Radiation Biology, Protection and Applications (FS2024) Week 7: Radiation Sources

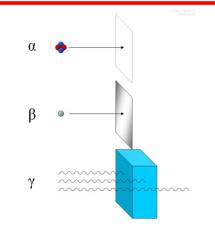
 École polytechnique fédérale de Lausanne

Lecture Plan Nov/Dec

01.11.2024	Radiation sources	Oskari
08.11.2024	Radiation shielding	Vincent
15.11.2024	Introduction to Safeguards & the IAEA	Uwe, BFE
22.11.2024	Industrial applications of radiation: Gauges, Tracers, Batteries, Food	Oskari
29.11.2024	Emergency dosimetry	Oskari
06.12.2024	Advances in luminescence dosimetry	Lily, PSI
13.12.2024	Safeguards and Export control	Uwe, BFE
After 15.12: Online	Exam example	Oskari

Radiation Sources: Outline

- Basics of radioactivity: See Lecture 1
- Radiation Concepts
- Fast Electron Sources
 - Beta decay
 - Internal conversion
- Heavy Charged Particle Sources
 - Alpha decay
 - Spontaneous fission
- Electromagnetic Radiation (EMR) Sources
 - Gamma rays
 - X-rays, characteristic X-rays
- Neutron Sources
 - Spontaneous fission
 - Neutrons from (α,n)-reactions
 - Photoneutrons
 - Accelerated charged particles


Reminder: Radiation Concepts (1)

- ☐ There are four general types of radiation generated in nuclear and atomic processes:
 - Charged particulate radiation:
 - Fast electrons: β^{+} and β^{-} from nuclear decay, energetic electrons.
 - Heavy charged particles: all energetic ions with A ≥ 1 (p⁺, α^{2+} , fission products, nuclear reaction products)
 - Uncharged radiation:
 - Electromagnetic radiation: photons, X-rays (from electron transitions between atomic shells), γ -rays (from nuclear transitions)
 - Neutrons: slow and fast (generated in nuclear reactions.)
- Absolute activity is defined as rate of decay: It measures the source disintegration rate, not the emission rate of radiation.

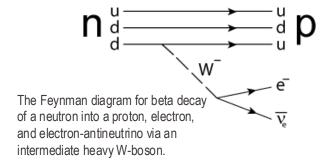
Reminder: Radiation Concepts (2): "Hardness"

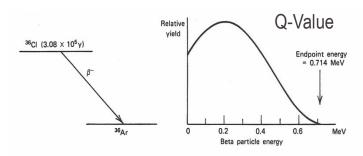
- ☐ Energy range of ionizing radiation:
 - 10 eV: minimum energy for ionization of typical materials.
 - to 20 MeV: upper bound for practical applications.
- ☐ Hard radiation:
 - · High penetrating power.
 - Sources are less affected by self-absorption.
 - γ-rays, hard X-rays or neutrons.
- ☐ Soft radiation:
 - Highly ionizing
 - Low penetrating power
 - Sources must be thin to minimize selfabsorption.
 - Charged particles, soft X-rays.

Fast Electron Sources: Beta Decay (1)

- ☐ Radioactive decay in which a beta particle (electron or positron) is emitted.
 - electron emission: "beta minus" (β-),

$$n^0 \to p^+ + e^- + \overline{\nu}_e$$


$$_{Z}^{A}X \rightarrow _{Z+1}^{A}Y + \beta^{-} + \overline{\nu}_{e}$$


positron emission: "beta plus" (β+).

$$Energy + p^+ \rightarrow n^0 + e^+ + \nu_e \qquad \begin{bmatrix} {}^A_Z X \rightarrow {}^A_{Z-1} Y + \beta^+ + \nu_e \end{bmatrix}$$

$$_{Z}^{A}X \rightarrow _{Z-1}^{A}Y + \beta^{+} + \nu_{e}$$

- Beta plus decay cannot occur in isolation:
 - Neutron mass m_n > m_p. (proton is stable)
 - Requires available excitation energy from inside nucleus
 - The Q value goes into:
 - the process of converting a proton into a neutron.
 - the positron and the neutrino, and into
 - the kinetic energy of these particles.

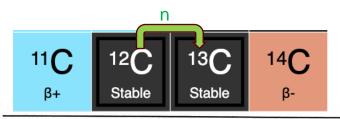
The decay scheme of ³⁶Cl and the resulting beta particle energy distribution.

Beta Decay of Th-234 $^{234}_{90}$ Th $\longrightarrow ^{234}_{91}$ Pa + $^{0}_{1}$ e +V

$$^{234}_{90}$$
Th $\longrightarrow ^{234}_{91}$ Pa + $^{0}_{-1}$ e +V

Fast Electron Sources: Beta Decay (2)

- (Artificial) beta emitters can be produced by neutron irradiation of stable materials in nuclear reactors or high neutron flux facilities.
- As most beta decays populate an excited state of the daughter nucleus, they are not "pure", i.e., they are accompanied by γ-rays.
- Examples for beta decays:
 - Beta minus:

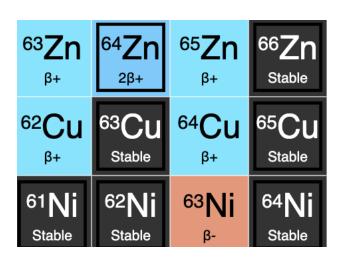

$$^{137}_{55}$$
Cs $\rightarrow ^{137}_{56}$ Ba + $e^- + \bar{\nu}_e$

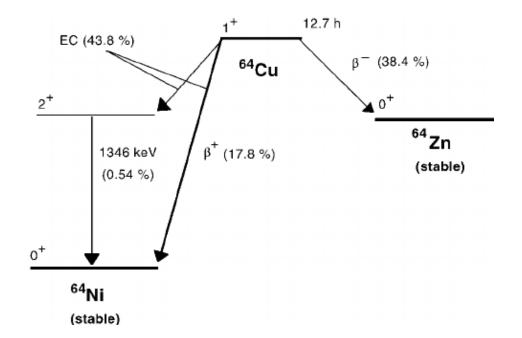
• Beta plus:

$$^{22}_{11}$$
 Na $\rightarrow ^{22}_{10}$ Ne + e⁺ + ν_e

• Electron capture:

$$\frac{22}{11} \text{Na} + \text{e}^{-} \rightarrow \frac{22}{10} \text{Ne} + \nu_e$$

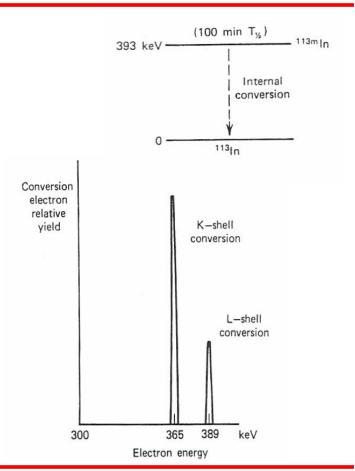



Table	1.1	Some	"Pure"	Beta-Minus Sources	S
-------	-----	------	--------	--------------------	---

Nuclide	Half-Life	Endpoint Energy (MeV)
³ H	12.26 y	0.0186
¹⁴ C	5730 y	0.156
³² P	14.28 d	1.710
³³ P	24.4 d	0.248
35S	87.9 d	0.167
³⁶ Cl	$3.08 \times 10^{5} y$	0.714
⁴⁵ Ca	165 d	0.252
⁶³ Ni	92 y	0.067
90 Sr / 90 Y	27.7 y/64 h	0.546/2.27
⁹⁹ Tc	$2.12 \times 10^5 \mathrm{y}$	0.292
¹⁴⁷ Pm	2.62 y	0.224
²⁰⁴ T1	3.81 y	0.766

Data from Lederer and Shirley.¹

The curious case of ⁶⁴Cu


Fast Electron Sources: Internal Conversion (1)

☐ Source of nearly monoenergetic electrons:

$$E_{e^-} = E_{ex} - E_b$$

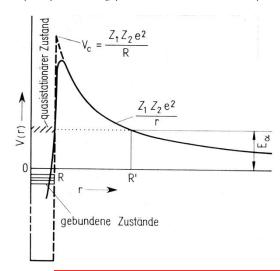
■ Process:

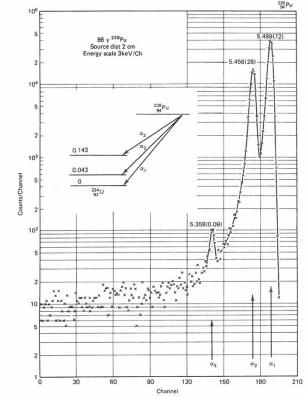
- Alternative to de-excitation of an excited nuclear state by emission of a γ-ray.
- Nuclear excitation energy E_{ex} is transferred to an orbital electron.
- Discrete energies represent transitions between atomic energy levels (shells).
- A single excited atom can lead to several groups of electrons with different energies.
- Sometimes sources have superimposed the β -spectrum of the parent nucleus.

Fast Electron Sources: Internal Conversion (2)

Some Common Conversion Electron Sources						
Parent Nuclide	Parent Half-Life	Decay Mode	Decay Product	Transition Energy of Decay Product (keV)	Conversion Electron Energy (keV)	
¹⁰⁹ Cd	453 d	EC	^{109m} Ag	88	62 84	
¹¹³ Sn	115 d	EC	^{113m}In	393	365 389	
¹³⁷ Cs	30.2 y	β-	137m Ba	662	624 656	
¹³⁹ Ce	137 d	EC	139mLa	166	126 159	
²⁰⁷ Bi	38 y	EC	^{207m} Pb	570 1064	482 554 976	
		¥I		in Special and	1048	

Data from Lederer and Shirley.1


Conversion electrons are the only practical laboratory-size source of monoenergetic electron groups in the high keV to MeV energy range.


