Super-Resolving Phase Measurement in Quantum Metrology

Arnold Dorian

October 3, 2024

Content

- Quantum Metrology
- Comparison with Classical Metrology and Limit
- Practical Implementation:
 - DC Photon Creation
 - ► 4-photon entanglement
 - 3-photon entanglement (Paper case)
- ► Conclusions/Questions on Moodle/...

Quantum Metrology (1/3): Introduction

Interference in Physics

- ▶ Basis for demanding measurements in various fields:
 - Ramsey interferometry in atomic spectroscopy (atomic clocks, week 1 QOQI)
 - X-ray diffraction in crystallography
 - Optical interferometry in gravitational-wave studies

Quantum Phenomena: Entanglement

NOON states

$$|N::0\rangle_{a,b}\equiv \frac{1}{\sqrt{2}}(|N,0\rangle_{a,b}+|0,N\rangle_{a,b})$$

Quantum Metrology (2/3): N-Photon Interference

Phase measurements with multiphoton entangled states

► NOON state through an interferometer:

$$|\psi
angle = rac{1}{\sqrt{2}}(| extsf{N},0
angle + e^{i extsf{N}\phi}|0, extsf{N}
angle)$$

Probability and Phase Sensitivity

- ▶ Probability: $P \propto 1 + \cos(N\Delta\phi)$
- **Phase sensitivity:** $\Delta\phi\propto \frac{1}{N}$ (Heisenberg limit)

Implications

► N-fold increase in fringe frequency

$$|2::0\rangle = \frac{1}{\sqrt{2}}(|2,0\rangle + |0,2\rangle)$$

After phase shift:

$$|\psi_{\mathsf{out}}\rangle = \frac{1}{\sqrt{2}}(|2,0\rangle + e^{2i\phi}|0,2\rangle)$$

► Beamsplitter transformation:

$$|2,0\rangle
ightarrow rac{1}{2}(|2,0\rangle + i\sqrt{2}|1,1\rangle - |0,2\rangle) \ |0,2\rangle
ightarrow rac{1}{2}(-|2,0\rangle + i\sqrt{2}|1,1\rangle + |0,2\rangle)$$

Final state:

$$|\psi_{\mathsf{final}}\rangle = \frac{1}{2\sqrt{2}}[(1-e^{2i\phi})|2,0\rangle + i\sqrt{2}(1+e^{2i\phi})|1,1\rangle + (-1+e^{2i\phi})|0,2\rangle]$$

▶ Probability of detecting both photons in port 1:

$$P(2,0) = \left| \frac{1}{2\sqrt{2}} (1 - e^{2i\phi}) \right|^2$$

$$= \frac{1}{8} |1 - e^{2i\phi}|^2$$

$$= \frac{1}{8} (1 - e^{2i\phi} - e^{-2i\phi} + 1)$$

$$= \frac{1}{4} (1 - \cos(2\phi))$$

Quantum Metrology (3/3): Phase Estimation using \hat{J}_z Operator

\hat{J}_z Operator in Quantum Metrology

- ▶ Definition: $\hat{J}_z = \frac{1}{2}(\hat{a}^{\dagger}\hat{a} \hat{b}^{\dagger}\hat{b})$
- ▶ Measures population difference between modes *a* and *b*

Phase Estimation Process

- 1. State: $|\psi\rangle = \frac{1}{\sqrt{2}}(|N,0\rangle + e^{iN\phi}|0,N\rangle)$
- 2. Expectation value: $\langle \hat{J}_z \rangle = \frac{N}{2} \cos(N\phi)$
- 3. Variance: $(\Delta \hat{J}_z)^2 = \frac{N^2}{4} \langle \hat{J}_z \rangle^2$
- 4. Phase uncertainty: $\Delta\phi=rac{\Delta\hat{J}_z}{|\partial\langle\hat{J}_z\rangle/\partial\phi|}$

Result

$$\Delta \phi = \frac{1}{N}$$
 (Heisenberg limit)

Classical Limit in Phase Estimation (1/2)

Setup and Assumptions

- Consider N independent particles in a Mach-Zehnder interferometer
- ► Each particle has a 50% chance of taking either path
- ightharpoonup Phase difference ϕ between paths

Measurement Process

- Measure population difference between paths: $M = N_a N_b$
- $ightharpoonup N_a$, N_b : number of particles in paths a and b
- **Expected value:** $\langle M \rangle = N \cos \phi$

