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Quantum Electrodynamics and Quantum Optics
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Solutions to Exercise No.1

1.1 Solution: Classical electromagnetic field modes density in free space and field
quantization

a) According to Maxwell equation, for electromagnetic wave we have

oB

ot
oD

T ot

V X E =

V xH

Introduce potential vector A, thus

Substitute (1) by (2) we obtain

VXH:iVXB:iVX(VXA)
Ho Ho

Since we choose Coulomb gauge V - A = 0, so

Vx(VxA)=V(V-A)-V?A=-V?A
So

_1_,, O9E  2*A
VXH——%VA—GOE——G'OW

Here we have the wave equation for A by using poep = ¢ 2

1 9%2A
2 _
VA_?ZW_O

We can separate the vector potential into two complex terms

A=AT+A"
where + , - respectively represents the amplitudes vary by e~ @t and ¢!, For one particular
polarization, we can rewrite the equation into
++
ZE’ZA(i)_laZILXJ()_O —123
ox; I 2 oz o IT e

i=1,2,3

where the subscript 1,2,3 indicate the components on x,y,z direction. + indicates different
polarization.

b) To solve the equation in a cube of side length L, we suppose that the vector potential can be
expressed as a superposition of different modes. We use + for example

A](A) = ;c](+)uk]. (x;) et
J

Thus, (5) can be rewritten as an equation of uy, (x;)
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The solution takes the form of

ug, (%) = De'ki%i

where D is the normalized coefficient. Apply the period boundary condition u (k;L) = u(0).
Then we obtain

27(1’1]'
k]- = I

¢) In order to calculate the mode density, we have to replace the discrete summation by integral

of k.
3
Y 2 <L> [ &
7 27

where 2 indicates 2 ways of polarization. We calculate the integral in polar coordinates, so that

n]-EZ

d®k = k* dksin 8d0d¢
So

L 3 3 L 3 k2 T 27 1.3K3
N—2<27T> /[O,k]3dk_2<2n) /Okdk/o sin0do [~ dp = 5~

If we let L — co and L3 — V be the volume of the space, then the mode density should be

dN K
vdk  n?
d) In order to express the mode density in terms of frequency, we rewrite the integral of k into
integral of w by using k = w/c

w2
d’k = = dw sin #dfd¢
So

L 3
N=2 <> / Pw
21 [0,w]?
27 Vw3

T ke M sinode [
(27r> 0o ¢ /0 sin fdo 0 ¢ 3723
Since w = 27V, so

N = 8 V13
3c3
Hence

(v) = dN  8m?
PV = v a c3
e) The Hamiltonian of a 1D harmonics oscillator can be expressed as

2

p
H="—+=-
2m+2mwx

2
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According to equipartition theorem, every quadratic term of p or x contributes 1/2kgT to the
energy, so the total energy should be € = kpT. Hence, we can give Rayleigh-Jeans law

dE _ ) = SKkeT
Vvdv P = c3
—iwt+ik-r

f) By replacing u(r) = a(r,t) = ae
as a superposition of . and a;;

, we can rewrite the vector potential can be expressed

Aa=Yc [ékake_iwt—i_ik r 1 eiateiwt—ik r]
kA

where C is a constant and € is a direction vector and A = +1 indicates the polarization. Due to
relation (2) we obatin

E = Esz [éklxke—zwt—&-qu' é,’;oc,te“"t ik- r}
k,A

R A —icwt+ik- A it —ik-
B=)_iC [(k X €x) age T — (k x &) ape ! ’}
kA
Here we use V x k7 = k x ek7. So

|E|* =E - E*

:lec [ékake—lwt—i-qu‘ élt“ltem)t ik- r]
kA

Z (—iw)C [eklx;;ezwt ik-r ézlxkefiwtﬂk-r}

Z W?|CI* (e + apag)