EPFL Heavy Charged Particle Sources: Alpha Decay (1)

Decay by emission of an alpha particle (or ⁴He²⁺ nucleus):

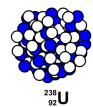
$$^{\rm A}_{\rm Z}{\rm X} \rightarrow ^{\rm A\text{--}4}_{\rm Z\text{--}2}{\rm Y} + {}^4_2\alpha$$

- □ Alpha decay can be described in the framework of Quantum Mechanics: 'tunneling' through a potential barrier
- Probability of emission increases with the energy of the alpha particle E_{α} (~e^{-G}, G=Gamow-Factor).

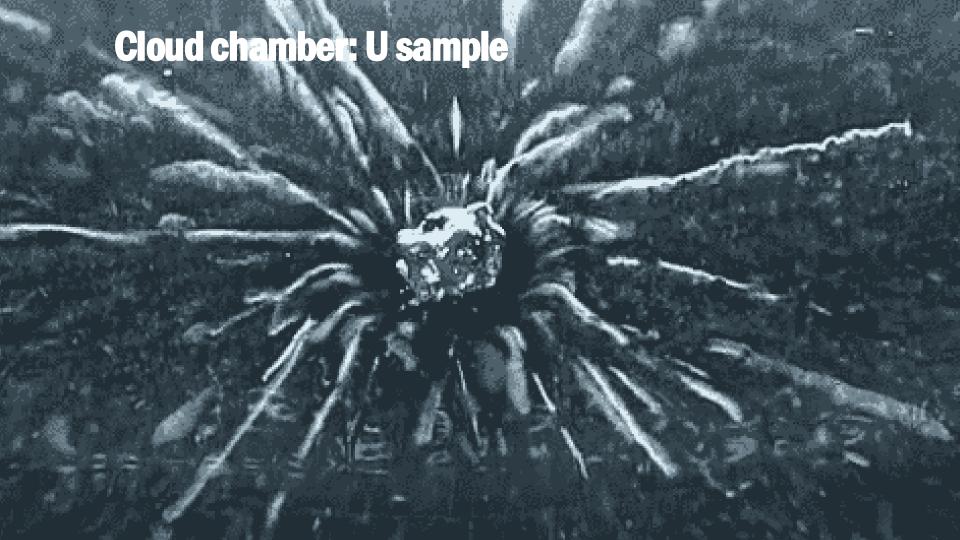
gure 1.3 Alpha particle groups produced in the decay of ²³⁸Pu. The pulse height spectrum shows the three groups as measured by a silicon surface barrier detector. Each peak is identified by its energy in MeV and percent abundance (in parentheses). The insert shows the decay scheme, with energy levels in the product nucleus labeled in MeV. (Spectrum from Chanda and Deal.²)

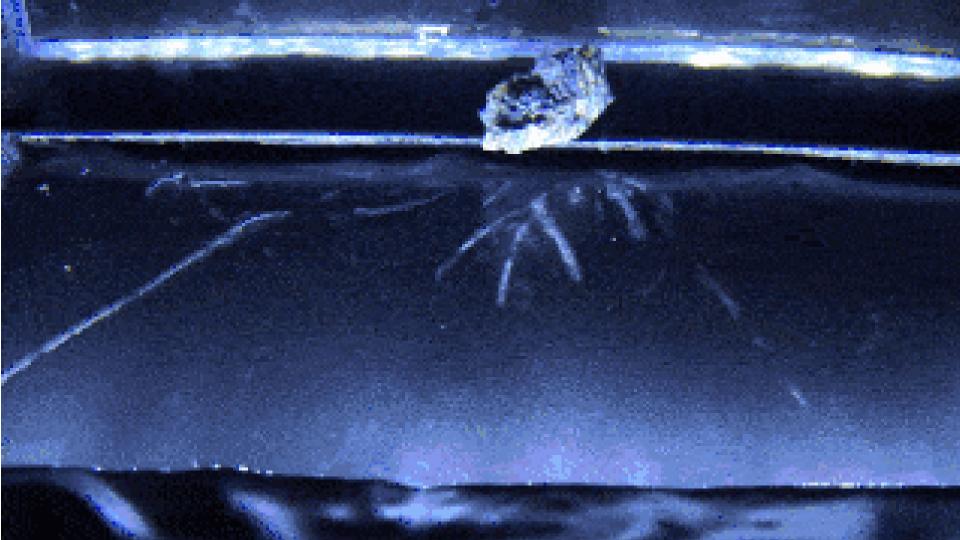
EPFL Heavy Charged Particle Sources: Alpha Decay (2)

□ Each α particle shares the energy with the recoil nucleus in a unique way (Q=Q-value of the decay):

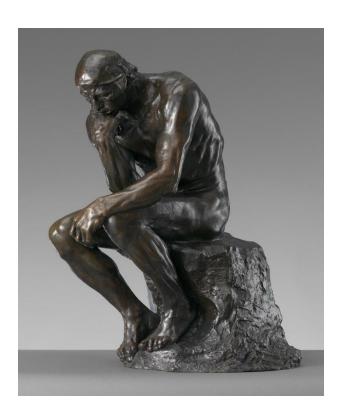

$$E_{\alpha} = Q (A - 4)/A$$

- ☐ Alpha particles appear in one or more (essentially) monoenergetic energy groups.
- \square Typical kinetic energy $E_a \sim 5$ MeV with a speed of 15.000 km/s.
- ☐ Alpha particles are among the most hazardous forms of internal radiation:
 - Energy loss takes place within a very short distance.
 - Significant damage to surrounding biomolecules.
- External alpha irradiation is not harmful:
 - Completely absorbed by a very thin (µm) dead layer of skin as well as by a few centimeters of air.

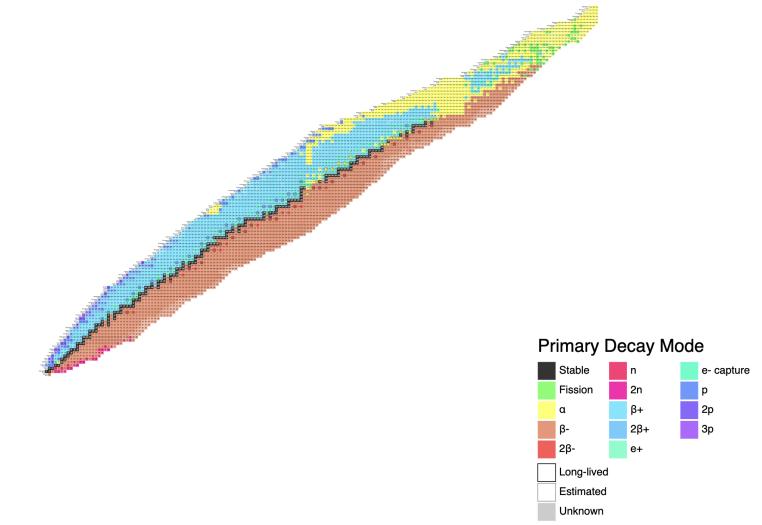

Common Alpha-Emitting Radioisotope Sources					
Source	Half-Life	Alpha Partic Energy (with Unce	Percent Branching		
¹⁴⁸ Gd	93 y	3.182787	±0.000024	100	
²³² Th	$1.4 \times 10^{10} \mathrm{v}$	4.012	±0.005	77	
		3.953	±0.008	23	
238U	$4.5 \times 10^{9} \mathrm{v}$	4.196	±0.004	77	
O	4.5 7, 10)	4.149	±0.005	23	
235[]	$7.1 \times 10^{8} \mathrm{y}$	4.598	±0.002	4.6	
C	7.1.7.10.3	4.401	±0.002	56	
		4.374	±0.002	6	
		4.365	±0.002	12	
		4.219	±0.002	6	
236U	$2.4 \times 10^{7} \text{y}$	4.494	±0.003	74	
	200000000000000000000000000000000000000	4.445	±0.005	26	
230Th	$7.7 \times 10^{4} \text{y}$	4.6875	±0.0015	76.3	
		4.6210	±0.0015	23.4	
234U	$2.5 \times 10^{5} \mathrm{y}$	4.7739	±0.0009	72	
C	210 20)	4.7220	±0.0009	28	
231pa	$3.2 \times 10^{4} \text{y}$	5.0590	±0.0008	11	
1 a	512 / 10 j	5.0297	±0.0008	20	
		5.0141	±0.0008	25.4	
		4.9517	±0.0008	22.8	
²³⁹ Pu	$2.4 \times 10^{4} \text{y}$	5.1554	±0.0007	73.3	
		5.1429	±0.0008	15.1	
		5.1046	±0.0008	11.5	
²⁴⁰ Pu	$6.5 \times 10^{3} \mathrm{v}$	5.16830	±0.00015	76	
6500		5.12382	±0.00023	24	
²⁴³ Am	$7.4 \times 10^{3} \text{y}$	5.2754	±0.0010	87.4	
		5.2335	±0.0010	11	
210Po	138 d	5.30451	±0.00007	99+	
²⁴¹ Am	433 v	5.48574	±0.00012	85.2	
Am	455)	5.44298	±0.00013	12.8	
²³⁸ Pu	88 y	5.49921	±0.00020	71.1	
Iu	00)	5.4565	±0.0004	28.7	
²⁴⁴ Cm	18 y	5.80496	±0.00005	76.4	
Cin	10 9	5.762835	±0.000030	23.6	
²⁴³ Cm	30 y	6.067	±0.003	1.5	
Cin	50)	5.992	±0.002	5.7	
		5.7847	±0.0009	73.2	
		5.7415	±0.0009	11.5	
²⁴² Cm	163 d	6.11292	±0.00008	74	
Cin		6.06963	±0.00012	26	
^{254m} Es	276 d	6.4288	±0.0015	93	
253Es	20.5 d	6,63273	±0.00005	90	
Es	20.5 d	6.5916	±0.00003	6.6	

