ψ(x, t)|2 =
( ω

πh̄

)1/2
exp

[
−ω

h̄
(x − x0 cos ωt)2

]
. (2)

To do that,

(a) Prove that the wavefunction (1) is a coherent state.

(b) Find the expansion coefficients an of the initial wavefunction at t = 0 in the orthonormal
Fock state basis, with the known time evolution :

ψ(x, t) =
∞

∑
n=0

anϕn(x)e−iEnt/h̄, (3)

where ϕn(x) = ⟨x|n⟩ is a coordinate wavefunction of a Fock state, with eigenenergy En =
(n + 1/2) h̄ω.

(c) Now coming to the time evolution, express |ψ(t)⟩ as the product of a phase and a displace-
ment operator acting on the vacuum state |0⟩. Compute the action of this displacement
operator onto the wavefunction in the x basis to obtain a convenient expression for ψ(x, t).
Finally, write the probability density function.

2.2 Properties of coherent and squeezed states

In this exercise we want to calculate the basic properties of coherent1 and squeezed states of light.
Here we focus on an electromagnetic field mode described by the creation â† and annihilation
operators â.

1. We define generalized field quadratures as:

X̂1(ϕ) =
1
2

(
âeiϕ + â†e−iϕ

)
(4)

X̂2(ϕ) =
1
2i

(
âeiϕ − â†e−iϕ

)
(5)

Calculate [X̂1(ϕ), X̂2(ϕ)]. What do they refer to in case of ϕ = 0?

2. Calculate the time-dependent evolution of X̂1(ϕ) and X̂2(ϕ) for Ĥ = h̄ω(â† â + 1
2 )

1Glauber, Roy J. ”Coherent and incoherent states of the radiation field.” Physical Review 131.6 (1963): 2766.
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3. A coherent state (|α⟩) is defined as: â |α⟩ = α |α⟩.
Show that a coherent state is a minimum uncertainty state for every pair of X̂1(ϕ) and X̂2(ϕ).

4. For simplicity, consider a state |ψ⟩ with vanishing mean for all times: ⟨ψ| â |ψ⟩ = ⟨â⟩ =
⟨â†⟩ = ⟨X̂1⟩ = ⟨X̂2⟩ = 0

(a) Express the variance of the field quadratures (∆X̂2
i ) with respect to ⟨â† â⟩, ⟨ââ⟩ and ϕ.

(b) Show that the minimal and maximal variances are corresponding to two conjugate
quadratures. Give their expressions.

(c) The state is squeezed if there exists at least a pair of conjugated quadratures for which
the uncertainty of one of the quadratures is smaller than 1

4 . Deduce a sufficient and
necessary condition to have a squeezed state.

5. In order to obtain a squeezed state, one may apply the squeezing operator with squeezing
parameter r:

Ŝ(ϵ) = eϵâ†2−ϵ∗ â2
, ϵ =

1
2

re−2iϕ (6)

(a) Derive the transformation of â and â† under the squeezing operator. (Heisenberg pic-
ture formulation)

(b) Then deduce the transformation for the quadratures X̂1(ϕ) and X̂2(ϕ)

(c) Apply the squeezing operator on a coherent state |α⟩ and derive the following quanti-
ties for the transformed state: ⟨X̂1⟩, ⟨X̂2⟩, ∆X̂1 and ∆X̂2.
The squeezing operator effectively produces a squeezed state from a coherent state.
A quadrature (average value and variance) is amplified by the squeezing factor er

whereas the conjugated quadrature is “de-amplified” by the same factor. In practice,
this can be used to enhance the sensitivity in interferometric measurements of electro-
magnetic field fluctuations2, such as in Gravitational Wave detectors3. In fact, squeezed
states are now being used in Advanced LIGO for gravitational wave detection4.

Figure 1: Strain sensitivity of LIGO homodyne detection measured with and without squeezing
injection [Aasi, Junaid, et al. Nature Photonics (2013)]

(d) Plot the following states in the quadrature plane (X̂1(ϕ), X̂2(ϕ)):

2Caves, Carlton M. ”Quantum-mechanical noise in an interferometer.” Physical Review D 23.8 (1981): 1693.
3Abadie, J., et al. ”A gravitational wave observatory operating beyond the quantum shot-noise limit.” Nature

Physics 7.12 (2011): 962.
4Aasi, Junaid, et al. ”Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of

light.” Nature Photonics 7.8 (2013): 613.
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i. A coherent state |α⟩.
ii. A squeezed state Ŝ(ϵ) |α⟩ for r = 2.

