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Quantum Electrodynamics and Quantum Optics
ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE (EPFL)

Solutions to Exercise No.1

1.1 Solution: Classical electromagnetic field modes density in free space and field
quantization

a) According to Maxwell equation, for electromagnetic wave we have

∇× E = −∂B
∂t

∇× H =
∂D
∂t

Introduce potential vector A, thus

B = ∇× A

E = −∂A
∂t

Substitute (1) by (2) we obtain

∇× H =
1
µ0

∇× B =
1
µ0

∇× (∇× A)

Since we choose Coulomb gauge ∇ · A = 0, so

∇× (∇× A) = ∇(∇ · A)−∇2A = −∇2A

So

∇× H = − 1
µ0

∇2A = ϵ0
∂E
∂t

= −ϵ0
∂2A
∂t2

Here we have the wave equation for A by using µ0ϵ0 = c−2

∇2A − 1
c2

∂2A
∂t2 = 0

We can separate the vector potential into two complex terms

A = A+ + A−

where + , - respectively represents the amplitudes vary by e−iωt and eiωt. For one particular
polarization, we can rewrite the equation into

∑
i=1,2,3

∂2

∂xi
A(±)

j − 1
c2

∂2A(+±)
j

∂t2 = 0, j = 1, 2, 3

where the subscript 1, 2, 3 indicate the components on x, y, z direction. + indicates different
polarization.

b) To solve the equation in a cube of side length L, we suppose that the vector potential can be
expressed as a superposition of different modes. We use + for example

A(λ)
j = ∑

k j

c(+)
j uk j

(
xj
)

e−iωt

Thus, (5) can be rewritten as an equation of uk j

(
xj
)
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(
∇2 +

ω2

c2

)
u = 0

The solution takes the form of

uk j

(
xj
)
= Deik jxj

where D is the normalized coefficient. Apply the period boundary condition u
(
k jL

)
= u(0).

Then we obtain

k j =
2πnj

L
, nj ∈ Z

c) In order to calculate the mode density, we have to replace the discrete summation by integral
of k.

∑
k
→ 2

(
L

2π

)3 ∫
d3k

where 2 indicates 2 ways of polarization. We calculate the integral in polar coordinates, so that

d3k = k2 dk sin θdθdϕ

So

N = 2
(

L
2π

)3 ∫
[0,k]3

d3k = 2
(

L
2π

)3 ∫ k

0
k2 dk

∫ π

0
sin θdθ

∫ 2π

0
dϕ =

L3k3

3π2

If we let L → ∞ and L3 → V be the volume of the space, then the mode density should be

dN
V dk

=
k2

π2

d) In order to express the mode density in terms of frequency, we rewrite the integral of k into
integral of ω by using k = ω/c

d3k =
ω2

c3 dω sin θdθdϕ

So

N = 2
(

L
2π

)3 ∫
[0,ω]3

d3ω

= 2
(

L
2π

)3 ∫ ω

0

ω2

c3 dk
∫ π

0
sin θdθ

∫ 2π

0
dϕ =

Vω3

3π2c3

Since ω = 2πν, so

N =
8πVν3

3c3

Hence

ρ(ν) =
dN

V dν
=

8πν2

c3

e) The Hamiltonian of a 1D harmonics oscillator can be expressed as

H =
p2

2m
+

1
2

mωx2

2



Prof. T.J. Kippenberg
Fall Term 2024

According to equipartition theorem, every quadratic term of p or x contributes 1/2kBT to the
energy, so the total energy should be ϵ = kBT. Hence, we can give Rayleigh-Jeans law

dE
V dν

= ϵρ(ν) =
8πν2kBT

c3

f) By replacing u(r) = α(r, t) = αe−iωt+ik·r, we can rewrite the vector potential can be expressed
as a superposition of αk and α∗

k

A = ∑
k,λ

C
[
ϵ̂kαke−iωt+ik·r + ϵ̂∗kα∗

keiωt−ik·r
]

where C is a constant and ϵ̂ is a direction vector and λ = ±1 indicates the polarization. Due to
relation (2) we obatin

E = ∑
k,λ

iωC
[
ϵ̂kαke−iωt+ik·r − ϵ̂∗kα∗

keiωt−ik·r
]

B = ∑
k,λ

iC
[
(k × ϵ̂k) αke−iωt+ik·r − (k × ϵ̂∗k) α∗

keiωt−ik·r
]

Here we use ∇× eik·r = k × eik·r. So

|E|2 =E · E∗

=∑
k,λ

iωC
[
ϵ̂kαke−iωt+ik·r − ϵ̂∗kα∗

keiωt−ik·r
]

∑
k,λ

·(−iω)C∗
[
ϵ̂kα∗

keiωt−ik·r − ϵ̂∗kαke−iωt+ik·r
]

=∑
k,λ

ω2|C|2 (αkα∗
k + α∗

kαk)

and

|B|2 =B · B∗

=i ∑
k,λ

C
[
(k × ϵ̂k) αke−iωt+ik·r − (k × ϵ̂∗k) α∗

keiωt−ik·r
]

· (−i)∑
k

C∗
[
(k × ϵ̂k) α∗

keiωt−ik·r − (k × ϵ̂∗k) αke−iωt+ik·r
]

=∑
k,λ

|k|2|C|2 (αkα∗
k + α∗

kαk)

Then the Hamiltonian writes by using (67) and (23)
H = 1

2

∫
V

(
ϵ0|E|2 + |B|2

)
dV = 1

2 ϵ0
∫

V

(
|E|2 + c2|B|2

)
dV = ∑k,λ |C|2Vϵ0ω2 (αα∗ + α∗α)

In order to make the Hamiltonian have the unit of energy, we take C =
√

h̄
2ωVϵ0

. So, finally we
obtain

H = ∑
k

∑
λ=±1

h̄ω (αkα∗
k + α∗

k αk)

g) In order to follow the symmetric postulate we keep the form of αα∗ +α∗α. By replacing α
and α∗ by operators a and a†, the Hamiltonian becomes

H = ∑
k

∑
λ=±1

h̄ω
(

aka†
k + a†

k ak

)
For electric field operator and magnetic field operator
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E = ∑
k,λ

iω

√
h̄

2ωVϵ0

[
ϵ̂kake−iωt+ik·r − ϵ̂∗ka†

keiωt−ik·r
]

H =
B
µ0

= ∑
k,λ

i
µ0

√
h̄

2ωVϵ0

[
(k × ϵ̂k) ake−iωt+ik·r − (k × ϵ̂∗k) a†

keiωt−ik·r
]

h) Due to (27) and (28) and the facts that

[ak, al ] =
[

a†
k , a†

l

]
= 0[

ak, a†
l

]
= δk,l

the commutation relationship of different components of E and B, i.e
[
Eki, Blj

]
should be

[
Eki(r), Bl j

(
r′
)]

= − h̄
2Vϵ0

∑
k,l,λ

[
ϵ
(λ)
k ⊗

(
l × ϵ

(λ)
l

) [
ak, a†

l

]
− ϵ

(λ)
k ⊗

(
l × ϵ

(λ)
l

) [
a†

k, al

]]
×

[
ei(k−l)·(r−r′) − e−i(k−l)·(r−r′

)]
= − h̄

2Vϵ0
kz

[
ei(k−l)·(r−r′) − e−i(k−l)·(r−r′

)]
Replace the sum of k by integral we will have

[
Eki(r), Bl j

(
r′
)]