>

and
B> =B-B*
:izc [(k X ék) lxkefiwtﬂk-r o (k % é;:) a;zeiwtfik-r}
kA
(=) ZC* {(k X €x) lx;;eiwt—ik-r — (k x &) “ke—iwt-&-ikr}

=) |k|? |C|2 (o + agak)
oA

Then the Hamiltonian writes by using (67) and (23)

H= %fv (eolE> + |B[?) AV = e [y ([E?+c2|B]*) dV = Yy, [C[*Vew? (mx* +a*a)

In order to make the Hamiltonian have the unit of energy, we take C = | / 57— wV = . So, finally we
obtain

H=)Y Y hw (s + o)
k A=+1

g) In order to follow the symmetric postulate we keep the form of aa* +a*a. By replacing a
and a* by operators 4 and a*, the Hamiltonian becomes

H=)Y )Y hw (aka,t + a,tak)

k A==*1

For electric field operator and magnetic field operator
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l . .
H = b k X &) are —iwt+ik-r k x & a+ezwt71k-r
o g po \ ZwVeo k) — k) 4k }
h) Due to (27) and (28) and the facts that

[ak, a;] = [a,t,aﬂ =0
[ak, aﬂ = k1

the commutation relationship of different components of E and B, i.e [E ki, B 1]-] should be

[Exi(r),Byj (r')] = —2560 k;\ [el((/\) ® (l X egft)) [gk,aﬂ _ eI((/\) 2 (l « €§A)> {”LWH

% [ei(kfl)-(rfr’) _ efi(kfl)-(rfr’>}

__h ik—1)-(r—#) _ —i(k—1)-(r—7'
N 2V€0kz [6 ¢ )

Replace the sum of k by integral we will have

h 0
[Exi(r), Byj (*')] = Ok6rr = —16*05k,k/ﬁ5r,r/€ijk

i) For vacuum state

: A —iwt+ik-r Ax 1 iwt—ik-r
iw [ekake — épage }

(E) = (0[E|0) = <0 Ve

0) o

Since |E|? = Y 2V€0 (nx +1/2), so

(B~ (B)%) = (0(E~ (B1]0) = (me 2] my) = 1

For a higher state |ny),

<E> = <le|E|le> = <le iw 26()V€0 [ékﬂke_iwt-i_ik'r éiﬂielc‘)t ik r} le> =0
and
hw
((E—(E))*) = (ng |(E— (E))?| nk) = (nx |E*| ng) = Ve (nx +1/2)

1.2 Solution: Review on commutation relations and operators
The first two commutators are proven by induction and the last three build upon the previously
derived commutation relations.

PN N -1 . .
1. Let us demonstrate that [a, (a*)n] =n (a*)n by induction,

Forn=0:[3,1]=0
Forn=1:[a,a"] =1

Forn =2: [a, (ﬁ*)z} = a'[a, " + [a, 48" = 24t

4
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Forn=3: [a,(a")°] = ... =3 (a")’
We can formulate a hypothesis for the n-th step as : [ﬁ, (ﬁ*)n} =n (ﬁ*)nil,
applying the induction step for the n 4 1 case yields

o ()] = o ()] =at o (a7)'] + [207] ()’

(1)
-1
=t (a7)" + (a")" = (1) (1),
verifying the hypothesis.
. We will follow the same strategy and use a proof by induction to obtain

[a%, (a)"] = —na"1,
Forn=0:[a",1] =0
Forn = [ﬁ*,ﬁ] = -1
Forn =2: [a*,a%] = a[a%,a] + [a',a)a = —24
Forn=3: [a",a%] = ... = —34?
Similarly, the hypothesis for the n-th step is : [a,2"] = —na"~1,
and applying the induction step for the n + 1 case yields

At oantl] _ [at aan| oA [t an At oa] an

a,da =\da,aa"|=ala,a |+ \|a,aja

L e O S i R @

. Now let f(x) = Y, fux" be a well defined function for any value of x. We can develop f, use
the bilinearity of the commutator and obtain

()] = o 0] =2 ()] =R () =20

. Similarly

[ﬁ+/f(ﬁ)] = [ﬁ+r;fnﬁ”] = ;fn [ﬁ*,ﬁ”} — ;fn ()l = _a];(@) @

. We define f(a) = e~*ABeA and we perform a Taylor expansion of f(a) near a = 0 using
the Taylor expansion of the exponentials. Recall the Taylor expansion of a function g as

1 1
g(a) gg(O)+g’(0)¢x+§g”(o)a2+gg///(o)a3+..'

Expanding the exponentials and collecting the terms gives

=~ B—«[A,B] +5; ([4,AB] + [BA,A]) + O(«) 5)
2

= B—«[A,B] + 5[4, AB—BA] + O)
“2
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6. Let us define A = —4'4, we have [A, ﬁ] 4 and using the result from 5, we obtain

[& e—mﬁ*a] _
, —

=e
i A YA A
o (ﬁ—a[A,ﬁ]+'[A,[A,ﬁ]]Jr...—ﬁ) ©)
“2 2
:e"‘A<ﬁ—(x€l+'ﬁ+ —ﬁ): <1—0c+2'+ —1>ﬁ

1.3 Solution: Quantized field properties: linear momentum

Let’s consider a plane transverse EM wave of frequency w with a wave-vector k and linear polar-
ization € and write down the expressions for the quantized EM field

. ho \ V2 . )
E=1i <2€0L3> [ﬁeel(kr_Wt) _ afee—l(kr—wt)} %
and
o h’k‘ 1/2 Ak X € i(krfwt) A+k X € i(krfwt)
Hiamap) [ e ®

Now we substitute these expessions into the expression for the Pointing vector and note the
followin

e terms containing a spacial exponent of the form %" where n # 0 will average out in the
integration over d°r

e for a linearly polarized plane wave [e x [k x €]] = k
e w = cl|k|

and thus we are left with
hk 1
— 3 3 At Al At A
eo/drExB— /d 2L3 —aa aa}—hk<aa+2> 9)

Note, that to include the rest of modes into consideration, it is sufficient to summ the individual
contributions over k as any cross terms average out during the spacial integration. The field thus
carries no zero point momentum, as for each pair of k and —k the 1 term cancel out.

1.4 Solution: Quantization of an electrical LC circuit

(@) A conventional electric LC circuit consists of a capacitor and an inductor, and the total energy
includes the energy in the capacitor (electric energy) and the energy in the inductor (magnetic
energy). Hence, classical Hamiltonian can be written as

QZ
H== 4+
2C + 2L
It is possible to rewrite this Hamiltonian in terms of E and B (electric and magnetic field in
the capacitor and inductor) using standard relations and definitions of capacitance and induc-

tance:
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Q=CV =CdE
® = IL = ANB

C42E> = A2N?B2
= +

H 2 2L

(b) For quantization, one can introduce the following set of canonically conjugate variables and
their proper commutation relations:

Q = _inpf(ﬁ - é+)

a

S =0, (a+a")

Note that this is not a unique choice of variables. ZPF (zero point fluctuation) coefficients
are introduced here for the normalization, which also can be defined in different ways. For
these variables to be canonically conjugate, the following commutation relations should be
requested:

[®,Q] = in

Now using the definitions of variables one can compute the Hamiltonian, canceling the terms
aa and a'a’, and expand the second commutator. The final Hamiltonian is

(afa+ 1)

2
[ h
szf: TZO

hZo
Car =\

And ZPF coefficients are

L
Here, Zg = 4/ C is a value that is called characteristic impedance.

The Hamiltonian expressed via electric and magnetic fields undergoes the same procedure
since it has the same mathematical form, but just different symbols, so there are just different
variables in the final expressions.

(c) By straightforward expansion of the expression, one obtains the zero point fluctuation coeffi-
cients derived above, and immediately gets a proof that Heisenberg uncertainty is satisfied.

(d) Itis equal to Q,,f coefficient.



