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Introduction Linear Dynamics

• accelerator = series of elements for beam guiding (bending, focusing) 
and acceleration; often arranged in a closed loop (ring)

• guiding fields must ensure long term (h) stability of circulating particles

questions to be answered:
• How to ensure bound motion of a particle beam?
• What are conditions for stability?
• Amplitude and frequency of particle oscillations?
• Statistical beam properties like beam width and angular spread?
• How to design magnet lattices (arrangements of dipoles and quads in a line)?
• What is the impact of field errors in bending and focusing magnets?
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Main Dipoles

Make Particles Circulate

Main DipolesMain DipolesMain Dipoles
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Main Dipoles

Focusing the Particles

Main DipolesMain DipolesQuadrupoles
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Bending Magnet - SLS dipole
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magnetic 
rigidity:



Quadrupole Magnet - Focusing Element
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Quadrupole Lens

• Focusing in one plane

• Defocusing in the other plane

S

N

N

S

Focusing

Defocusing
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Next: Equation of Motion

• suited coordinate system

• linearizing forces and deriving differential equation
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Curvilinear Coordinate System

aim: derive a set of equations that describe the motion 
of a single particle wrt. a curved coordinate system 
around the reference orbit of a beam, ( x, y )

10

particle coordinate: 

see also: Frenet-Serret coordinates, e.g. Wiedemann chap 4.3



Deriving the Equation of Motion (see Appendix) 
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starting with general 
equation of motion:

the effect of the curved coordinate 
system, i.e. the moving unit vectors ex, 
es must be included in the calculation

dipole and 
quadrupole field

field gradient
varying sign 
convention !

k – value [m-2]

orbit curvature

curved coordinates
k - value off momentum term

derivative w.r.t. path-length s, not time t



Equation of Motion

DE is valid for drift spaces, 
Quadrupoles (k≠0), combined function 
magnets (k≠0, 1/≠0) and for off-
momentum particles (p≠0, first order)

we discuss solutions of different cases 
of this equations in single accelerator 
magnets, depending on K(s), (s), p
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see also Wiedemann sec. 1.5.8 

generalised form:



geometric meaning of coefficients

= curvature
1/ [m-1]

K = amplitude 
dependent 
curvature K[m-2]
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inside quadrupole field



Summary on Approximations used
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• small displacements 𝑥 ≪ 𝜌, 𝑦 ≪ 𝜌, ሷ𝑠 ≈ 0 (paraxial optics)

• only dipole and quadrupole magnets (linear field changes)

• design orbit lies in a plane (flat accelerator)

• no coupling between motion in hor. and vert. plane (upright magnets)

• small momentum deviations (quasi monochromatic beam)

• in general: no quadratic or higher order terms (linear beam optics)

linear parametrization of magnetic field: 



Next: Solving the Equation of 
Motion using Matrices

• matrix approach using principal trajectories

• drift space, focusing and defocusing quadrupole
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Piecewise solution of trajectory equation in terms 
of principal trajectories

Dispersion Trajectory 
(= particular solution of eq.) 

Sinelike Trajectory 

Cosinelike Trajectory 

C(s), S(s) are independent solutions of the homogeneous equation:
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see also Wiedemann sec. 5.5 



Formulation as Transport Matrix

proof:

→ det = 1 initially, and it does not change as motion proceeds
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Piecewise Solution of Equation

general form of equation similar to harmonic 
oscillator with three cases: K=0, K<0, K>0

sC

K(s)
K is piecewise constant, in a ring it repeats at least after one turn (s=C)
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Drift Space

particle moves straight

1.) K=0: Drift Space

L
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Focusing Quadrupole

2.) K > 0:   Focusing Quadrupole

thin lens approximation:

f

x
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Defocusing Quadrupole

3.) K < 0:   Defocusing Quadrupole

thin lens approximation for defocusing quad:

f

x
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Special Case: Weak Focusing

→ one oscillation per 
turn as expected for
„weak focusing“

reference 
orbit

particle 
orbit
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Dispersion Trajectory

is solution of equation:

is constructed from homogeneous solutions C(s), S(s):

proof: by insertion in above DE and by using CS´- C´S=1.
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compare components of 
particle trajectory:



Dispersion Trajectory in combined function 
magnet (Dipole & Quadrupole)

for K > 0

for K < 0

for K = 0

→ Dispersion is generated by bending fields
→ Dispersion oscillates in Quadrupoles like particle trajectories
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Quadrupole Doublet

concatenation of particle transport through a series of elements:

l

→ Mdoublet is always focusing
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(M = transport matrix 2x2)

[thin lens approximation]



3x3 transport matrix for off-momentum particles
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can be re-formulated as a single matrix multiplication:

this formulation is convenient when computing the dispersion function



Matrix Notation
… is one approach to describe particle trajectories in accelerators – for 
each element a matrix for linear computation can be defined.

