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Quantum Electrodynamics and Quantum Optics
ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE (EPFL)

Exercise No.10

10.1 cQED dispersive regime: a QND measurement of photon/phonon numbers

In this exercise we introduce a quantum non-demolition measurement (QND) of the photon num-
bers of a number state |n⟩ in a high-Q cavity. This method is based on the detection of the disper-
sive phase shift produced by the cavity field on the wave function of non-resonant atoms crossing
the cavity. In this QND scheme, the probe is no longer a field but a beam of atoms (TLS) which
interact nonlinearly and non-resonantly with the signal field.

We consider a TLS with |1⟩ and |2⟩ as the ground and excited states interacting with a cavity.
The transition frequency of the TLS is ω12 and the cavity resonance frequency is ωr with a detuning
∆ = ω12 − ωr. The Hamiltonian describing the system is:

Ĥ = h̄
ω12

2
σ̂z + h̄ωr â† â + h̄g(σ̂+ â + σ̂− â†) (1)

where σ̂z = (|2⟩ ⟨2| − |1⟩ ⟨1|), σ̂+ = |2⟩ ⟨1| and σ̂− = |1⟩ ⟨2|.
In order to understand the behavior of this system in the dispersive regime, we work on two

different approaches. The first one makes the approximation on the eigenstates and eigenvalues of
the original Hamiltonian1, while the second approach transforms the Hamiltonian using a unitary
transformation and looks at the result in this limit2.

1. In the first approach, we look at the original Hamiltonian:

(a) Show that the Hamiltonian can be diagonalized to obtain TLS-field dressed states:

|+, n⟩ = cos θn |2, n − 1⟩ − sin θn |1, n⟩ (2)

|−, n⟩ = sin θn |2, n − 1⟩+ cos θn |1, n⟩ (3)

with the corresponding eigenvalues:

E+,n = h̄
[
(n − 1)ωr +

ω12

2

]
− h̄

2
(Ωn − ∆) (4)

E−,n = h̄
[
nωr −

ω12

2

]
+

h̄
2
(Ωn − ∆) (5)

where:
Ωn =

√
∆2 + 4g2n (6)

θn = tan−1(
Ωn − ∆
2g

√
n

) (7)

(b) Assume that there is a large detuning between the cavity and the TLS, such that ∆ ≫
2g

√
n. Show that the in this limit θn ≈ 0 and recalculate the eigenvalues and eigenstates

in this so-called “dispersive limit”.

(c) Compare your results with the first part and identify the change in the photon number
and the energy of |−, n⟩ state in the dispersive limit.

2. In the second approach, we transform the Hamiltonian using a unitary transformation:

1Quantum Optics, Scully, Chapter 19.3
2Blais, Alexandre, et al. ”Cavity quantum electrodynamics for superconducting electrical circuits: An architecture

for quantum computation.” Physical Review A 69.6 (2004): 062320.
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Figure 1: Photon (a) [Schuster et al. 2007] and phonon (b) [Arrangoiz-Arriola et al. 2019] number
splitting of a qubit in the dispersive regime.

(a) Apply the unitary transformation ÛĤÛ† for:

Û = exp
[ g

∆
(âσ̂+ − â†σ̂−)

]
(8)

and show that by expanding to the second order in g we obtain:

ÛĤÛ† ≈ h̄
[

ωr +
g2

∆
σ̂z

]
â† â +

h̄
2

[
ω12 +

g2

∆

]
σ̂z (9)

Hint: Use BCH relation

(b) Interpret the transformed Hamiltonian in Eq. 9. What are the shifts experienced by the
TLS and cavity? How much is the TLS pulling the cavity frequency?

This scheme has been realized experimentally both in cavity- and circuit-QED using Rydberg
atoms3 and superconducting qubits4 for an optical harmonic oscillator (cavity). Recently, this
scheme has been used to resolve the number of “phonons” in a mechanical oscillator coupled to a
TLS5.