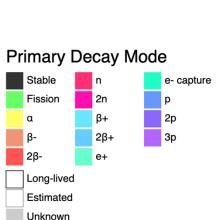

Data from Rytz.3

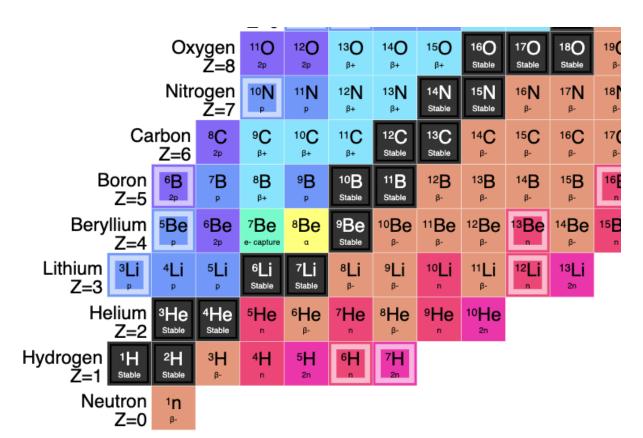
Alpha Decay of U-238



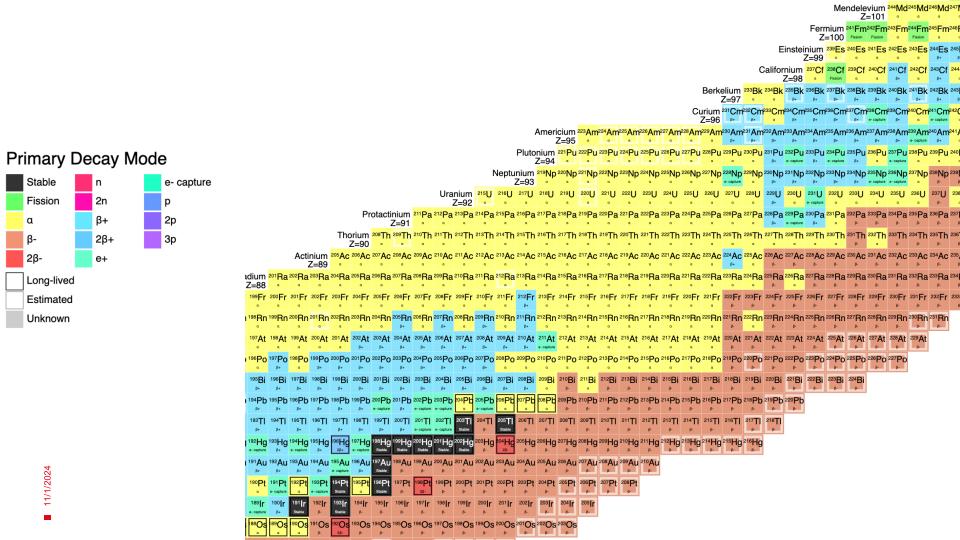
$$^{238}_{92}U \longrightarrow ^{234}_{90}Th + ^{4}_{2}He$$



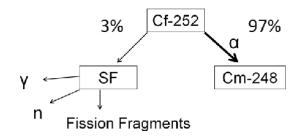



How can we get even heavier charged particles?

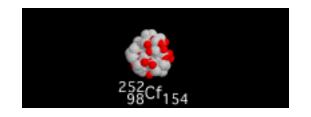
Reminder: Chart of nuclides



Primary Decay Mode Stable n e- capture Fission 2n p α β + 2p β - 2β + 3p Long-lived

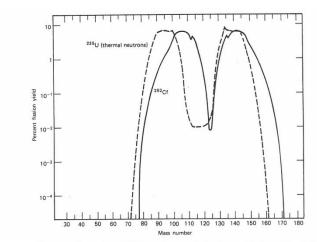

dium Z=46	⁹⁰ Pd _{β+}	⁹¹ Pd _{β+}	⁹² Pd _{β+}	⁹³ Pd _{β+}	⁹⁴ Pd _{β+}	⁹⁵ Pd _{β+}	⁹⁶ Pd _{β+}	⁹⁷ Pd _{β+}	⁹⁸ Pd _{β+}	⁹⁹ Pd _{β+}	100Pd e- capture	¹⁰¹ Pd _{β+}	¹⁰² Pc 2β+	103 Pd e- capture	¹⁰⁴ Pd Stable	105Pd Stable	106Pd Stable
88 Rh β+	89 Rh β+	90 Rh β+	⁹¹ Rh β+	92 Rh β+	93 Rh β+	94 Rh β+	95 Rh β+	96 Rh β+	⁹⁷ Rh β+	98 Rh β+	99 Rh β+	¹⁰⁰ Rh	101 Rh e- capture	¹⁰² Rh	103 Rh Stable	104 Rh β-	105 Rh β-
87 Ru β+	88 Ru β+	89 Ru β+	90 Ru β+	⁹¹ Ru _{β+}	⁹² Ru _{β+}	⁹³ Ru _{β+}	⁹⁴ Ru _{β+}	⁹⁵ Ru _{β+}	⁹⁶ Ru _{2β+}	⁹⁷ Ru _{β+}	⁹⁸ Ru Stable	⁹⁹ Ru Stable	100Ru Stable	101 Ru Stable	¹⁰² Ru Stable	¹⁰³ Ru β-	¹⁰⁴ Rυ _{2β-}
86 Tc β+	87 Tc β+	88 Tc β+	89 Tc β+	⁹⁰ Τc	⁹¹ Τc	⁹² Τc	⁹³ Τc	⁹⁴ Τc	95 Tc β+	⁹⁶ Τc	97 Tc e- capture	98 Tc β-	99 Tc β-	¹⁰⁰ Τc	¹⁰¹ Τc	¹⁰² Тс	103 Tc β-
85 Μο β+	86 Μ ο β+	⁸⁷ Μο _{β+}	88 Μο β+	89 Μο β+	⁹⁰ Μο _{β+}	⁹¹ Μο _{β+}	⁹² Μο _{2β+}	93 Mo e- capture	94 Mo Stable	95 Mo Stable	⁹⁶ Mo Stable	⁹⁷ Mo Stable	⁹⁸ Μο _{2β-}	⁹⁹ Μο	¹⁰⁰ Мо	¹⁰¹ Мо	¹⁰² Μο [΄] β-
84 Nb β+	85 Nb β+	86 Nb β+	87 Nb β+	88 Nb β+	89 Nb β+	90 Nb β+	91 Nb e- capture	92 Nb β+	93 Nb Stable	94 Nb β-	95 Nb β-	96 Nb β-	⁹⁷ Nb _{β-}	98 Nb β-	99 Nb β-	100 Nb β-	101 Nb β-
83 Zr β+	84 Zr β+	85 Z r	86 Z r	⁸⁷ Z r	88 Zr e- capture	89 Z r	⁹⁰ Zr Stable	91 Zr Stable	92 Zr Stable	93 Z r	⁹⁴ Zr	⁹⁵ Zr	⁹⁶ Zr	⁹⁷ Zr	⁹⁸ Zr	⁹⁹ Zr	¹⁰⁰ Zr β-
82 Υ β+	83 Υ β+	84 Υ β+	85 Υ β+	86 Υ β+	87 Υ β+	88 Υ β+	89 Y Stable	90 Υ β-	91 Υ β-	92 Υ β-	93 Υ β-	94 Υ β-	95 Υ β-	96 Υ β-	97 Υ β-	98 Υ β-	99 Υ β-
⁸¹ Sr _{β+}	82 Sr e- capture	83 S r	84 S r 2β+	85 Sr e- capture	86 Sr Stable	87 Sr Stable	88 Sr Stable	89 S r	⁹⁰ Sr β-	⁹¹ S r	⁹² Sr β-	⁹³ Sr β-	94 S r β-	⁹⁵ Sr β-	⁹⁶ Sr β-	⁹⁷ Sr β-	98 S r β-
80 Rb β+	⁸¹ Rb _{β+}	82 Rb β+	83 Rb e- capture	84 Rb β+	⁸⁵ Rb Stable	86 Rb β-	87 Rb β-	88 Rb β-	89 Rb β-	90 Rb β-	⁹¹ Rb _{β-}	⁹² Rb _{β-}	⁹³ Rb _{β-}	94 Rb β-	⁹⁵ Rb _{β-}	96 Rb β-	⁹⁷ Rb _{β-}
⁷⁹ Kr β+	80 Kr Stable	81 Kr e- capture	82 Kr Stable	83 Kr Stable	84 Kr Stable	85 K r	86 Kr 2β-	87 Kr β-	88 Kr β-	89 K r	90 Kr β-	⁹¹ Kr β-	⁹² Kr	⁹³ Κr	94 Kr β-	95 Kr β-	96 Kr β-
⁷⁸ Br β+	79 Br Stable	80 Br β-	81 Br Stable	82 Br β-	83 Br β-	84 Br β-	85 Br β-	86 Br β-	87 Br β-	88 Br β-	89 Br β-	⁹⁰ Br	⁹¹ Br	⁹² Br β-	⁹³ Br _{β-}	94 Br β-	95 Br β-
77 Se Stable	⁷⁸ Se Stable	⁷⁹ Se β-	⁸⁰ Sе	⁸¹ Sе	⁸² Se	⁸³ Sе	84 Se β-	85 Se β-	⁸⁶ Sе	87 Se β-	88 Se _{β-}	⁸⁹ Sе _{β-}	⁹⁰ Se	⁹¹ Se _{β-}	⁹² Se _{β-}	⁹³ Se _{β-}	⁹⁴ Se β-

Estimated Unknown

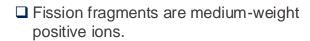


EPFL Heavy Charged Particles: Spontaneous Fission (1)

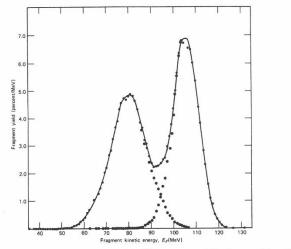
- ☐ Form of radioactive decay characteristic of very heavy isotopes.
- ☐ Spontaneous fission is only energetically feasible for A > 230
- ☐ Same process as induced fission:
 - Releases neutrons, fission products, gamma rays, neutrinos, etc
- □ Isotopes, for which spontaneous fission is a non-negligible decay mode can be used as neutron sources:
 - ²⁵²Cf (half-life 2.645 years)
 - Applied to:
 - Detector calibration (well known spectrum of n)
 - inspect airline luggage for hidden explosives,
 - to gauge the moisture content of soil, materials stored in silos, etc.