The matrix can be extended to all six dimensions of phase space:
x, x’, y, y’, s, 

path length

energy deviation =E/E0

The matrix notation can be generalised to higher order dependencies. 
For example a tensor of rank 3 holds coefficients Tijk for a quadratic 
map of particle coordinates.

In this case R contains 36 parameters, some 
of which have practical importance for 
example in coupling horizontal and vertical 
motion.
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Next: Stability and Twiss Matrix

• Eigenvalues and Stability

• Twiss Matrix Decomposition
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Stability Criterion

for stable oscillation in a ring these coordinates must stay finite for n → ∞:

to assess stability use decomposition of M in Eigenvectors:

then:

thus it is sufficient analysing the Eigenvalues to assess stability of linear motion
n must be bounded for n → ( = complex number in general)
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M = transport matrix of entire ring



Stability Criterion :: Matrix & EV Properties

transfer matrix M has properties that can be used:

from that follows:
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this can be extended to 4dim matrices 
(coupled horizontal + vertical)

bounded for 

with  = real number 

Im

Re

stable = EVs on unit circle



Stability Criterion – the Trace of M

motion is stable if |Tr M|<2, which also means that  is real
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see also Schmüser/Rossbach, and sect. 4.1, Wiedemann chap. 10.1.2

2x2 matrix: characteristic polynomial
quadratic equation for eigenvalues 
solution: values 1, 2

Computation of eigenvalues via characteristic polynomial:



Summary Matrix Treatment
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• equation of motion is piecewise solved for constant K(s)

• x, x’ are propagated by concatenated multiplication with 2x2 matrices

• defocusing and focusing quadrupoles are combined in overall focusing doublets

• linear motion in a ring is stable if |Tr M|<2

• det M = 1 (also: M symplectic)

s

C

K(s)

pattern repeats



Next: Analytical Solution

• Hills equation

• Beta function

• phase space ellipse

• include momentum offset

• tune Qx, Qy
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Solution of Hill´s equation

First used by an astronomer George Hill in his studies of the motion of celestial 
bodies, a motion under the influence of periodically changing forces

1838 -- 1914
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Hill: Solution for periodic K

→ the beta function [m] is a scaling factor for the amplitude of 
orbit oscillations, and their local wavelength

A, 0 are constants of motion

weak quads strong quads
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 - well known Betafunction of accelerators

variables are not related to relativistic factors 

(sorry for the historic nomenclature)



Comparison to Classical Harmonic Oscillator

amplitude is fixed:

phase grows linear with time:

conserved (energy): 
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Hill Equation (pseudo harmonic equation)

amplitude varies:

phase increases monotonically 
but growth rate varies as 1/ :

conserved (action J): 
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Twiss 
Parameters:



Computing the Beta Function in three ways

1.) from the transport matrix of a closed ring

2.) by solving a DE for  (DE without proof)

3.) by using a transport matrix for Twiss parameters (C,S principal trajectories)
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Computing the transport matrix from Twiss 
Parameters

transport matrix s=s0 →s1 (arbitrary section):
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0, 0 at s0

,  at s1

 = phase advance between s0, s1



The one turn matrix Mrev

• special case: choose symmetry point  = 0
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transport matrix for one revolution, “One Turn Matrix”
• same location:  = 0

•  = 2Q phase advance for complete turn, Q = “Tune” of accelerator



Twiss Matrix

this expression has similar properties as 

it holds:
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Beta Function in a Drift
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β* = min

s



• in a field free region  follows a 
quadratic function

• the coefficients are related to the 
TWISS parameters

• at min we have a waist



Adding Dispersion

where D(s) is a solution of:

note:

D(s) = dispersion function as lattice solution – not exactly the same as 
the previously introduced dispersion trajectory for single elements

(s) = used in some literature instead dispersion function D(s)

outside bending magnets D 
behaves like particle trajectories

43



Phase Space Ellipse

1

4

2

3

x’

x

J = particle action (oscillation amplitude) 

observing the coordinates of a particle at 
one location in a ring for consecutive turns

x, x’ describe an ellipse in phase space 
when  is varied

example φ= Q×2  0.37×2 phase 
advance per turn
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see also Schmüser/Rossbach sect. 4.3/4.4, Wiedemann chap. 8.1.2



Courant-Snyder Invariant

E.D. Courant and H.S. Snyder, Theory of the Alternating 
Synchrotron, Annals of Physics 3 (1958) 1

x’

x

• at one location this phase space ellipse is 
sampled by a particle with action J

• when moving along the magnet lattice, the 
ellipse is changing size, but it stays an ellipse

• the area of the ellipse is invariant (Courant-
Snyder Invariant) and equals 2 × action.

