Radiation Biology, Protection and Applications

(PHYS-450)

PRACTICE EXERCISES

Week 07

SOLUTIONS

Please calculate the given exercises. Please note that the practice exercises will not be graded, you will only receive feedback.

Problem 1:

How many alpha and beta particles are emitted by a nucleus of an atom of the uranium series, which starts as $^{238}_{92}U$ and ends as stable $^{206}_{82}Pb$?

A:
$$238 - x.(4) = 206$$

X = 8

8 alpha particles

6 beta particles

Problem 2:

A typical smoke detector contains a 241 Am source with an activity of 30 kBq. What is the mass of the 241 Am? (T1/2=432.2years)

$$\lambda = rac{\ln(2)}{T_{1/2}} = rac{\ln(2)}{13,639,195,520\,\mathrm{s}} pprox 5.082 imes 10^{-11}\,\mathrm{s}^{-1}$$

The activity A is related to the number of radioactive atoms N by:

$$A = \lambda N \implies N = \frac{A}{\lambda}$$

$$N = rac{30,000\,\mathrm{Bq}}{5.082 imes10^{-11}\,\mathrm{s}^{-1}} pprox 5.904 imes10^{14}\,\mathrm{atoms}$$

$$n = rac{5.904 imes 10^{14} \, \mathrm{atoms}}{6.022 imes 10^{23} \, \mathrm{mol}^{-1}} pprox 9.801 imes 10^{-10} \, \mathrm{mol}$$

The molar mass M of $^{241}\mathrm{Am}$ is approximately $241\,\mathrm{g/mol}$.

$$m = n imes M = (9.801 imes 10^{-10} \, \mathrm{mol}) imes (241 \, \mathrm{g/mol}) pprox 2.362 imes 10^{-7} \, \mathrm{g}$$

Problem 3:

When will 5 GBq of $^{131}_{53}I$ ($T_{1/2} = 8.05 \ days$) and 2 GBq of $^{32}_{15}P$ ($T_{1/2} = 14.3 \ days$) have equal activities?

$$5 x e^{-\frac{\ln 2}{8.05}x t} = 2 x e^{-\frac{\ln 2}{14.3}x t}$$

$$t = 24.34 \text{ days}$$

Problem 4:

A solution with a radioisotope 24 Na of activity A_0 = 2 kBq was injected into the blood of a person. Volume activity a_v of the blood was measured 5 hours after the injection and it was determined to be 265 kBq/m³. Determine the volume of the person's blood in liters. The half-life of 24 Na is 15 hours.

The initial volume activity of ²⁴Na after the injection into the blood is

$$a_0 = A_0/V$$
,

where V is the volume of the blood.

Activity is decreasing exponentially with the time. Thus,

$$a_V(t_5h) = A_0/V \times \exp(-\lambda \times t_5h)$$

$$V = A_0/a_V(t) \times \exp(-\lambda \cdot t) = 2\times 10^3/(265\times 10^3) \times \exp(-\ln 2\times 5/15) = 6 \text{ l}$$

The volume of the blood is 6 liters.

Problem 5:

What was the age of the rock sample acquired during the Apollo 17 mission in 1972, if the isotopic ratio ${}^{87}_{38}Sr/{}^{87}_{37}Rb$ was found to be 0.065? The decay reaction can be expressed as follows: ${}^{87}_{37}Rb \rightarrow {}^{87}_{38}Sr + {}^{0}_{-1}\beta$; $T_{1/2} = 4.7 \times 10^{10} \ years$.

$$N/N_0 = e^{-\frac{\ln 2}{T_1/2} x t}$$

$$N_0 = N + N_{decay} = N + 0.065 N = 1.065 N$$

$$t = -\frac{T_{1/2}}{\ln 2} \cdot ln \frac{N}{N_0} = 4.3 \times 10^9 \text{ years}$$

 $t = 4.3 \times 10^9 \text{ years}$