= δk,lδr,r = −i
h̄
ϵ0

δk,k′
∂

∂k
δr,r′ϵijk

i) For vacuum state

⟨E⟩ = ⟨0|E|0⟩ =
〈

0

∣∣∣∣∣iω
√

h̄
2ωVϵ0

[
ϵ̂kake−iωt+ik·r − ϵ̂∗ka†

keiωt−ik·r
]∣∣∣∣∣ 0

〉
= 0

Since |E|2 = ∑k
h̄ω

2Vϵ0
(nk + 1/2), so

〈
(E − ⟨E⟩)2〉 = 〈

0
∣∣(E − ⟨E⟩)2∣∣ 0

〉
=

〈
nk

∣∣E2∣∣ nk
〉
=

h̄ω

4Vϵ0

For a higher state |nk⟩,

⟨E⟩ = ⟨nk|E|nk⟩ =
〈

nk

∣∣∣∣∣iω
√

h̄
2ωVϵ0

[
ϵ̂kake−iωt+ik·r − ϵ̂∗ka†

keiωt−ik·r
]∣∣∣∣∣ nk

〉
= 0

and

〈
(E − ⟨E⟩)2〉 = 〈

nk
∣∣(E − ⟨E⟩)2∣∣ nk

〉
=

〈
nk

∣∣E2∣∣ nk
〉
=

h̄ω

2Vϵ0
(nk + 1/2)

1.2 Solution: Review on commutation relations and operators

The first two commutators are proven by induction and the last three build upon the previously
derived commutation relations.

1. Let us demonstrate that
[

â,
(
â†)n

]
= n

(
â†)n−1 by induction,

For n = 0 : [â, 1] = 0
For n = 1 :

[
â, â†] = 1

For n = 2 :
[

â,
(
â†)2

]
= â†[â, â†] + [â, â†]â† = 2â†
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For n = 3 :
[

â,
(
â†)3

]
= . . . = 3

(
â†)2

We can formulate a hypothesis for the n-th step as :
[

â,
(
â†)n

]
= n

(
â†)n−1,

applying the induction step for the n + 1 case yields[
â,
(

â†
)n+1

]
=

[
â, â†

(
â†
)n]

= â†
[

â,
(

â†
)n]

+
[

â, â†
] (

â†
)n

= â†n
(

â†
)n−1

+
(

â†
)n

= (n + 1)
(

â†
)n

,
(1)

verifying the hypothesis.

2. We will follow the same strategy and use a proof by induction to obtain[
â†, (â)n] = −nân−1,

For n = 0 :
[
â†, 1

]
= 0

For n = 1 :
[
â†, â

]
= −1

For n = 2 :
[
â†, â2] = â[â†, â] + [â†, â]â = −2â

For n = 3 :
[
â†, â3] = . . . = −3â2

Similarly, the hypothesis for the n-th step is :
[
â†, ân] = −nân−1,

and applying the induction step for the n + 1 case yields[
â†, ân+1

]
=

[
â†, âân

]
= â

[
â†, ân

]
+

[
â†, â

]
ân

= −ânân−1 − ân = −(n + 1)ân.
(2)

3. Now let f (x) = ∑n fnxn be a well defined function for any value of x. We can develop f , use
the bilinearity of the commutator and obtain

[
â, f

(
â†
)]

=

[
â, ∑

n
fn

(
â†
)n

]
= ∑

n
fn

[
â,
(

â†
)n]

= ∑
n

fn · n
(

â†
)n−1

=
∂ f

(
â†)

∂â† (3)

4. Similarly

[
â†, f (â)

]
=

[
â†, ∑

n
fn ân

]
= ∑

n
fn

[
â†, ân

]
= ∑

n
fn · (−n)ân−1 = −∂ f (â)

∂â
(4)

5. We define f (α) = e−αÂB̂eαÂ and we perform a Taylor expansion of f (α) near α = 0 using
the Taylor expansion of the exponentials. Recall the Taylor expansion of a function g as

g(α) ∼= g(0) + g′(0)α +
1
2!

g′′(0)α2 +
1
3!

g′′′(0)α3 + . . .

Expanding the exponentials and collecting the terms gives

f (α) ∼=
(

1 − αÂ +
α2

2!
Â2 − α3

3!
Â3 + . . .

)
B̂
(

1 + αÂ +
α2

2!
Â2 +

α3

3!
Â3 + . . .