Statistical Analysis

- ▶ Binomial distribution with $p = \frac{1}{2}(1 + \cos \phi)$
- ► Variance: $\Delta M^2 = Np(1-p) = \frac{N}{4}(1-\cos^2\phi) = \frac{N}{4}\sin^2\phi$

Classical Limit in Phase Estimation (2/2)

Error Propagation

- Use error propagation formula: $\Delta \phi = \frac{\Delta M}{|\frac{d\langle M \rangle}{d\phi}|}$

Derivation of Classical Limit

$$\Delta \phi = \frac{\Delta M}{|N \sin \phi|} = \frac{\sqrt{\frac{N}{4}} \sin^2 \phi}{N \sin \phi} = \frac{\frac{\sqrt{N}}{2} |\sin \phi|}{N \sin \phi} = \frac{1}{2\sqrt{N}}$$
(1)

Result and Interpretation

- ► Classical limit: $\Delta \phi \propto \frac{1}{\sqrt{N}}$
- ▶ This is the best precision achievable with classical resources
- Known as the standard quantum limit or shot noise limit

Practical Implementation

DC Photon Creation (1/3): Qualitative Description

► Goal: Creation of (Polarized-)Entangled Photons

Recipe

- High-energy UV pump through nonlinear crystal Emission of photon pairs (ordinarily/extraordinarily polarized photons)
- Three crucial concepts:
 - 1. Birefringence of the crystal
 - 2. Energy conservation
 - 3. Phase matching condition
- Result: Entangled states and Bell states on demand

Source: Kwiat et al., "New High-Intensity Source of Polarization-Entangled Photon Pairs" (1995)

DC Photon Creation (2/3): Detailed Processes

Birefringence

- Refractive index depends on polarization and propagation direction
- ▶ Different polarizations travel at different speeds
- lacktriangle Results in phase difference lpha between orthogonally polarized light

Energy Conservation and Phase Matching

- Energy conservation: $\hbar\omega_p = \hbar\omega_o + \hbar\omega_e$
- ightharpoonup UV (351 nm) ightharpoonup Two IR (702 nm) photons
- Momentum conservation: $\vec{k}_p = \vec{k}_o + \vec{k}_e$

Phase matching condition:

from
$$|\overrightarrow{k}| = \frac{n\omega}{6}$$

Source: Kwiat et al., "New High-Intensity Source of Polarization-Entangled Photon Pairs" (1995)

DC Photon Creation (3/3): State Evolution

Probabilistic Creation of Two Photons

$$|\psi\rangle = \sqrt{1-
ho}|0\rangle + \sqrt{
ho}|\psi_2\rangle$$

where p is the probability of pair creation

Entangled State at Cone Intersections

$$|\psi_2
angle = rac{1}{\sqrt{2}}(|H_o,V_e
angle + e^{ilpha}|V_o,H_e
angle)$$

where α is the relative phase determined by crystal properties Source: Kwiat et al., "New High-Intensity Source of Polarization-Entangled Photon Pairs" (1995) First Application: 4-photons setup

4-Photon Entanglement (1/4)

Goal

Use polarization-entangled (DC) photons to achieve up to 4-photon entanglement

Motivation

- ► Exploit 1/N scaling in phase sensitivity
- ► Signature: Effective de Broglie wavelength

$$\lambda_{N} = \frac{\lambda_{1}}{N}$$

Source: Walther et al., "De Broglie wavelength of a non-local four-photon state" (2004)

4-Photon Entanglement (2/4): Double Pass Configuration

Experimental Setup

- UV pump passes through crystal twice using a mirror
- ▶ Allows for different pair separation probabilities

Resulting State

$$\begin{split} |\psi\rangle = & (1-p)|0\rangle_{a1,a2}|0\rangle_{b1,b2} + \\ & \sqrt{p}(|\Phi^{+}\rangle_{a1,a2}|0\rangle_{b1,b2} + e^{i\Delta\phi}|0\rangle_{a1,a2}|\Phi^{+}\rangle_{b1,b2}) + \\ & p|\Phi^{+}\rangle_{a1,a2}|\Phi^{+}\rangle_{b1,b2} \end{split}$$

where p is the probability of pair creation Source: Walther et al., "De Broglie wavelength of a non-local four-photon state" (2004)

4-Photon Entanglement (3/4): Interference Cases

Simple Separation (Two-Photon Case)

