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Transverse Dynamics ::
Equation of Motion and Solutions

Laboratory for Particle Accelerator Physics, EPFL



Introduction Linear Dynamics

* accelerator = series of elements for beam guiding (bending, focusing)
and acceleration; often arranged in a closed loop (ring)

 guiding fields must ensure long term (h) stability of circulating particles

questions to be answered:

* How to ensure bound motion of a particle beam?

* What are conditions for stability?

 Amplitude and frequency of particle oscillations?

 Statistical beam properties like beam width and angular spread?

* How to design magnet lattices (arrangements of dipoles and quads in a line)?
 What is the impact of field errors in bending and focusing magnets?
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https://link.springer.com/book/10.1007%2F978-3-319-18317-6

M. Sands, Physics of Electron Storage Rings: An Introduction.

https://digital.library.unt.edu/ark:/67531/metadc865991/

CERN Accelerator School (CAS) proceedings homepage (huge!)
http://cas.web.cern.ch/cas/CAS Proceedings.html

CERN Accelerator School on Medical Applications:
https://cds.cern.ch/record/2271793/files/33-8-PB.pdf

books, papers:

M.Conte and W.McKay, An Introduction to the Physics of
Particle Accelerators, World Scientific, 2008

S.Peggs, T.Satogata, Introduction to Accelerator Dynamics,
Cambridge University Press, 2017

A. Wolski, Beam Dynamics in high energy particle accelerators,
Imperial College Press, 2014

A. W. Chao, M. Tigner, Handbook of Accelerator Physics and
Engineering, World Scientific 1999

E. D. Courant and H. S. Snyder, Annals of Physics: 3, 1-48 (1958)


https://cds.cern.ch/record/247501/files/p17.pdf
https://arxiv.org/pdf/1601.04901.pdf
https://link.springer.com/book/10.1007/978-3-319-18317-6
https://digital.library.unt.edu/ark:/67531/metadc865991/
http://cas.web.cern.ch/cas/CAS_Proceedings.html
https://cds.cern.ch/record/2271793/files/33-8-PB.pdf

Make Particles Circulate
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Focusing the Particles




Bending Magnet - SLS dipole
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Quadrupole Magnet - Focusing Element
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Next: Equation of Motion

e suited coordinate system

linearizing forces and deriving differential equation
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Curvilinear Coordinate System

aim: derive a set of equations that describe the motion
of a single particle wrt. a curved coordinate system
around the reference orbit of a beam, ( X, V)

€., €y, es unit vectors

€x

l

particle coordinate: R=re; +ye,, r=p+u
T,y L p

see also: Frenet-Serret coordinates, e.g. Wiedemann chap 4.3



Deriving the Equation of Motion (see Appendix)

€., €y, es unit vectors

reference orbit

the effect of the curved coordinate

system, i.e. the moving unit vectors e,,

e. must be included in the calculation

starting with general d_ﬁ .
equation of motion:

’}/moéz et X B

N

By — BO _|_ng B:c = gy dipole and
dB, OB,

qguadrupole field

field gradient
varying sign
convention !

orbit curvature

k —value [m~]

1
33"+(—2+/€>a:
0

1 Ap
P Po

1 k - value

curved coordinates

T off momentum term
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derivative w.r.t. path-length s, not time t




Equation of

Motion

1 1A
.CL‘”‘F(—Z‘F]{)CE — _—p
P P Po
yl/ . ky _ 0
generalised form:
1 A
" 4+ K(s)r = e
p(s) po

DE is valid for drift spaces,
Quadrupoles (k#0), combined function
magnets (k#0, 1/p#0) and for off-
momentum particles (Ap#0, first order)

we discuss solutions of different cases
of this equations in single accelerator
magnets, depending on K(s), p(s), Ap

see also Wiedemann sec. 1.5.8
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geometric meaning of coefficients

(s)  =curvature —

1
ds  p 1/p[m? - _._ d ._._._D _____
1 p
p

(x,8) K= amplitude -
dependent \ /

curvature K[m-Z] inside quadrupole field
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Summary on Approximations used

* small displacements x K p,y K p,§ = 0 (paraxial optics)

* only dipole and quadrupole magnets (linear field changes)

» design orbit lies in a plane (flat accelerator)