• the unit is [mrad], or often  [mmmrad]

• this constant of motion refers to a single 
particle, emittance is a statistical property
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Action vs. Emittance

x

• single particles are associated with a 
particular ellipse

• when observing a beam with a wire 
scanner a (projected) rms width x is  
measured; one ellipse corresponds to x

• emittance  is the average value of action J
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→ more on emittance next lesson



What beam will fit into the machine?

y

y’

-h/2

h/d

-h/d

h/2
h

d

Electron
Trajectories

Matched beam 
emittance

Unmatched 
beam emittance

Example: Acceptance of a lengthy aperture restriction (limits amplitude and angle)

F. Sannibale
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Admittance of an accelerator

admittance = the largest ellipse that can be accepted

• at any point along the accelerator

• units = phase space area [mmmrad]

• if the available half-aperture is d(s)
there is at some s a minimum of

• so in general: 

• Special case: uniform aperture d(s) = d
the minimum occurs at max
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The Betatron Frequency Q (tune of accelerator)
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Tune = Number of Betatron Oscillations per 
Turn (remember Q1 for purely weak focusing)
the choice of tune is important to avoid 
resonances

Both integer and fractional part are important 
for machine designaround ring



Resonance Plot

[R.Steinhagen, CERN]

LHC working point
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condition for resonance: 

order of resonance:

Qx



Tunes and Orbit in LHC

Example Measured Beam Spectrum: 

LHC Revolution Frequency: 11.3kHz 

peak position: 3.5kHz = 0.31×11.3kHz 

Example Orbit Oscillations: 

LHC Tunes:
Qx =  62.31
Qy =  60.32

relevant for stability: non-integer part
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𝐴 = 𝜋𝑟2𝐴 = 𝜋𝑟2

𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
=
𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑖𝑜𝑛𝑠

𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛
×
𝑟𝑒𝑣𝑜𝑙𝑢𝑡𝑖𝑜𝑛

𝑠𝑒𝑐𝑜𝑛𝑑



Smooth Approximation

simplify:

can be used to estimate important parameters:
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note: Q  R, i.e. proportional to size
compare cyclotron: Q  , independent of size!



Normalized Coordinates
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in normalized coordinates the particle describes a circle in phase space

x‘ xn‘

x xn

unit of normalized
coordinates: 

→ this re-scaling of coordinates is related to the Floquet theorem (see appendix)



Next: Summary of this Lesson
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Summary Linear Beam Dynamics I

1) Matrix Treatment

varies with s off-momentum part

2) Analytical Treatment
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Summary Beam Dynamics - I

tune = number of 
oscillations per turn:

x’

x phase space area is preserved

single particle vs. emittance
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Appendix, Derivation: Equation of Motion I

used here:

starting with general 
equation of motion:

comment: the main purpose here is to correctly treat the effect of 
the curved coordinate system, i.e. the moving unit vectors ex, es
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Derivation: Equation of Motion II

right side of equation, the force:

use:
assumptions:
• no Bs

• Bx(y=0) = 0

result: two equations hor/vert from x,y components:

in literature g has varying sign
conventions
Wiedemann, Table 6.2:  g=+dBy/dx
Schmüser/Hillert:  g= -dBy/dx
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Derivation: Equation of Motion III

introduce path length s as independent variable:

use:
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Derivation: Equation of Motion IV

use:
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Floquet Theorem :: related to normalized coordinates

has two solutions in the form:

with:

for accelerators we note:

[envelope functions]

see also Schmüser/Rossbach sect. 4.2, 
Wiedemann chap. 10.2.1
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Applying Floquet to transport matrix

transport matrix M can be factorized in an „oscillatory“ and an „envelope“ 
part; oscillatory part describes a circle in normalised coordinates

then for k turns in accelerator (M = one turn matrix):

with:


