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Exercise No.11

11.1 A quantum switch (*)

In this exercise we illustrate how atoms can play role of an optical switch for a cavity. Furthermore,
we show how this switch can hold quantum coherence between its open and closed states. We
follow the method proposed in the following references:

• Quantum Switches and Nonlocal Microwave Fields, L. Davidovich, A. Maali, M. Brune, J. M.
Raimond, and S. Haroche Phys. Rev. Lett. 71, 2360

• Exploring the Quantum: Atoms, Cavities, and Photons, Haroche, S. and Raimond, J.M, Page 382

Figure 1: (a) Sketch of a quantum switch experiment. (b) Relevant atomic level scheme (detunings
∆ and δ not to scale)

Consider a high-Q optical cavity with superconducting mirrors with resonant frequency of ωc (Fig
1.a). The cavity is coupled to a monochromatic source at frequency ωs which is detuned from the
cavity resonant by the amount of ∆ = ωs − ωc, much larger than the cavity linewidth (∆ ≫ κ). In
this situation, no field enters the cavity and the cavity is in vacuum state (|0⟩c).

We start sending single atoms into the cavity. The level scheme of the atom is shown in (Fig
1.b). It has the ground state |g⟩a, the excited state |e⟩a, and also an intermediate state |i⟩a which
mediates the interaction with the cavity. The transition frequency for e → i transition is ω0 which
is detuned from the cavity by the amount of δ = ωc − ω0. the cavity is coupled to this transi-
tion with the coupling rate g. Assume the parameters being in the regime that the atom-cavity
coupling is in the dispersive regime. The cavity is not coupled to any other atomic transition.

1. We inject the cavity with atoms being either in the ground state (g) or in the excited state
(e). As the atom adiabatically passes through the cavity it causes shift in the cavity resonance
frequency (Fig 1.b). What would be the frequency shift of the cavity for each case?

In a situation where g2/δ = ∆ the dispersive shift can bring the cavity on resonant with the
source and a coherent field will fill the cavity mode and puts it into a coherent state |α⟩c.
Otherwise, the cavity remains in the vacuum state.

2. Consider that the atom is initially prepared in the excited state. Then it passes through the
first ”pulse region”, R1 (Fig 1.a) which it interacts with a classical field, resonant with e → g
transition with the Rabi frequency Ω0. What is the final state of the atom, |ψ1⟩a if it interact
with the field for time ∆t = π/2Ω0?
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3. Next the atom enters the cavity so the initial state of the atom-cavity system is |ψ1⟩a |0⟩c.
What would be the final state of the atom-field system when atom leaves the cavity?

4. After that the atom leaves the cavity, it passes through the second ”pulse region”, R2, which
is identical to R1. What would be the final state of the atom-field system after this stage?

5. Finally the atomic state is measured with ionization detectors. What would be the state of
the cavity if state e is detected? What if state g is detected?

11.2 Weak continuous measurement with parametrically coupled resonant cavity

In this question we analyze weak continuous measurements in a system consisting of a spin para-
metrically coupled to a resonant cavity. We will show that this measurement can be made as
optimal as allowed by quantum mechanics, as is manifested that the measurement rate of the sys-
tem can not exceed the decoherence rate due to measurement backaction to the system1.

The system Hamiltonian is described as

H =
1
2

h̄ω01σz + h̄ωc(1 + Aσz)a†a + Henv.

Here the term Henv describes the electromagnetic modes outside the cavity, and their coupling to
the cavity. Here you can see that the parametric coupling strength A determines the change in
frequency of the cavity as the spin changes direction.

In practice, one terms a measurement QND (quantum non-demolition measurement) if the ob-
servable being measured, in this case σz, is an eigenstate of the ideal Hamiltonian of the measured
system, meaning that once you determined the state of the system, the subsequent QND mea-
surements will not affect the state of the system (but of course the first measurement will). The
weak continuous measurement takes the advantage of QND measurement, as for each weak mea-
surement it would not be possible to reliably distinguish the states (in this case the spin induced
frequency shift of cavity resonance is small compared to cavity linewidth κ, such that the spin
state can’t be resolved), but by cascading together a series of such weak measurements we can
eventually achieve an unambiguous strong projective measurement (e.g. determine which state
the spin is in).

We assume that here the dynamics of the spin is much slower compared to κ the cavity decay rate,
so that in this limit the reflected phase shift of the light follows closely the instantaneous value of
the spin. We also assume that the coupling A is small enough that the phase shifts are always very
small and hence the measurement is weak measurement, meaning that many photons will have
to pass through the cavity before much information is gained about the value of the phase shift
and hence the value of the spin.

1. We first consider the case of a one-sided cavity where only one of the mirrors is semitranspar-
ent, while the other being perfectly reflecting. In this case a light wave incident on the cavity
will be perfectly reflected, but with a phase shift θ determined by the cavity and the value of
spin σz. When the phase shift is small, we can derive its expression as θ ≈ 4Aωcσz/κ, which
in turn allows us to determine the state of the spin σz based on the measured θ. However, for
a given photon flux Ṅ incident on the cavity, there will be a phase uncertainty described as
Sθθ in noise power spectral density. Derive the measurement-imprecision noise of the spin
Sσzσz . (when y = kx, Syy = k2Sxx.)

2. After integrating up the detected phase signal of the reflected light up to time t, depending
on the state of the spin, the mean value of photocurrent I will be ⟨σz⟩ = ±1 · t, and ∆σz =

1Clerk, Aashish A., et al. “Introduction to quantum noise, measurement, and amplification.” Reviews of Modern Physics 82.2 (2010): 1155.
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√
Sσzσz t. The measurement rate is defined as Γmeas =

∂SNR
2∂t . Derive the SNR (signal to noise

ratio) and the measurement rate. Based on the measurement rate, also write down how
much time you need to measure before you can get meaningful information of the state of
the spin.

3. Apart from measurement imprecision, there is also backaction from measurement light to
the atom. This can be made more clear by rewriting the Hamiltonian as

H =
1
2

h̄(ω01 + 2Aωca†a)σz + h̄ωca†a + Henv,

such that the spin splitting frequency gets shifted depending on how many photon there
is in the cavity. While this kind of fluctuation can not cause transitions between the two
spin eigenstates, the resulting phase diffusion leads to measurement-induced dephasing of
superpositions in the spin state according to

⟨e−iϕ⟩ =
〈

e−i
∫ t

0 dτ∆ω01(τ)
〉
≈ e−

2
h̄2 SFFt

where F = − ∂H
∂σz

. The dephasing rate is thus defined as Γϕ = 2
h̄2 SFF. Derive the expression of

dephasing rate in terms of SṄṄ (photon flux Ṅ = nκ/4, where n is the intra-cavity photon
number).

4. Show that Γϕ

Γmeas
= 4SṄṄSθθ . Since there is relation SṄṄSθθ ≥ 1

4 , in the ideal case Γϕ =
Γmeas. However, since normally we also have excess noise, the dephasing rate is thus bigger
than measurement rate. This is a very important takeaway point because now you see that
quantum mechanics enforces the constraint that in a QND measurement the best you can
possibly do is measure as quickly as you collapse (dephase) the state of the system.
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