* no coupling between motion in hor. and vert. plane (upright magnets)
e small momentum deviations (quasi monochromatic beam)

* in general: no quadratic or higher order terms (linear beam optics)

linear parametrization of magnetic field:

s 1
B = (ka;Jr—) e, +kye,

e
p P



Next: Solving the Equation of
Motion using Matrices

matrix approach using principal trajectories

drift space, focusing and defocusing quadrupole

15



Piecewise solution of trajectory equation in terms
of principal trajectories

1 A
"+ K(s)r = =P
p(s) po .
see also Wiedemann sec. 5.5
A
2(s) = C(s)zo + S(s)ah + D(s) ?p
A
Dispersion Trajectory D(()) — D'(O) — ()

(= particular solution of eq.)
Sinelike Trajectory S(O) =0, S’(O) — 1
¢ Cosinelike Trajectory C(O) =1, C”(O) —0

C(s), S(s) are independent solutions of the homogeneous equation:
C"+ K(s)C=0, 8"+ K(s)S =0.
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Formulation as Transport Matrix

proof:

C S 1 0
det(c, S,>S_Sodet(0 1)1

Cg‘i(cs’ ~SC") = (08" — SC" = —K(s)(CS — SC) =0

— det = 1 initially, and it does not change as motion proceeds
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Piecewise Solution of Equation

"+ K(s)r = 0 l

general form of equation similar to harmonic I
oscillator with three cases: K=0, K<0, K>0 mi+kr=0, w=14/—
m

K is piecewise constant, in a ring it repeats at least after one turn (s=C)

I s O s W
| | |

K(s)

cC S
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Drift Space

particle moves straight

1.) K=0: Drift Space

’f
-
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Focusing Quadrupole




Defocusing Quadrupole

3.) K< 0: Defocusing Quadrupole

Qf’

sinh(v/[K]L) /IK]

thin lens approximation for defocusing quad:

(51m2(5f3>(§)m

cosh(+/|K|L

)

-
-
e
-

(:L‘) :( cosh(y/|K|L) sinh(y/|K|L)//|K]|

)(

X
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Special Case: Weak Focusing

0B 1
forg=—2L=0,-#0:
Ox 0

= 5 x(s) = Acos(s/p+ vo) — one oscillation per
turn as expected for
,weak focusing”

particle
orbit

reference
orbit
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Dispersion Trajectory

is solution of equation:

1" _L
D"+ K(s)D = o05)

is constructed from homogeneous solutions C(s), S(s):

D(s) = S(s) / O g~ o(s) / S g

p(t) p(t)

proof: by insertion in above DE and by using CS’- C'S=1.

compare components of @
particle trajectory:

z(s) = C(s)xg + S(s)xy + D(s)?



Dispersion Trajectory in combined function
magnet (Dipole & Quadrupole)

D\ F%K(l —cos(VKL))

( I ) = ﬁsin(\/fL) forK>0
D\ [~ cosh(v/IKIL)

( Y ) = p 1‘K‘ Siﬂh(ML) forK<0

D 5L
( ,)—( 2? ) forK=0
D 5L

— Dispersion is generated by bending fields
— Dispersion oscillates in Quadrupoles like particle trajectories



Quadrupole Doublet

concatenation of particle transport through a series of elements:
M=M,...M-s-M; (M = transport matrix 2x2)

— 0
|1
M aoublet = (_11/f ?)(é i)(l?f (1)>

B I+ 1
B -+ 13 thin -
in lens approximation]

ff==—>0 — Myoupier is @lways focusing



3x3 transport matrix for off-momentum particles

(#). (e 5)(),~w(5)

can be re-formulated as a single matrix multiplication:

x ¢ S D x
:LJ — Cl S/ Df x/
Ap/po ) 0 0 1 Ap/po .

this formulation is convenient when computing the dispersion function



Matrix Notation

... is one approach to describe particle trajectories in accelerators — for
each element a matrix for linear computation can be defined.

The matrix can be extended to all six dimensions of phase space:

x,x,y,Y,s,0

Tenergy deviation 6=AE/E,
path length

[ =) [ =)
x X’
In this case R contains 36 parameters, some
y, — R. y, of which have practical importance for
Y (2 example in coupling horizontal and vertical
S S motion.