Spontaneous Fission

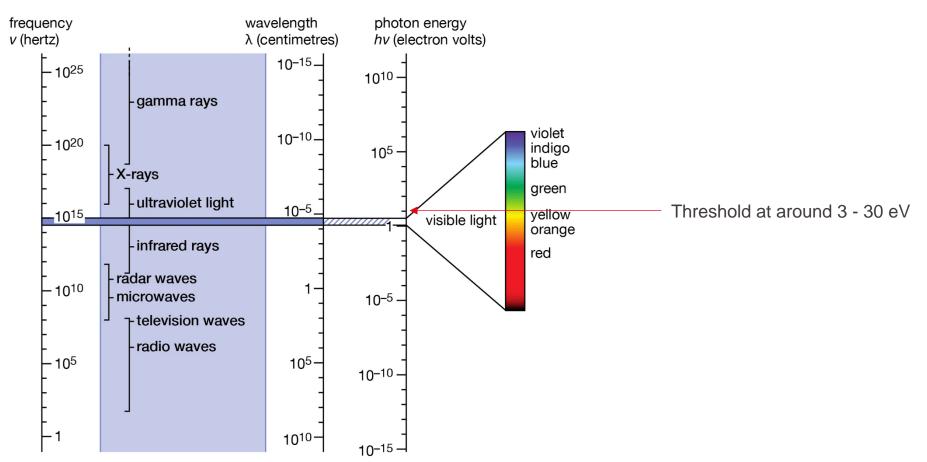


Element- A	Half-life	Spontaneous fission				
	years	Fraction	Rate per kg per second			
uranium-233	2×10 ⁵	1.6×10 ⁻¹²	0.5			
uranium-235	7.0×10^{8}	7×10 ⁻¹¹	0.06			
uranium-238	4.5×10^{9}	5.4×10 ⁻⁷	6			
plutonium-239	2.4×10^{4}	4.4×10^{-12}	10			
plutonium-240	6.6×10^{3}	5.0×10 ⁻⁸	4.1×10^{5}			
californium-252	2.6	0.03	2.3×10 ¹⁵			


EPFL Heavy Charged Particles: Spontaneous Fission (2)

The mass distribution of ²⁵²Cf spontaneous fission fragments. Also shown is the corresponding distribution from fission of ²³⁵U induced by thermal neutrons. (From Nervik.⁴)

- ☐ Fission is generally asymmetric: clustering into light (A~108) and heavy (A~143) groups.
- ☐ Initial charge approaches Z of the fragment and is reduced by interaction with the material.

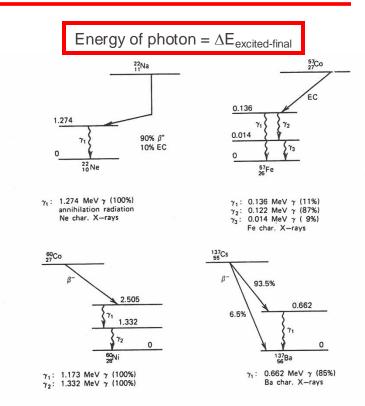


The distribution in kinetic energy of the ²⁵²Cf spontaneous fission fragments. The peak on the left corresponds to the heavy fragments, and that on the right to the light fragments. (From Whetstone.⁵)

- Energy shared by the two fragments: ~185 MeV.
- ☐ Asymmetric distribution of kinetic energy: light fragments receive the largest.
- Sources must be thin to overcome selfabsorption.

5 min break

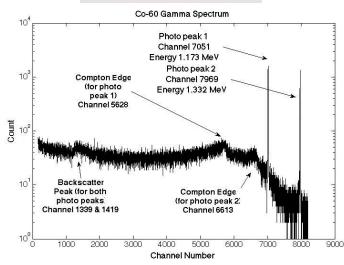
Reminder: Non-ionizing vs. Ionizing radiation



© Encyclopædia Britannica, Inc.

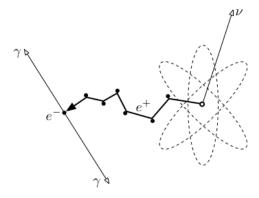
Gamma Rays (following β -decay) (1)

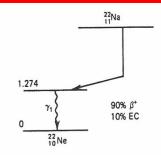
- ☐ Emitted in the transition to lower energy levels in an excited nucleus
- ☐ Excited nuclei are produced by decay of a parent radionuclide:
 - Beta-decay leads to excited nucleus (parent half-life).
 - Energy is emitted as γ-photons (half-life ~ps).
 - The energy level structure reflects that of the daughter nucleus.
 - The γ -emission half-life is effectively that of the parent nucleus.


Figure 1.5 Decay schemes for some common gamma reference sources. Only major transitions are shown. The energies and yields per disintegration of X- and gamma rays emitted in each decay are listed below the diagram. (Data from Lederer and Shirley.¹)

Gamma Rays (following β -decay) (2)

- ☐ Nuclear states have very well defined energies:
 - γ-rays emitted have well defined energies with very narrow peaks (nearly monoenergetic),
 E_v = E_i E_f.
 - Can be used for detector calibration.
- ☐ Gamma reference sources are essential in radiation measurement laboratories:
 - They consist of samples of β-emitters of a few µCi (~10⁵ Bq).
 - Encased in plastic disks or rods and encapsulated to stop particulate radiation.
 - Secondary radiation, annihilation photons or Bremsstrahlung can be significant.
 - Radiation hazard is minimal due to low absolute activity.
- ☐ Energy is limited to about 2.8 MeV. Higher energies from:
 - 56Co (3.55 MeV, half-life 77 days)
 - 16N (6.13 and 7.11 MeV, half-life 7 s).





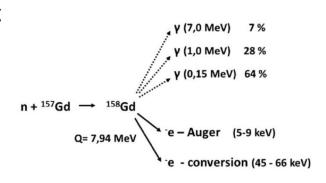
Gamma Rays from Annihilation Radiation

- Produced in nuclei undergoing β*decay.
- ☐ The positrons travel only a few millimetres before being stopped and annihilated by matter-antimatter interaction.
- ☐ This radiation is super-imposed on any gamma radiation emitted in the decay of the daughter nucleus.

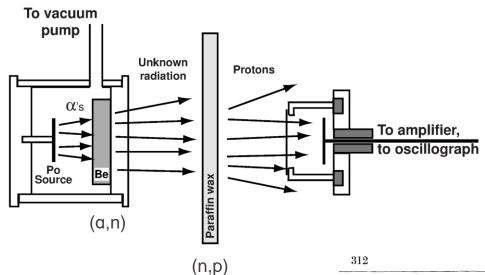
$$e^+ + e^- \to 2\gamma (m_e c^2 = 0.511 \text{MeV})$$

γ₁: 1.274 MeV γ (100%) annihilation radiation Ne char. X—rays

Gamma Rays from Nuclear Reactions


- \square High energy γ -rays can be produced from nuclear energy transitions of higher-lying nuclear states.
- ☐ Nuclear reactions provide the needed high energy excited states.
- ☐ Reactions used:
 - Alpha absorption:

$${}_{2}^{4}\alpha + {}_{4}^{9}\text{Be} \rightarrow {}_{6}^{12}\text{C}^{*} + {}_{0}^{1}\text{n} \rightarrow {}_{6}^{11\text{s}}\text{C} + \gamma (4.44 \,\text{MeV})$$


$${}_{2}^{4}\alpha + {}_{6}^{13}\text{C} \rightarrow {}_{8}^{16}\text{O}^{*} + {}_{0}^{1}\text{n} \stackrel{20\text{ps}}{\rightarrow} {}_{8}^{16}\text{O} + \gamma (6.130\,\text{MeV})$$

Sources are a combination of an α -emitter and the target material. Large α -yields must be used for practical intensities: e.g. $6\cdot10^9$ Bq of 238 PuO $_2$ and 200mg of 13 C give a source of 770 photons/s of 6.130 MeV γ -rays.

- γ -rays from absorption of thermal neutrons (radiative neutron-capture):
 - Intense flux from nuclear reactors or accelerator facilities.
 - Weaker fluxes from radioisotope sources of neutrons.
 - Gamma energies as high as 9 MeV.

Discovery of the neutron (1932, Chadwick)

1930: No effect in E field → \ ?

NATURE[February 27, 1932]

Letters to the Editor

The Editor does not hold himself responsible for opinions expressed by his correspondents. Neither can he undertake to return, nor to correspond with the writers of, rejected manuscripts intended for this or any other part of NATURE. No notice is taken of anonymous communications.