10.2 Rydberg atoms in microwave cavities: Testbed for the Jaynes-Cummings model(*)6

Over the last decade, several experiments have been carried out in various groups (e.g. Prof.
Serge Haroche (LKB Paris)78, Prof. Jeff Kimble (Caltech)910 and Prof. Gerhard Rempe (MPQ Mu-
nich)11, in which atomic systems are coupled to electromagnetic modes as modeled by the Jaynes-
Cummings Hamiltonian, to perform tasks that pave the way for quantum information processing
in the future. In recent years, the Jaynes-Cummings model has also been realized using artifi-
cial man-made resonant systems, with electrical resonators coupled to Josephson junctions, most

3Brune, M., et al. ”Quantum nondemolition measurement of small photon numbers by Rydberg-atom phase-
sensitive detection.” Physical Review Letters 65.8 (1990): 976.

4Schuster, D. I., et al. ”Resolving photon number states in a superconducting circuit.” Nature 445.7127 (2007): 515.
5Arrangoiz-Arriola, Patricio, et al. ”Resolving the energy levels of a nanomechanical oscillator.” Nature 571.7766

(2019): 537-540.
6Graded exercise
7S. Haroche and J-M. Raimond, Exploring the Quantum, Oxford (2006)
8C. Guerlin et al., Nature 448, 889 (2007)
9J. McKeever et al., Science 303, 1992 (2004)

10J. McKeever et al., Nature 425, 268 (2004)
11P.W.H Pinkse et al., Nature 404, 365 (2000)
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prominently in the groups of Prof. Rob Schoelkopf (Yale)12, Prof. John Martinis (UCSB/Google)13

and Prof. Andreas Wallraff (ETHZ)14.
In this exercise, we consider the experimental features of atomic systems coupled to electro-

magnetic modes, as modeled by the Jaynes-Cummings Hamiltonian. These systems pave the way
for quantum information processing. Serge Haroche group is one of the leaders in this field, and
here we focus on their experimental realization15. They send rubidium atoms, prepared in Ryd-
berg states, across a microwave 3D cavity. We will first describe both systems individually and
then how they interact with each other.

10.2.1 Rydberg atoms

Rydberg atoms are atoms whose valence electron has been excited to an orbit with a very high
principal quantum number. From the Bohr model of an atom, the radius of the orbit is given by
r = r0n2, where r0 is the Bohr radius (≈ 53 pm). For a typical Rydberg atom n ≈ 50, so large that
the outermost electron has a hydrogen-like spectrum. The ‘nucleus’ consists of the core nucleus
plus all the other electrons in lower orbits.

1. What is the typical size of a Rydberg atom, with n = 50 and n = 100? Why do you think a
Rydberg atom is used to realize Jaynes-Cummings model?

2. Compute the typical transition frequency between the adjacent levels of a Rydberg atom (for
both n = 50 and n = 100). Compute the functional dependence of this on n.

Hint: The energies of the hydrogen atom are En = −RH/n2, where RH is the Rydberg con-
stant for hydrogen. RH can be expressed as RH = Ry/(1 + me/mp) where me and mp are
the masses of the electron and the proton, and Ry = hcR∞ with R∞ in terms of universal
constants:

R∞ =
mee4

8ε2
0h3c

≃ 1.1 × 107 m−1 (10)

10.2.2 Microwave cavity

The microwave resonant cavity at ≈ 50 GHz is an open cavity with spherical mirrors as shown
in Fig. 2, which is operated on its q = 9 longitudinal fundamental Gaussian mode TEM00q with a
waist size w0 ≃ λ.

1. Estimate the mode volume of the cavity field. You can approximately estimate the mode vol-
ume by calculating the half volume of a cylinder with height same as the distance between
the miorrors and diameter of λ/

√
2 16

2. Compute the electric field per photon, defined to be Eωτ =
√

2h̄ωτ/(ϵ0V).

3. Compute the vacuum Rabi frequency and compare it with the typical cavity damping time
of ∼ 0.1 s and the excited state lifetime of ≈ 30 ms. Comment on these results.
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Figure 2: Microwave cavity used in the Haroche group (LKB, Paris)

Figure 3: Rydberg atom shot laterally in microwave cavity. The letters ‘g’ and ‘e’ stand respectively
for the ground state |a⟩ and the excited state |b⟩ in our notation.
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10.2.3 Dispersive atom-field interaction

The experiment starts as follows: a single atom is shot laterally into the microwave cavity (Fig.3),
which it crosses slowly at an almost uniform velocity. The incoming atom is in some arbitrary
superposition of |a⟩ and |b⟩, while the field is prepared in the Fock state |n⟩.