\ 0 e N/

The matrix notation can be generalised to higher order dependencies.
For example a tensor of rank 3 holds coefficients Ty, for a quadratic
map of particle coordinates.



Next: Stability and Twiss Matrix

Eigenvalues and Stability

* Twiss Matrix Decomposition
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Stability Criterion

for stable oscillation in a ring these coordinates must stay finite for n — oo:

x x
( , ) = M" ( , ) M = transport matrix of entire ring
L out X in

to assess stability use decomposition of M in Eigenvectors:
Muv; = MU, MUy = Aoty
then:

i

thus it is sufficient analysing the Eigenvalues to assess stability of linear motion
A" must be bounded for n — o (A = complex number in general)

29




Stability Criterion :: Matrix & EV Properties

transfer matrix M has properties that can be used:

=)

from that follows:

detM =ad—bc =1 > A - Ao =1
a, b, ¢, d = real numbers » A1 = A5 (complex conjugate)
this can be extended to 4dim matrices Im 4

(coupled horizontal + vertical) /

1o bounded for \; = e Ny = et

with 1« =real number

stable = EVs on unit circle

30



Stability Criterion — the Trace of M

Computation of eigenvalues via characteristic polynomial:

det(M — M) =0, M — \I = ( a=A b )

c d— A
)\2 — (a -+ d))\ +1=0 2x2 matrix: characteristic polynomial
guadratic equation for eigenvalues A
1 solution: values 4,, 4,
)\1’2 = §(a—|—d) :|:\/...

M+tX=at+d=TrM A = e Ay = e

~ o

— Tr M = A1 + Ao = 2cos(u)

motion is stable if | Tr M |<2, which also means that p is real

see also Schmuser/Rossbach, and sect. 4.1, Wiedemann chap. 10.1.2
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Summary Matrix Treatment

equation of motion is piecewise solved for constant K(s)

X, X" are propagated by concatenated multiplication with 2x2 matrices
defocusing and focusing quadrupoles are combined in overall focusing doublets
linear motion in a ring is stable if | Tr M| <2

det M =1 (also: M symplectic)

M=M,.. .My -M,;

K(s)

pattern repeats

s o | s B |

IS
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=PrL

Next: Analytical Solution

e Hills equation
Beta function
phase space ellipse

include momentum offset

tune Q,, Q,

33



Solution of Hill’s equation

First used by an astronomer George Hill in his studies of the motion of celestial
bodies, a motion under the influence of periodically changing forces

1838 -- 1914
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Hill: Solution for periodic K K(s+C) = K(s)

o(5) = AVB(S) cos(ols) — ). o) = [

— the beta function [m] is a scaling factor for the amplitude of
orbit oscillations, and their local wavelength

A, @, are constants of motion

B - well known Betafunction of accelerators
variables are not related to relativistic factors

(sorry for the historic nomenclature)

amplitude [mm]

FOFDFDFDFDFDFDFDFDFDFDFD
weak quads

Py

FDFDFDFDFDFDFDFDFDFDFDFD

amplitude [mm]

strong quads




Comparison to Classical Harmonic Oscillator

i+ wu=0

| k
u(t) = Acoswt, w=1/—
m

amplitude is fixed:

phase grows linear with time:

conserved (energy):

<

A = const



Hill Equation (pseudo harmonic equation)

Twiss
Parameters:
z(s) = +/2J B cos(p) B(s) [meter]
1
2J = -4
2/(s) = =% (acos(ip) +sin() =)
(s) 1+ o?
S) =
! E
amplitude varies: x(s) < \/B(s)
phase increases monotonically ds
but growth rate varies as 1/p : dp =

B(s)

conserved (action J): vz? + 202’ 4 Bx’? = 2J = const
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Computing the Beta Function in three ways

1.) from the transport matrix of a closed ring

Mring(s) — ( i Z )
_latd) b (a—d)
cos(p) = 9 b= sin(p)’ o= 2 sin(p)

2.) by solving a DE for  (DE without proof)

%BBH_EBIZ_FK(S)BQ — 1

3.) by using a transport matrix for Twiss parameters (C,S principal trajectories)

B 2 —25C 52 Bo
a; | =\ -CC’" SC'+S5C -85 a0
Vs 012 _28101 Sl2 o



Computing the transport matrix from Twiss
Parameters

transport matrix s=s,—s, (arbitrary section):

¢ 5 V 4 (cos Ap + ag sin Ag) VBBo sin Ay)
/ / —
'S — 1—5160((@—050)0051&@—#(1+aa0)sinAcp) 1/%(COSA(’0_QSiHA(p)

B0y  atsg
, O at s,
A = phase advance between s, s,

|



The one turn matrix M

rev

transport matrix for one revolution, “One Turn Matrix”
* same location: 3 = f3,
* A =2nQ phase advance for complete turn, Q = “Tune” of accelerator

( cos 2m() + a sin 27() [ sin 2m() )

_ 1+6042 sin 27Q) cos 2m() — asin 27()

Mrev —

e special case: choose symmetry pointa =0

cos 2m() B sin 2m()

—% sin27()  cos27()

Mrev —



Twiss Matrix

M = Icos(u) + J sin(p)

1 0
1= V)
, (=1 0
#=(0 )

this expression has similar properties as cos j + ¢ sin p

it holds: NM™ = I cos(nu) + J sin(npu)



Beta Function in a Drift

1
ﬁ(3)260+663+§/86,32
= fo — 200 - s+ 0 - 57

* inafield free region [ follows a
guadratic function

* the coefficients are related to the
TWISS parameters

e atf,,, we have a waist

v
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Adding Dispersion

A
= AV/B(s) cos(i(s) = o) + D(s) =
where D(s) is a solution of: D" + K(s)D = —(s)

outside bending magnets D
behaves like particle trajectories

D(s) = 281nﬁ<gf22>§£ ) cos (o(t) — @(s) — 7Q), D(s +C) = D(s)

note:

D(s) = dispersion function as lattice solution — not exactly the same as
the previously introduced dispersion trajectory for single elements

n(s) = used in some literature instead dispersion function D(s)



Phase Space Ellipse

’ x(s) = +/2J 5 cos(p)
XA
2J :
7'(s) = =/ = (acos(p) +sin(p))
4 s
2 1 J = particle action (oscillation amplitude)
> observing the coordinates of a particle at
X one location in a ring for consecutive turns
x, x ' describe an ellipse in phase space
when @is varied
3 example p= Qx2n = 0.37x27 phase
advance per turn

see also Schmiiser/Rossbach sect. 4.3/4.4, Wiedemann chap. 8.1.2
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Courant-Snyder Invariant

* atone location this phase space ellipse is
sampled by a particle with action J

* when moving along the magnet lattice, the
ellipse is changing size, but it stays an ellipse

* the area of the ellipse is invariant (Courant-
Snyder Invariant) and equals 27t x action.

* the unitis [m-rad], or often [mm-mrad]

X e this constant of motion refers to a single
particle, emittance is a statistical property

area = 21J = w(yz® + 2axz’ + Ba’?)

with: By —a? =1

E.D. Courant and H.S. Snyder, Theory of the Alternating
Synchrotron, Annals of Physics 3 (1958) 1
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Courant-Snyder Invariant

* atone location this phase space ellipse is
sampled by a particle with action J

* when moving along the magnet lattice, the
ellipse is changing size, but it stays an ellipse

* the area of the ellipse is invariant (Courant-
Snyder Invariant) and equals 27t x action.

* the unitis [m-rad], or often [mm-mrad]

X e this constant of motion refers to a single
particle, emittance is a statistical property

area = 21J = w(yz® + 2axz’ + Ba’?)

with: By —a? =1

E.D. Courant and H.S. Snyder, Theory of the Alternating
Synchrotron, Annals of Physics 3 (1958) 1
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Courant-Snyder Invariant

\\/2.]')/

* atone location this phase space ellipse is
sampled by a particle with action J

* when moving along the magnet lattice, the
ellipse is changing size, but it stays an ellipse

* the area of the ellipse is invariant (Courant-
Snyder Invariant) and equals 27t x action.

* the unitis [m-rad], or often [mm-mrad]

e this constant of motion refers to a single
particle, emittance is a statistical property

area = 21J = w(yz® + 2axz’ + Ba’?)

with: By —a? =1

E.D. Courant and H.S. Snyder, Theory of the Alternating
Synchrotron, Annals of Physics 3 (1958) 1
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Courant-Snyder Invariant

* atone location this phase space ellipse is
sampled by a particle with action J

* when moving along the magnet lattice, the
ellipse is changing size, but it stays an ellipse

* the area of the ellipse is invariant (Courant-
Snyder Invariant) and equals 27t x action.