Possible Existence of a Neutron

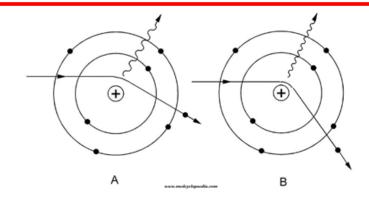
It has been shown by Bothe and others that beryllium when bombarded by a-particles of polonium emits a radiation of great penetrating power, which has an absorption coefficient in lead of about 0.3 (cm.)-1. Recently Mme, Curie-Joliot and M. Joliot found, when measuring the ionisation produced by this beryllium radiation in a vessel with a thin window, that the ionisation increased when matter containing hydrogen was placed in front of the window. The effect appeared to be due to the ejection of protons with velocities up to a maximum of nearly 3 × 109 cm.

This again receives a simple explanation on the neutron hypothesis.

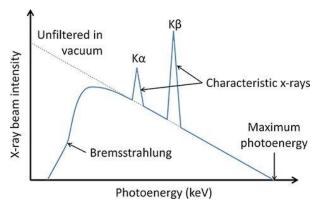
If it be supposed that the radiation consists of quanta, then the capture of the a-particle by the Be⁹ nucleus will form a C¹³ nucleus. The mass defect of C¹³ is known with sufficient accuracy to show that the energy of the quantum emitted in this process cannot be greater than about 14×10^6 volts. It is difficult to make such a quantum responsible for the effects observed.

It is to be expected that many of the effects of neutron in passing through matter should resemb those of a quantum of high energy, and it is not es to reach the final decision between the two hy theses. Up to the present, all the evidence is favour of the neutron, while the quantum hypothe can only be upheld if the conservation of energy a momentum be relinquished at some point.

J. CHADWICK.

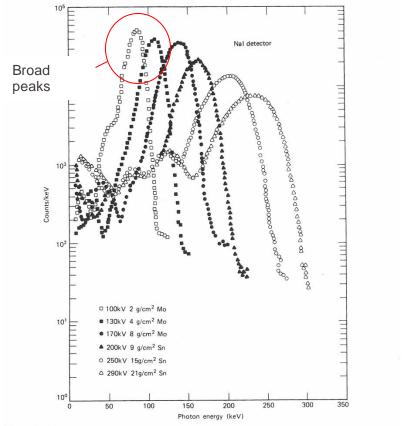

Cavendish Laboratory. Cambridge, Feb. 17.

1935



X-Rays from Bremsstrahlung (1)

- Bremsstrahlung: electromagnetic radiation from acceleration of charged particles, such as e⁻
- ☐ Bremsstrahlung has a continuous spectrum:
 - The fraction of e⁻ energy converted into Bremsstrahlung increases with the electron energy and target Z.
 - The average photon energy is a small fraction of the incident electron energy.


Spectrum produced by X-ray tube

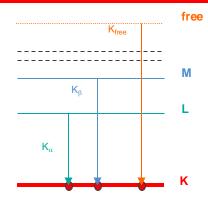
X-Rays from Bremsstrahlung (2)

- Bremsstrahlung is used to produce X-rays from conventional X-ray tubes.
 - Continuous spectrum altered by:
 - Filtration with absorber materials.
 - Peaked spectrum can be created by removing lower energy photons.
 - Can be used for calibration of detectors whose response changes only gradually with energy.
- ☐ Bremsstrahlung also produced by:
 - β-emitters interacting with shielding.
 - Changes in nucleus electric field during β-decay.

Examples of measured pulse height spectra [using a NaI(Tl) scintillator] after filtration of an X-ray tube output using the indicated absorbers and tube voltages. (From Storm et al. 15)

Characteristic X-Rays (1)

- ☐ X-Rays come from the re-arrangement of orbital electrons from excited atomic energy levels to ground states.
- ☐ Characteristic X-ray series depending on the shell with the vacancies.
- ☐ K-series is the most energetic, energy grows with Z:
 - Na (Z=11) 1 keV,
 - Ga (Z=31) 10 keV,
 - Ra (Z=88) 100 keV.
- ☐ The energy of the characteristic X-rays is unique. They can be used for element analysis.


Energies in the K-series:

$$E_{K_{\alpha}} = E_L - E_K$$

$$E_{K_{\alpha}} = E_L - E_K$$
$$E_{K_{\beta}} = E_M - E_K$$

M

$$E_{K \max} = E_{free} - E_K = K_{\text{Binding Energy}}$$

K-series of X-rays

EMR: Characteristic X-Rays (2)

■ Excitation by **Electron Capture**: $p^+ + e^- \rightarrow n + v_e$

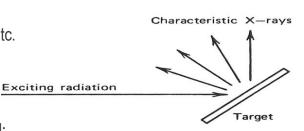
$$p^+ + e^- \rightarrow n + v_e$$

- Nuclear electron capture from a K-shell electron creates a vacancy.
- The daughter atom is still neutral (Z-1), but a hole exists in on of the inner shells.
- The hole is filled by upper-shell electrons and gives a characteristic X-rays.
- ☐ Excitation by **Internal Conversion**:
 - K-electrons are the most readily converted: the K-series is the most prominent.
 - Gamma-ray de-excitation competes with this process, thus the K X-rays are produced together with γ -photons.
 - If the energy of the converted electrons is high, Bremsstrahlung is also possible.

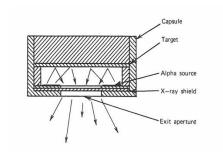
Characteristic X-Rays (3)

Nuclide	Half-Life	Weighted K_{α} X-Ray Energy	Fluorescent Yield	Other Radiations
³⁷ Ar	35.1 d	2.957 keV	0.086	Some IB^a
⁴¹ Ca	$8 \times 10^4 \mathrm{y}$	3.690	0.129	Pure
⁴⁴ Ti	48 y	4.508	0.174	γ Rays at 68 and 78 keV
^{49}V	330 d	4.949	0.200	IB
⁵⁵ Fe	2.60 y	5.895	0.282	Weak IB

^aIB represents inner bremsstrahlung.


Data from Amlauer and Tuohy.¹⁷

- \Box The yield of high-energy *γ*-rays from nuclear transitions is large compared to the characteristic Xrays.
- ☐ A pure X-ray source needs a radioisotope that decays by electron capture leading directly to a ground nuclear state of the daughter.
- □ ⁵⁵Fe is the most used because of its half-life and specific activity, and its nearly pure source of Kseries of Mn at 5.9 keV, with very little Bremsstrahlung.
- □ Sources must be thin to prevent self-absorption of X-rays and have a high specific activity.


Characteristic X-Rays (4)

- ☐ Excitation by **external radiation**:
 - external sources of radiation used are: X-rays, e⁻, α, etc.
 - The radiation excites the parent atom which emits characteristic X-rays (isotropically).

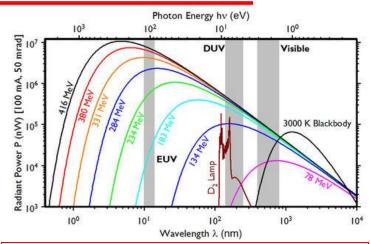
☐ The energy of X-rays depends on the target material: Low Z —> soft X-rays; High Z —> hard X-rays.

Alpha Particle	Sources Useful for Excitation of C	Characteristic X-rays
3	²¹⁰ Po	²⁴⁴ Cm
Half-life	138 d	17.6 y
Alpha emissions	5.305 MeV (100%)	5.81, 5.77 MeV
Gamma-rays	803 keV (0.0011%)	43 keV (0.02%) 100 keV (0.0015%) 150 keV (0.0013%) 262 keV (1.4 × 10 ⁻⁴ %) 590 keV (2.5 × 10 ⁻⁴ %) 820 keV (7 × 10 ⁻⁵ %)
X-rays	Pb characteristic L and M (trace)	Pu characteristic L and M

Compact source of characteristic X-rays with α -particle excitation.

No off switch

5 min break


Synchrotron Radiation

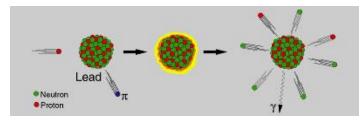
☐ Synchrotron radiation:

- Generated by the B-field acceleration of *ultrarelativistic e*.
- Artificially by storage rings in a Synchrotron, or naturally by fast electrons moving through magnetic fields in space.
- The radiation spectrum typically spans from infrared (few eV) to X-rays (10 keV).

