
Prof. T.J. Kippenberg
Fall Term 2023

Quantum Electrodynamics and Quantum Optics
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Exercise No.13

13.1 Squeezed light from a mechanical resonator (*)

In this exercise you will derive the generation of squeezed light from the interaction of photons
with a mechanical oscillator1. The interaction between the light and mechanics can be modeled
in this system illustrated in Fig. 1 where the cavity resonance frequency is modulated by the me-
chanical motion of an end mirror.
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Figure 1: Optomechanical system

The Hamiltonian of such a system of a mechanical oscillator interacting with intracavity photons
can be generalized as

H = h̄ωca†a + h̄ωmb†b + h̄g0a†a(b† + b)

where â and b̂ are the annihilation operators for photons and phonons in the system, respectively.
Generally the system is driven by a laser at a frequency ωL close to the cavity frequency ωc, so
that it is more convenient to work in an interaction frame where ωc is replaced by ∆ = ωc − ωL in
the above Hamiltonian.

1. Assuming that the cavity has a decay rate of κ and the mechanical oscillator is also coupled
to a thermal reservoir bin with rate γ, derive the quantum Langevin equations d

dt ĉ(t) =
i
h̄ [H, ĉ]− κc

2 ĉ +
√

κc ĉin for operators â(t) and b̂(t).

2. At this point, since we are interested in the system fluctuations, we can linearize the derived
equations assuming a strong coherent drive field α0 (for convenience α0 = |α0|), and displac-
ing the annihilation operator for the photons by making the transformation â → α0 + â. This
approximation is only valid as long as we are in the vacuum weak coupling regime (g0 ≪ κ).
Introducing G = g0α0, derive the linearized Langevin equations for operators â(t) and b̂(t).

3. The Langevin equations can be easily solved in Fourier domain (note that (ĉ(ω))† = ĉ†(−ω)),
try to derive the following expression for b(ω),

b(ω) =

√
γbin(ω)

i(ω′
m − ω) + γ′/2

+
iG

i(∆ − ω) + κ/2
−
√

κain(ω)

i(ω′
m − ω) + γ′/2

+
iG

−i(∆ − ω) + κ/2
−
√

κa†
in(ω)

i(ω′
m − ω) + γ′/2

where the renormalized mechanical frequency and mechanical loss rate are ω′
m = ωm + δωm

and γ′ = γ + γOM. Write down the expressions for δωm and γOM. So you can see that due
to the interaction between light and mechanics, the frequency and the damping rate of the
mechanical object get modified.

1Safavi-Naeini, Amir H., et al. “Squeezed light from a silicon micromechanical resonator.” Nature 500.7461 (2013): 185.
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4. Now we will try to derive a simplified expression of the squeezing spectrum by making a
few reasonable approximations:

• ∆ = 0: The laser is tuned exactly to the optical cavity frequency.

• κ ≫ ωm: The cavity decay rate is much bigger than the mechanical frequency.

• ω ≪ ωm: We are only interested in the quasi-static response, so we don’t care the
feature from the resonance response of the mechanical resonator.

Under these assumptions, and also introducing Γmeas ≡ 4|G|2/κ, derive the simplified ex-
pression of the output operator âout(ω) using the input-ouput theorem âout + âin =

√
κâ in

terms of â(†)in , b̂(†)in and Γmeas, ωm, γ.

5. Ignore thermal noise by setting γ = 0, and dropping terms of order (Γmeas/ωm)2 (assuming
Γmeas ≪ ωm), derive power spectral density Sout

XX(ω) =
∫ +∞
−∞ dω′⟨X̂out

θ (ω)X̂out
θ (ω′)⟩ of the

output quadrature operator X̂ j
θ(t) = âj(t)e−iθ + â†

j (t)e
iθ . We assume the input light is quan-

tum limited so that the correlator ⟨âin(ω)â†
in(ω

′)⟩ = δ(ω + ω′), with all other correlators
equal to zero.

If derived successfully, you will find Sout
XX(ω) = 1 + 4Γmeas

ωm
sin 2θ. Here, Sout

XX(ω) = 1 cor-
responds to shot noise limit, below which the squeezing is generated at a range of optical
quadrature angles (sin 2θ < 0).

6. Next, we take into account the dynamics of the mechanical resonator while keeping the
appriximation of the bad-cavity limit (κ ≫ ωm) and resonant probing (∆ = 0). Here, we will
deal with the correlation between the mechanical position and the back-action force. First
we define the mechanical position response of the system to a force by its susceptibility

χm(ω) =
1

m(ω2
m − ω2 − iγωm)

.

We can find the force imparted on the mechanics due to the shot noise of the cavity to be

F̂BA(t) =
h̄
√

Γmeas

xzpf
X̂in

θ=0(t),

with position x̂/xzpf = b + b†. Derive the position time correlation in the form of

⟨X̂out
θ (t)X̂out

θ (t′)⟩ = δ(t− t′)+ 4Γmeas sin2 θ
⟨x̂(t)x̂(t′)⟩

x2
zpf

+ 2h̄−1 sin θ cos θ⟨F̂BA(t)x̂(t′)+ x̂(t)F̂BA(t′)⟩,

where the terms correspond to shot noise of the light, thermal noise of the mechanics, and the
cross-correlation between the back-action noise force and mechanical position fluctuations.
Then, further derive the detected spectral density in the form of

Sout
XX(ω) = 1 +

4Γmeas

x2
zpf

[
Sxx sin2 θ +

h̄
2

Re{χm(ω)} sin 2θ

]
.

From this expression you can see that any reduction of the noise below the vacuum fluctua-
tions can only be caused by the correlations between the back-action noise and the position
fluctuations of the system. Also the maximum squeezing will be enhanced around mechan-
ical frequency as χ(ω) becomes larger. The other important feature is that the quadrature
angles where you will see squeezing have different signs for frequencies below and above
the mechanical frequency ωm, since χm(ω) changes sign.
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