1. What subspaces of the Hilbert space are necessary to describe the subsequent interaction?

2. We assume that the coupling is established adiabatically (slowly enough that the system can
follow its eigenstates). What is the evolution of the eigenstates? (in the two cases where the
atom enters in |a⟩ or |b⟩ state). Is there any difference between the cases of negative and
positive detunings (∆ = ω − ωτ)?

Hint: Remember the form of the dressed states (similar to what you saw in the exercise
’cQED dispersive regime: a QND measurement of photon numbers’).

3. Show that the presence of the cavity light field induces a modified phase shift between an
atomic state in a superposition of |a⟩ and |b⟩ (called here ”light shift”), which, in the disper-
sive limit (∆ ≫ 4Ω2

Rn) is given by

∆ϕ = ∆E
δt
h̄

≈ 2g2

∆

(
n +

1
2

)
δt
h̄

(11)

where δt is the effective time that the atom interacts with the EM field as it crosses the cavity.
What could be inferred by measuring this light shift? What is the state of the cavity field
after the passage of the atom in the dispersive limit?

NB: It is possible to measure this phase shift of the atomic state in practice by performing
Ramsey interferometry.

10.3 Energy-participation quantization of Josephson circuits

In this exercise we do again the quantization of a transmon qubit coupled to a cavity. We will
use the energy-participation quantization method proposed in this paper.17 The quantum zero
point fluctuations and Kerr-couplings appeared in the Hamiltonian are expressed in terms of the
”Energy participation” pm, defined as

pm ≡ Energy stored in the junction
Inductive energy stored in mode m

, or pm =

〈
ψm

∣∣∣ 1
2 EJ φ̂2

J

∣∣∣ ψm

〉
〈
ψm

∣∣ 1
2 Ĥlin

∣∣ ψm
〉 ,

where |ψm⟩ denotes a coherent state or a Fock excitation of mode m.
We start from the Hamiltonian and conceptually separate it into the linear and the non-linear

part:
Ĥfull = Ĥlin + Ĥnl,

Ĥlin = h̄ωc â†
c âc + h̄ωq â†

q âq,

Ĥnl = −EJ

[
cos (φ̂J) + φ̂2

J /2
]

,

φ̂J = φq

(
âq + â†

q

)
+ φc

(
âc + â†

c
)

,

12D.I. Schuster et al., Nature 445, 515 (2007)
13M. Hofheinz et al., Nature 454, 310 (2008)
14J.M. Fink et al., Nature 454, 315 (2008)
15Gleyzes, Sebastien, et al. ”Quantum jumps of light recording the birth and death of a photon in a cavity” Nature

446.7133 (2007)
16For an electromagnetic mode with electric field profile E⃗(⃗r) the mode volume is defined as V =∫
|E⃗(⃗r)|2d3⃗r/|E⃗(⃗r)|2max. Here due to the symmetry of the mode and approximately flat curvature of the mirrors com-

pared to the beam waist we can approximate the volume by the half of the physical volume.
17Minev Z K, Leghtas Z, Mundhada S O, et al. Energy-participation quantization of Josephson circuits[J]. arXiv

preprint arXiv:2010.00620, 2020.
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where ωc and ωq are the angular frequencies of the cavity and qubit eigenmodes, âc and âq are
their annihilation operators, respectively. To complete the quantization, we need to determine the
unknown quantities in the Hamiltonian, i.e. ωc, ωq, φc, φq, where ωc, ωq are obtained by solving
the eigenmodes and the eigen-frequencies.

1. Show that φ2
c = pc

h̄ωc
2EJ

and φ2
q = pq

h̄ωq
2EJ

for Fock excitation |ψm⟩ = |n⟩m. Now the Hamilto-
nian is fully determined.

2. Now we assume the nonliearity is weak and the system is in dispersive regime. Expand
the nonlinear Hamiltonian to the fourth order of φ̂J and use rotation wave approximation to
obtain the effective excitation-number-conserving Hamiltonian:

Ĥeff =
(
ωq − ∆q

)
n̂q + (ωc − ∆c) n̂c − χqcn̂qn̂c −

1
2

αqn̂q
(
n̂q − 1̂

)
− 1

2
αcn̂c

(
n̂c − 1̂

)
.

Finally, calculate the self-Kerr couplings αq, αc and the cross-Kerr coupling χqc in terms of
energy participation pq and pc.
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