- Pair emitted in mode a or b
- ▶ Probability: $P \propto 1 \cos(2\Delta\phi)$

Four-Photon Cases

- 1. Double pair emitted once:
 - Four photons in a1-a2 or b1-b2
 - Pure four-photon interference
- 2. Single pair emitted on each pass:
 - ► One pair in a1-a2, one in b1-b2
 - ▶ Potential ambiguity in interpretation
- Source: Walther et al., "De Broglie wavelength of a non-local four-photon state" (2004)

4-Photon Entanglement (4/4): Four-Photon States and Discussion

Explicit Formulas

1. Double pair emission:

$$|\psi\rangle = \frac{1}{\sqrt{2}}(|4\rangle_{a1,a2}|0\rangle_{b1,b2} + e^{i4\Delta\varphi}|0\rangle_{a1,a2}|4\rangle_{b1,b2})$$

2. Single pair on each pass:

$$|\psi
angle = e^{i2\Deltaarphi}(|H
angle_{a3}|H
angle_{a4}|H
angle_{b3}|H
angle_{b4} + |V
angle_{a3}|V
angle_{a4}|V
angle_{b3}|V
angle_{b4})$$

Discussion

- Ambiguity in case (2) due to two-photon interference contributions
- \triangleright Extension to N > 4 possible with suppression of lower-order interference

Source: Walther et al., "De Broglie wavelength of a non-local four-photon state" (2004)

Second Application: 3-photons setup (actual paper)

Actual Paper (1/3): Experimental Setup

- Uses two down-converted (DC) photons and one local oscillator (LO) photon
- ► The 3 photons are coming from the same Ti:sapphire laser.
- A small portion of the Ti:sapphire laser is split off:
 - The main output of the Ti:sapphire laser is frequency-doubled to create a UV pump beam for the DC photons
 - This split beam is heavily attenuated to the single-photon level to act as the LO photon.

Source: Mitchell, M. W., "Super-resolving phase measurements with a multi-photon entangled state" (2005)

Actual Paper (1/2): Experimental Results and Analysis

Three-Photon Interference

- ▶ Observed probability: $P \propto 1 + \cos(3\phi)$
- ▶ Demonstrates tripling of oscillation frequency

State Analysis

- ightharpoonup |3,0
 angle and |0,3
 angle states: Main contributors to 3ϕ dependence
- $ightharpoonup |2,1\rangle$ and $|1,2\rangle$ states: Present due to experimental imperfections
- Post-selections techniques are therefore needed.

Comparison with Classical Limit

- lacktriangle Achieved phase sensitivity surpasses classical $1/\sqrt{N}$ limit
- Demonstrates potential for quantum-enhanced metrology

Source: Mitchell, M. W., "Super-resolving phase measurements with a multi-photon entangled state" (2005)

Conclusion (1/3)

How is the NOON state created in experiment?

- ► Ti:sapphire laser is:
 - frequency-doubled to create the UV pump beam fro the SPDC
 - split off and heavily attenuated to create the LO photon
- Post-selection techniques

How is a single photon state at the input created?

- Attenuation to single photon level
- ▶ "mode matched" with SPDC photons indistiguishable from SPDC

Conclusion (2/3)

What is post-selection and why is it required?

- ► Keeping only those measurement outcomes that satisfy certain criteria, discarding the rest
- Required to:
 - ▶ Filtering out unwanted events: It removes cases where fewer than three photons were detected, or where additional noise photons were present. (proof: detection at "Dark" port, lower-order interference)
 - ► State preparation: It effectively prepares the desired three-photon entangled state. (eliminates high order terms for example)

What is meant by super-resolution? What does it compare to in a classical measurement?

- Definition: Ability to resolve phase shifts smaller than classical limit
- Comparison:
 - ► Classical limit: $\Delta \phi \propto 1/\sqrt{N}$ (Shot Noise)
 - Quantum limit: $\Delta \phi \propto 1/N$ (Heisenberg limit)

Conclusion (3/3)

What are the experimental signatures of super-resolution and what signal bears these signatures?

- N-fold increase in fringe frequency
- Probability: $P \propto 1 + \cos(N\phi)$

Is it possible to scale to large N state?

- ▶ Different set up:
 - Cascade down-conversion process (double-, triple-pass, ...)
 - Optical loop configuration
- Higher-order terms from DC photons:
 - Probability of creating more than one pair of photons per pump pulse.
 - ▶ BUT probability of these higher-order events decreases rapidly with N