)
∼= B̂ − α

(
ÂB̂ − B̂Â

)
+

α2

2!
(

Â2B̂ − ÂB̂Â + B̂Â2 − ÂB̂Â
)
+O(α3)

∼= B̂ − α
[
Â, B̂

]
+

α2

2!
([

Â, ÂB̂
]
+

[
B̂Â, Â

])
+O(α3)

∼= B̂ − α
[
Â, B̂

]
+

α2

2!
[
Â, ÂB̂ − B̂Â

]
+O(α3)

∼= B̂ − α
[
Â, B̂

]
+

α2

2!
[
Â,

[
Â, B̂

]]
+O(α3)

(5)
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6. Let us define Â = −â† â, we have
[
Â, â

]
= â and using the result from 5, we obtain[

â, e−αâ† â
]
=

[
â, eαÂ

]
= âeαÂ − eαÂ â

= eαÂ
(

e−αÂ âeαÂ − â
)

= eαÂ
(

â − α
[
Â, â

]
+

α2

2!
[
Â,

[
Â, â

]]
+ . . . − â

)
= eαÂ

(
â − αâ +

α2

2!
â + . . . − â

)
= eαÂ

(
1 − α +

α2

2!
+ . . . − 1

)
â

= eαÂ (
e−α − 1

)
â = (e−α − 1)e−αâ† â â

(6)

1.3 Solution: Quantized field properties: linear momentum

Let’s consider a plane transverse EM wave of frequency ω with a wave-vector k and linear polar-
ization ϵ and write down the expressions for the quantized EM field

Ê = i
(

h̄ω

2ϵ0L3

)1/2 [
âϵei(kr−ωt) − â†ϵe−i(kr−ωt)

]
(7)

and

Ĥ = i
(

h̄|k|
2ϵ0cL3

)1/2 [
â

k × ϵ

|k| ei(kr−ωt) − â† k × ϵ

|k| ei(kr−ωt)
]

(8)

Now we substitute these expessions into the expression for the Pointing vector and note the
followin

• terms containing a spacial exponent of the form einkr where n ̸= 0 will average out in the
integration over d3r

• for a linearly polarized plane wave [ϵ × [k × ϵ]] = k

• ω = c|k|

and thus we are left with

P = ϵ0

∫
d3r E × B = −

∫
d3r

h̄k
2L3

[
−ââ† − â† â

]
= h̄k

(
â† â +

1
2

)
(9)

Note, that to include the rest of modes into consideration, it is sufficient to summ the individual
contributions over k as any cross terms average out during the spacial integration. The field thus
carries no zero point momentum, as for each pair of k and −k the 1

2 term cancel out.

1.4 Solution: Quantization of an electrical LC circuit

(a) A conventional electric LC circuit consists of a capacitor and an inductor, and the total energy
includes the energy in the capacitor (electric energy) and the energy in the inductor (magnetic
energy). Hence, classical Hamiltonian can be written as

H =
Q2

2C
+

Φ2

2L

It is possible to rewrite this Hamiltonian in terms of E and B (electric and magnetic field in
the capacitor and inductor) using standard relations and definitions of capacitance and induc-
tance:
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Q = CV = CdE

Φ = IL = ANB

H =
Cd2E2

2
+

A2N2B2

2L

(b) For quantization, one can introduce the following set of canonically conjugate variables and
their proper commutation relations:

Q̂ = −iQzp f (â − â†)

Φ̂ = Φzp f (â + â†)

Note that this is not a unique choice of variables. ZPF (zero point fluctuation) coefficients
are introduced here for the normalization, which also can be defined in different ways. For
these variables to be canonically conjugate, the following commutation relations should be
requested:

[â, â†] = 1

[Φ̂, Q̂] = ih̄

Now using the definitions of variables one can compute the Hamiltonian, canceling the terms
aa and a†a†, and expand the second commutator. The final Hamiltonian is

Ĥ = h̄
1√
LC

(a†a +
1
2
)

And ZPF coefficients are

Qzp f =

√
h̄

2Z0

Φzp f =

√
h̄Z0

2

Here, Z0 =

√
L
C

is a value that is called characteristic impedance.

The Hamiltonian expressed via electric and magnetic fields undergoes the same procedure
since it has the same mathematical form, but just different symbols, so there are just different
variables in the final expressions.

(c) By straightforward expansion of the expression, one obtains the zero point fluctuation coeffi-
cients derived above, and immediately gets a proof that Heisenberg uncertainty is satisfied.

(d) It is equal to Qzp f coefficient.
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