☐ Characteristics:

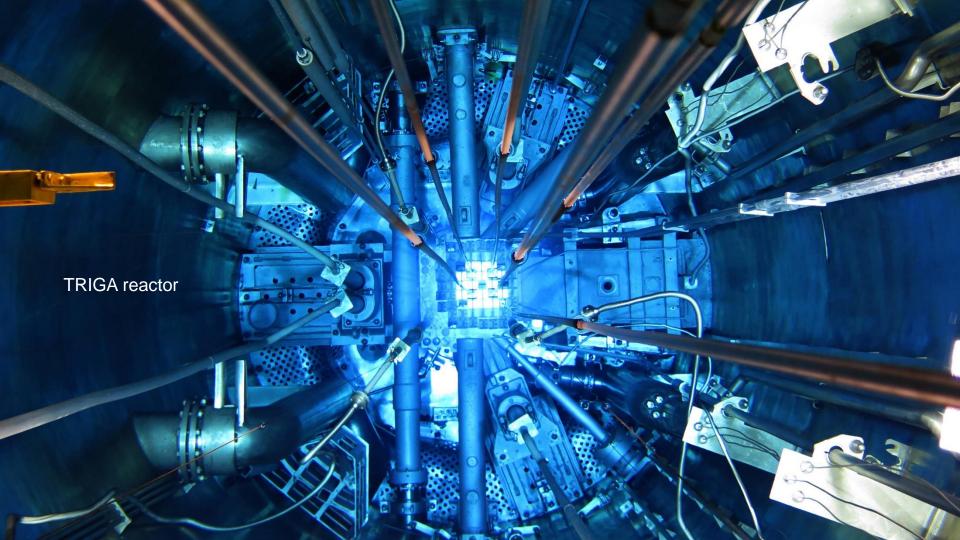
- High brightness and intensity, many orders of magnitude more than with X-rays produced in conventional X-ray tubes.
- High collimation, i.e. small angular divergence of beam.
- Low emittance, i.e. the product of source cross section and solid angle of emission is small.
- Wide tunability in energy/wavelength by monochromatization (sub eV up to the MeV range).
- High level of polarization (linear or elliptical) .
- Pulsed light emission (pulse durations at or below 1 ns).
- See, e.g., http://www.psi.ch/sls/ (Swiss Light Source)



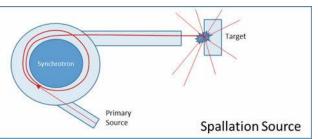


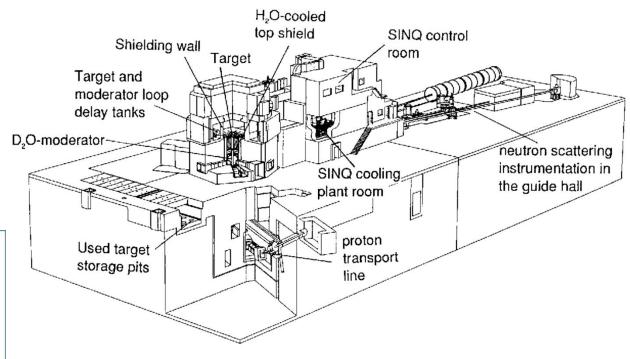
Large Neutron Sources

- Nuclear reactors (fission)
- Spallation sources



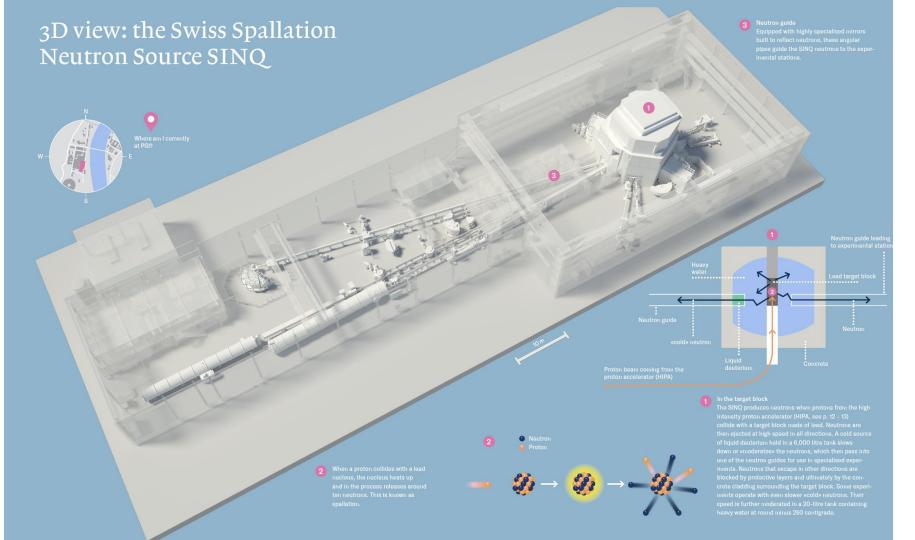
TRIGA Reactor


SINQ Spallation Source at PSI

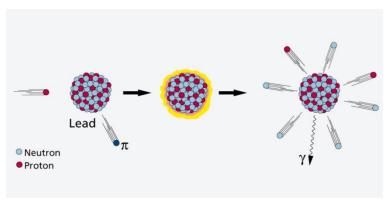


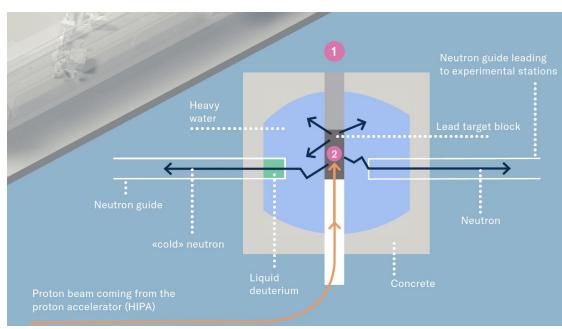
Spallation source example: Swiss Spallation Neutron Source SINQ

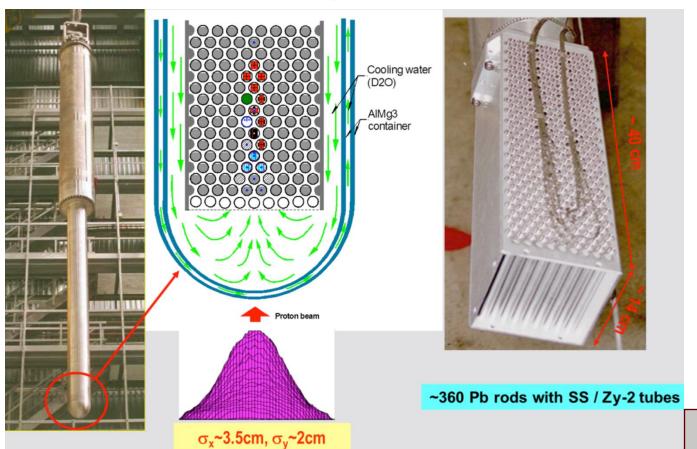
Principle:

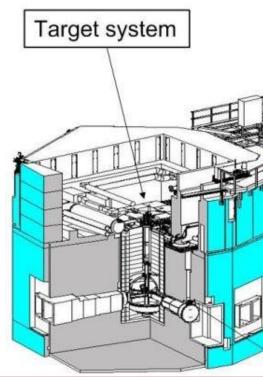


Spallation source example: Swiss Spallation Neutron Source SINQ

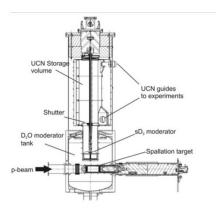





Spallation reaction on Pb nucleus



Proton energy at 590 MeV



Spallation target

Application: Neutron science

Cold neutrons via scattering in solid D_2 at 5K $\rightarrow E_{kin} < 500 \text{ neV}$

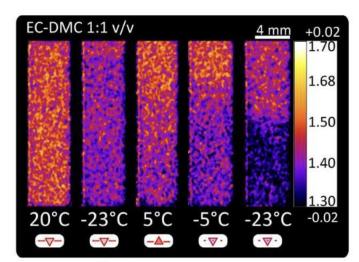
PHYSICAL REVIEW LETTERS 124, 081803 (2020)

ditors' Suggestion

Featured in Physics

Measurement of the Permanent Electric Dipole Moment of the Neutron

We present the result of an experiment to measure the electric dipole moment (EDM) of the neutron at the Paul Scherrer Institute using Ramsey's method of separated oscillating magnetic fields with ultracold neutrons. Our measurement stands in the long history of EDM experiments probing physics violating time-reversal invariance. The salient features of this experiment were the use of a $^{199}\mathrm{Hg}$ comagnetometer and an array of optically pumped cesium vapor magnetometers to cancel and correct for magnetic-field changes. The statistical analysis was performed on blinded datasets by two separate groups, while the estimation of systematic effects profited from an unprecedented knowledge of the magnetic field. The measured value of the neutron EDM is $d_n = (0.0 \pm 1.1_{\rm stat} \pm 0.2_{\rm sys}) \times 10^{-26}~e.cm$.



Applications: Neutron imaging and radiography

ELECTROCHEMISTRY

Revealing the impact of temperature in battery electrolytes via wavelength-resolved neutron imaging

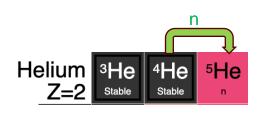
Eric Ricardo Carreon Ruiz¹, Jongmin Lee^{1,2}, Markus Strobl^{2,3}, Natalie Stalder¹, Genoveva Burca^{4,5,6}, Lorenz Gubler¹, Pierre Boillat^{1,2}*

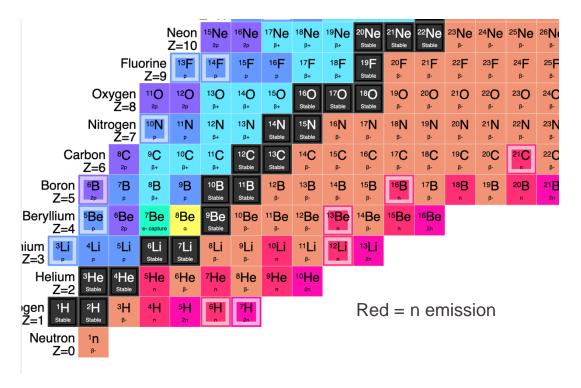
Relative attenuation

Neutron radiography

5 min break

https://youtu.be/NnQdiDVOlvI




Small Neutron Sources: Overview

- Excitation levels with energies larger than the neutron binding energy are not produced as a result of any convenient radioactive decay process.
- ☐ Small neutron sources can be built based on:
 - Spontaneous Fission (SF).
 - (α,n) nuclear reactions.
 - Neutron ejection of a nucleus induced by gamma radiation (photoneutrons).
 - Photofission: Neutrons are produced when gamma rays with high enough energies cause heavy nuclei to fission.
 - Fusion reactions of deuterium and/or tritium ions (neutron generator)

But wait...

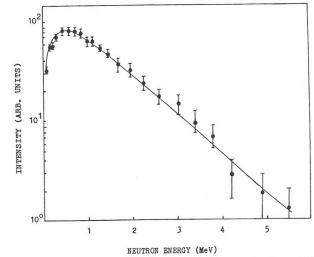
However:

Helium-5 (Z=2, N=3)

Discovered 1937 [5]

$$t_{1/2} = 602 \pm 22 \text{ ys } [5]$$

$$yocto = 10^{-24}$$


Neutron Sources: Spontaneous Fission (SF) (1)

- □ SF appears in many of the transuranic heavy nuclides (Z>92).
- ☐ It produces:
 - Several fast neutrons.
 - Heavy fission products.
 - Prompt fission γ -rays (in ns).
 - β and γ activity of the fission products.
- ☐ The neutron energy spectrum is peaked between 0.5 and 1 MeV and can be approximated by:

$$\frac{dN}{dE} = E^{1/2} e^{-E/T}$$

Spontaneous fission rates

U-235	5.60E-03 f/s-kg				
U-238	6.93 <i>f</i> /s-kg				
Pu-239	7.01 <i>f</i> /s-kg				
Pu-240	489,000 f/s-kg				

Measured neutron energy spectrum from the spontaneous fission of 252 Cf. (From Batenkov et al. 18)

EPFL Neutron Sources: Spontaneous Fission (SF) (2)

- \square The most common SF source is ²⁵²Cf (Z=98).
- □ Characteristics:
 - 2.6 year half-life
 - Dominant decay mechanism is α-decay
 - **Extremely radioactive** (1 mg spontaneously emits 170 million neutrons per minute)
- \square Produced in nuclear reactors: from irradiation of Cm with α -particles (but how to produce Cm?)
- \square ²⁵²Cf neutron sources are typically 1/4" to 1/2" in diameter and 1" to 2" in length. The price of a typical ²⁵²Cf neutron source: \$50,000.
- Some uses of the ²⁵²Cf sources:
 - Neutron start-up source for some nuclear reactors, calibrating instrumentation.
 - Treatment of certain cervical and brain cancers where other radiation therapies are ineffective.
 - Radiography of aircraft to detect metal fatigue.
 - Airport neutron-activation detectors of explosives.
 - Neutron moisture gauges used to find water and petroleum layers in oil wells.
 - Portable neutron source in gold and silver prospecting for on-the-spot analysis.

Neutron Sources: (α,n) Sources (1)

- \square Neutrons are produced in (α,n) -reactions.
 - The source of α is a radioisotope.
 - Self-contained sources have a mixture of an α -emitter and a target material.
 - The maximum neutron yield comes from ⁹Be as a target material.
- \square Sources of (α, n) neutrons:
 - All α-emitters are actinides: ²³⁹Pu, ²¹⁰Po, ²⁴¹Am, ²⁴⁴Cm, ²²⁶Ra, etc.
 - Most α -particles are absorbed in the target, only 1 in 10⁴ reacts with Be.
 - They form stable alloy of the form MBe₁₃ (M=actinide metal), with no intermediate loss of energy for the α-particle.

Basic reaction for Be neutron sources:

$${}_{2}^{4}\alpha + {}_{4}^{9}\text{Be} \rightarrow {}_{6}^{12}\text{C}^{*} + {}_{0}^{1}\text{n} \rightarrow {}_{6}^{12}\text{C} + \gamma (4.44 \,\text{MeV})$$

Typical double-walled Be(α ,n) source

Neutron Sources: (α,n) Sources (2)

	Characteristics of $Be(\alpha, n)$ Neutron Sources						
Most widely				Neutron Yield per 10 ⁶ Primary Alpha Particles		Percent Yield with $E_{\rm n} < 1.5 \; {\rm MeV}$	
used	Source	Half-Life	(MeV)	Calculated	Experimental	Calculated	Experimental
High n yields, high specific activity	²³⁹ Pu/Be	24000 y	5.14	65	57	11	9-33
	²¹⁰ Po/Be	138 d	5.30	73	69	13	12
Low γ background, simple α decay process.	²³⁸ Pu/Be	87.4 y	5.48	79 ^a	_	_	-
	²⁴¹ Am/Be	433 y	5.48	82	70	14	15-23
	²⁴⁴ Cm/Be	18 y	5.79	100^{b}	_	18	29
Ideal	$\sqrt{\frac{242}{\text{Cm}/\text{Be}}}$	162 d	6.10	118	106	22	26
Intense γ background radiation from	226Ra/Be + daughters	1602 y	Multiple	502	_	26	33-38
	²²⁷ Ac/Be +daughters/	21.6 y	Multiple	702	_	28	38
daughters	^a From Anderson and Hertz. ²² All other data as calculated or cited in Geiger and Van der Zwan. ²³						

 $[^]b\mathrm{Does}$ not include a 4% contribution from spontaneous fission of $^{244}\mathrm{Cm}$.

Neutron Sources: (α,n) Sources (3)

- □ Energy spectra of all sources with ⁹Be are similar.
 - Differences reflect the small variations in the primary α-particle energies.
 - Thick sources have more "spread", i.e, the originally discrete α-energy spectrum is washed out.

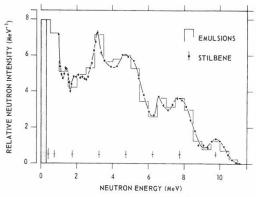
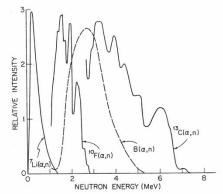



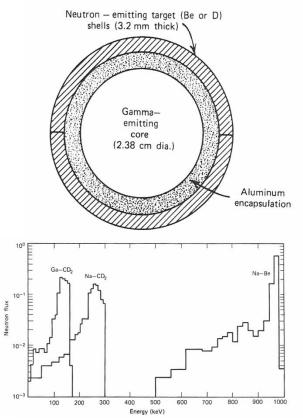
Figure 1.12 Measured energy spectra for neutrons from a 239 Pu/Be source containing 80 g of the isotope. (From Anderson and Neff. 25)

Additional sources of (α,n)

Alternative (α, n) Isotopic Neutron Sources					
Target	Reaction	Q-Value	Neutron Yield per 10 ⁶ Alpha Particles		
Natural B	$^{10}B\;(\alpha,n)$ $^{11}B(\alpha,n)$	+1.07 MeV +0.158 MeV	13 for ²⁴¹ Am alpha particles		
F	$^{19}F(\alpha,n)$	-1.93 MeV	4.1 for ²⁴¹ Am alpha particles		
Isotopically separated 13C	$^{13}\text{C}(\alpha,n)$	+2.2 MeV	11 for ²³⁸ Pu alpha particles		
Natural Li	$^7\text{Li}(\alpha,n)$	-2.79 MeV			
Be (for comparison)	$^{9}Be(\alpha, n)$	+5.71 MeV	70 for 241 Am alpha particles		

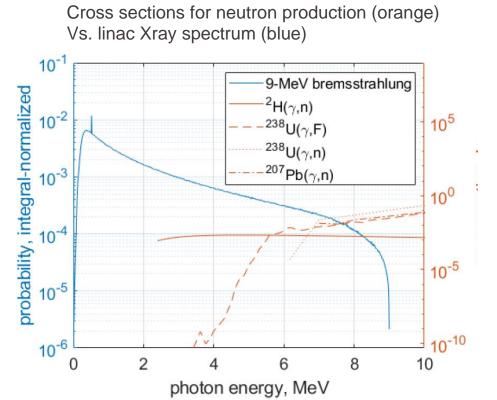
Data from Lorch¹⁹ and Geiger and Van der Zwan.²⁷

Neutron energy spectra from alternative (α, n) sources. (⁷Li data from Geiger and Van der Zwan, ²⁷ remainder from Lorch. ¹⁹)

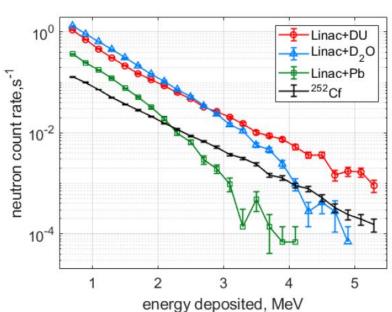


Neutron Sources: Photoneutrons (1)

- \square Excitation of the nucleus by high energy γ -rays:
 - Photoneutron sources combine a powerful γ-emitter with a target isotope.
 - Only two target nuclei are practical: ⁹Be and ²H:


$${}^{9}_{4}Be + \gamma \longrightarrow {}^{8}_{4}Be + {}^{1}_{0}n$$
 -1.666 MeV
 ${}^{2}_{1}H + \gamma \longrightarrow {}^{1}_{1}H + {}^{1}_{0}n$ -2.226 MeV

- Photoneutron sources produce monoenergetic neutrons (for monoenergetic gammas).
- They need very large γ -ray activities (1 out of 10⁵-10⁶ photons produces 1 n).
- Common emitters are: ²²⁶Ra, ¹²⁴Sb, ⁷²Ga, ¹⁴⁰La, ²⁴Na.
- Very short half-lives require reactivation in a nuclear reactor between uses.
- Alternative: e-accelerator + target



Neutron spectra calculated for the photoneutron source dimensions shown in Fig. 1.15. The gamma emitters are either 72 Ga or 24 Na. The outer shells are either deuterated polyethylene (CD₂) or beryllium (Be).

Linear accelerator (linac) + photoneutron target

Measured neutron energies for different targets and sources DU = depleted uranium

Neutron Sources: Photoneutrons (2)

Photoneutron Source Characteristics						
Gamma- Ray Emitter Half-Life ^a		Gamma Energy ^a (MeV)	Target	Neutron Energy ^b (keV)	Neutron Yield (n/s) for 10 ¹⁰ Bq Activity ^c	
²⁴ Na	15.0 h	2.7541 2.7541	Be D	967 263	340,000 330,000	
²⁸ Al	2.24 min	1.7787	Ве	101	32,600	
³⁸ Cl	37.3 min	2.1676	Be	446	43,100	
⁵⁶ Mn	2.58 h	1.8107 2.1131 2.9598 2.9598	Be D	129 398 1,149 365	91,500 162	
⁷² Ga	14.1 h	1.8611 2.2016 2.5077	Ве	174 476 748	64,900	
⁷⁶ As	26.3 h	2.5077 1.7877 2.0963	D Be	140 109 } 383 }	25,100 3,050	
88Y	107 d	1.8361 2.7340	Ве	152 949	229,000	
0.000		2.7340	D	253	160	
^{116m} In	54.1 min	2.1121	Be	397	15,600	
¹²⁴ Sb	60.2 d	1.6910	Ве	23	210,000	
¹⁴⁰ La	40.3 h	2.5217 2.5217	Be D	760 147	10,200 6,600	
¹⁴⁴ Pr	17.3 min	2.1856	Be	462	690	

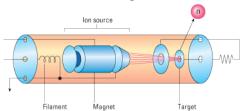
^aDecay data from Ref. 1.

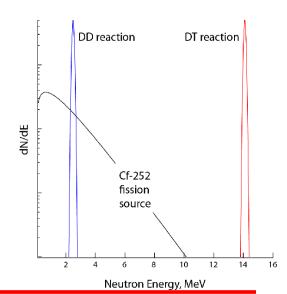
Source: G. F. Knoll, "Radioisotope Neutron Sources," Chap. 2 in Neutron Sources for Basic Physics and Applications, Pergamon Press, New York, 1983.

^bCalculated for $\theta = \pi/2$, approximate midpoint of primary spectrum.

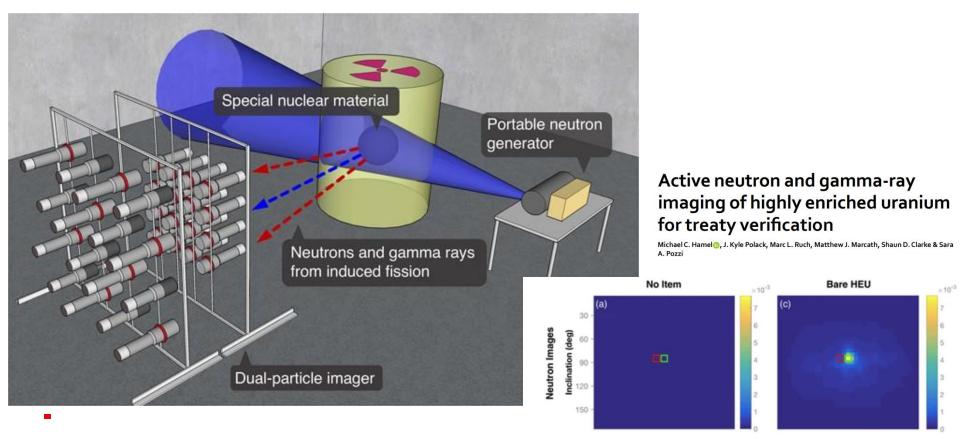
 $[^]c$ Monte Carlo calculations for the source dimensions given in Fig. 1.15. Outer target shells are either metallic Be or deuterated polyethylene. Core materials assumed to be NaF, Al, CCl₄, MnO₂, Ga₂O₃, As₂O₃, Y₂O₃, In, Sb, La₂O₃, and Pr₂O₃.

EPFL Neutron Sources: Accelerated Charged Particles

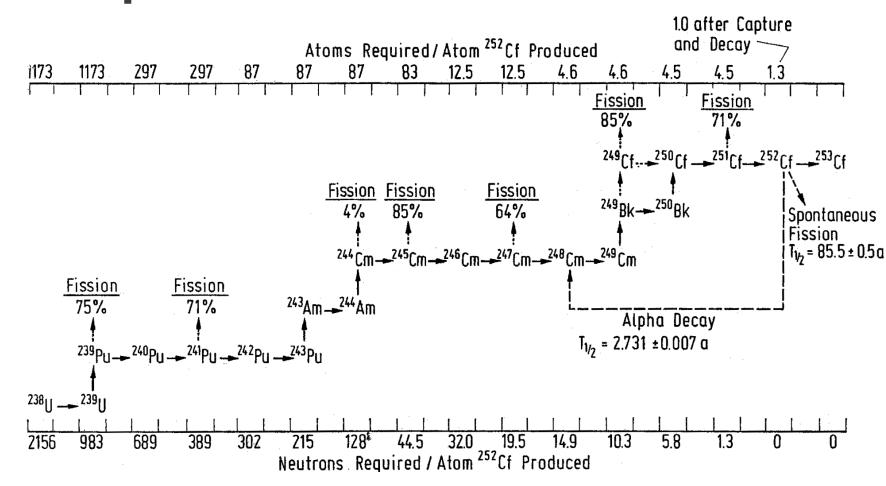

☐ Two of the most common reactions (with their Q-values) are fusion reactions:

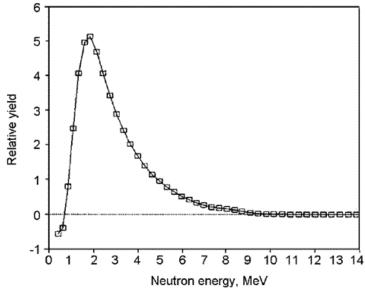

$$D + T \rightarrow n + {}^{4}He$$
 $E_n = 14.1 \text{ MeV}$

$$D + D \rightarrow n + {}^{3}He$$
 $E_n = 2.5 \text{ MeV}$


- ☐ Characteristics of the sources:
 - Low coulomb barrier (low Z target) requires accelerating potentials of 100-300 kV for the charged particles.
 - All neutrons mono-energetic
 - Typical yields: 1 mA ²H beam will produce 10⁹ n/s for ²H and 10¹¹ n/s for ³H targets → compact, portable source
 - Other reactions ⁹Be(d,n), ⁷Li(p,n) and ³H(p,n) require large accelerators (Q < 0).

Neutron generator




Neutron generator application: Nuclear security

²⁵²Cf production in a reactor

²⁵²Cf properties

Neutron energy spectrum from ^{252}Cf sf

Californium-252 (Z=98, N=154)

Discovered 1954 [5]

$$t_{1/2} = 2.645 \pm 0.008 \text{ y}$$
 [5]
 $J^{\pi} = 0^{+}$ [5]

Decay modes

$$\alpha = 96.9\%$$
 [5]
Spontaneous fission = 3.10% [5]

Uranium-235 (Z=92, N=143)

Discovered 1935 [5] Natural abundance 0.7204% [5] $t_{1/2} = 704\pm1$ My [5] $J^{\pi} = 7/2^{-}$ [5]

Decay modes

 $\alpha = 100\%$ [5]

Spontaneous fission = 7.00e-9% [5]

20Ne = 8.00e-10% [5]

25Ne ~ 8.00e-10% [5]

28Mg = 8.00e-10% [5]

Uranium-238 (Z=92, N=146)

Discovered 1896 [5]

Natural abundance 99.2742% [5] $t_{1/2} = 4.463 \pm 0.003$ Gy [5]

 $J^{\pi} = 0^{+} [5]$


Decay modes

 $\alpha = 100\%$ [5]

Spontaneous fission = 0.0000544% [5]

 $2\beta^{-} = 2.20e-10\%$ [5]

Comparison of neutron source spectra for detector calibration

Beyond Californium – A Neutron Generator Alternative for Dosimetry and Instrument Calibration in the U.S.

Roman K. Piper*, Andrey V. Mozhayev*, Mark K. Murphy*, Alan K. Thompson†

*Pacific Northwest National Laboratory, P.O. Box 999, Richland, WA 99352

[†]National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899

Table 1

Overview of Neutron Calibration Sources and Properties

Neutron source (type)	Radionuclide half-life	Number of sources needed for 15 years ^a	Relative neutron intensity of individual source ^a	Radionuclide nominal specific neutron intensity	Nominal mass of radionuclide needed for 10 ⁹ s ⁻¹ source
	(years)			(s ⁻¹ g ⁻¹)	(g)
DD (NG)	n/a	3-5	1.000	n/a	n/a
DT (NG) ^b	12.3	3-5	1.147-1.087	2.28×10^{13}	0.00004
²⁵² Cf (SF)	2.645	2	2.285	2.31×10^{12}	0.0004
²¹⁰ PoBe (α,n)	0.378	13	2.409	1.08×10^{10}	0.1
²⁴⁴ CmBe (α,n)	18.1	1	1.315	2.06×10^{8}	5
²³⁸ PuBe (a,n)	87.74	1	1.060	4.12×10^{7}	24
²⁴⁸ Cm (SF)	348000	1	1.000	3.94×10^{7}	25
²²⁶ RaBe (a,n)	1620	1	1.003	1.27×10^7	79
²⁴⁴ Cm (SF)	18.1	1	1.315	1.11×10^{7}	90
²⁴¹ AmBe (α,n)	433.6	1	1.012	8.23×10^6	122
²³⁹ PuBe (α,n)	24100	1	1.000	1.49×10^{5}	6700

Literature

- Glenn F. Knoll, "Radiation Detection and Measurement", John Wiley & Sons (4th edition, 2010, and 3rd edition, 2000)
- ☐ James E. Martin, "Physics for Radiation Protection", Wiley-VCH (2nd edition, 2006)
- James E. Turner, "Atoms, Radiation, and Radiation Protection", Wiley-VCH (3rd edition, 2007)