(e) Show that the average amplitude |β|2 = ⟨X̂1⟩2 + ⟨X̂2⟩2 for the squeezed state satisfies:

|β|2 = |α|2 cosh(2r) + Re
(

α2e2iϕ sinh(2r)
)

(7)

(f) From the result of the previous part justify the names “amplitude squeezed state” and
“phase squeezed state”.

6. Next we can calculate the effects of the squeezing operator on the photon numbers n̂:

(a) Give the average value ⟨n̂⟩ of the photon number for a squeezed state. Express the
result with respect to the average amplitude |β|2 of the squeezed field. Comment in
particular the case of β = 0.

(b) A similar derivation gives the variance of the photon number ⟨∆n̂2⟩:

⟨∆n̂2⟩ = |β|2
(
e−2r cos2(θ − ϕ) + e2r sin2(θ − ϕ))

)
+

sinh2(2r)
2

(8)

i. Simplify this expression when squeezing is weak with respect to the average value
of the field(|β|2 ≫ e2r).

ii. Deduce the conditions for which the distribution is subpoissonnian, poissonnian or
superpoissonnian.

iii. Use your result from part (i) and show that the squeezed vacuum has counter in-
tuitively non-zero photon number fluctuation (in contrast to |0⟩ i.e. vacuum).

2.3 Two-photon coherent states (*)5

An investigation of the possible ways to generate squeezed states leads to a broad class of ra-
diation states that are called “two-photon coherent states” (TCS’s). They include the minimum-
uncertainty states of which the coherent state is a special case.

In general, a two-photon coherent state differs from a coherent state in several ways: they are
generated by different photon processes, they have different quantum statistical properties, and
they have different coherence properties. Coherent states are generated from ideal one-photon
stimulated processes, whereas TCS’s are obtained from ideal stimulated two-photon processes for
two photons of the same mode. The quantum noise properties of TCS’s are basically the same as
those of squeezed states.6. These states are also used to define squeezed states in an alternative
but equivalent way than you have seen in the previous exercise. In this exercise we look at the
definition and properties of these states.

1. For a fixed radiation mode for photon anihilation operator â we define:

b̂ = µâ + νâ†, |µ|2 − |ν|2 = 1 (9)

Show that [b̂, b̂†] = 1.

2. Any transformation that keeps the commutation invariant is called a canonical transformation.
Therefore, the transformation from â to b̂ in Eq. (9) is a linear canonical transformation. A
theory of Von Neumann states that every canonical transformation can be formulated as a
unitary transformation such that:

b̂ = ÛâÛ†, ÛÛ† = 1̂ (10)

5Graded exercise
6Yuen, Horace P. ”Two-photon coherent states of the radiation field.” Physical Review A 13.6 (1976): 2226.
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where 1̂ is the unity operator (identity).

We call the eigen-states of b̂ two-photon coherent states |β⟩g with β being the eigen-value

(b̂ |β⟩g = β |β⟩g). They are also know as Bogoliubov modes. Express these eigen-states using
coherent states |β⟩

3. Using the canonical transformation, show that TCS’s eigen states can be expressed in the
following form:

|β⟩g = D̂g(β) |0⟩g (11)

where D̂g(β) is the displacement operator for TCS’s and |0⟩g is the vacuum TCS state. Using
the displacement operator of a coherent state, express D̂g(β) in explicit form using b̂ and b̂†.
How is the |0⟩g related to the vacuum state |0⟩?

4. Let us now consider the case of µ = cosh r and ν = ei2ϕ sinh r.

(a) Show that there exists a unitary transformation Û ≡ Ŝ(ϵ), where ϵ = r
2 ei2ϕ , that relates

b̂ to â when b̂ is defined as Eq. (9). Here Ŝ(ϵ) is a squeezing operator with squeezing
parameter ϵ.

(b) Use the result from part 3 and show that the two-photon coherent state can be expressed
as:

|β⟩g = Ŝ(ϵ)D̂(β) |0⟩ (12)

(c) Rewrite the TCS displacement operator D̂g in terms of â and â† and show:

|β⟩g = D̂(α)Ŝ(ϵ) |0⟩ , α = µβ − νβ∗ (13)

Hence we have found the equivalent squeezed state for the given two-photon coherent
state. Thus the two-photon coherent state is generated by first displacing the vacuum
state, then applying the squeezing operator. This is the opposite procedure to that which
defines the squeezed state. The two procedures yield the same state if the displacement
parameters α and β are related as in Eq. (13).
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