* the unitis [m-rad], or often [mm-mrad]

X e this constant of motion refers to a single
particle, emittance is a statistical property

area = 21J = w(yz® + 2axz’ + Ba’?)

with: By —a? =1

E.D. Courant and H.S. Snyder, Theory of the Alternating
Synchrotron, Annals of Physics 3 (1958) 1
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Action vs. Emittance

* single particles are associated with a
particular ellipse

* when observing a beam with a wire
scanner a (projected) rms width o is
measured; one ellipse corresponds to o,

* emittance ¢is the average value of action J

e =<J>

— more on emittance next lesson
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What beam will fit into the machine?

Example: Acceptance of a lengthy aperture restriction (limits amplitude and angle)

, A
y

Dy

Unmatched
Matched beam beam emittance
emittance

e

\

Trajectories

/
Electron /
N\

-h/d

N
RN

50
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Admittance of an accelerator

admittance = the largest ellipse that can be accepted

 at any point along the accelerator

units = phase space area [mm-mrad]

« if the available half-aperture is d(s) d(s)
there is at some s a minimum of B(s)
dQ
* soin general: Admittance = (_>
B min
* Special case: uniform aperture d(s) = d
the minimum occurs at 3.,
d2

Admittance =

/Bmax



The Betatron Frequency Q (tune of accelerator)

Tune = Number of Betatron Oscillations per
Turn (remember Q=1 for purely weak focusing)

Q, — i ds the choice of tune is important to avoid
T2 [ Ba(s) resonances
f Both integer and fractional part are important

around ring for machine design

52



Resonance Plot
condition for resonance: j-Q, +k-Q, =n

order of resonance: 17| + |k

LHC working point
[ 3 S 3
\ ysg"'"“ |
59.34?
59.339“ N
5932-'—
59.31&3”‘;

| | | \ 3
59'%3.25 64.26 64.27 64.28 64.29 64.3 64.31 64.32 64.33 64.34 64.3!

[R.Steinhagen, CERN] 53 Q




Tunes and Orbit in LHC

Example Orbit Oscillations:

LHC Tunes:
Q, = 62.31
Qy = 60.32

relevant for stability: non-integer part

Example Measured Beam Spectrum:

LHC Revolution Frequency: 11.3kHz
peak position: 3.5kHz = 0.31x11.3kHz

oscillations oscillations revolution

= - X
second revolution second

= YASP DV LHCRING / INJ-TEST-NB / beam 1

Rviews | R m )% 5 B More | 132
FT - P450.12 GeV/c - Fill # 827 INJDUMP - 10/09/08 10-41-34

1Y)

£ }m m MHWHU"I!N

LH (b

T T
0 100 200

T T
400 500

FT - P450.12 GeV/c - Fill # 827 INJDUMP - 10/09,08 10-41-34

10

Mean = -0.323 / RM§ = 3.581 /Dp= -0.71

TS65L3 )

T T T
100 200 300

02 029 03 031 032 0Jpd 026 027

2o | owea (RIS 2924 PRI 2974

0.8




Smooth Approximation

2(s) = Av/B(s) cos(o(s) — o), o(s) = /t_ dt

simplify:  Bave = (B(s)) = const

x(8) = A/ Bavg COS (58 - 900) , 2+ Kegz =0
avg

can be used to estimate important parameters:

1 1 d R
avg 2m 5, avg 5 avg

note: Q oc R, i.e. proportional to size
compare cyclotron: Q o« v, independent of size!
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Normalized Coordinates

in normalized coordinates the particle describes a circle in phase space

x 1 X, 1

0reo

1 unit of normalized

xn(s) — ,8(8)56(8) coordinates: v/ length

/ = a(S)CUS \/ SZIS‘/S

7 N
SR
N—

3
I
7 N
S
N—

— this re-scaling of coordinates is related to the Floquet theorem (see appendix)
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Next: Summary of this Lesson



Summary Linear Beam Dynamics |

1) Matrix Treatment
(#),~ (el 56)(2), - (5)

2) Analytical Treatment

varies with s off-momentum part

} } }
x(s) = A/ B(s) cos(p(s)) + D(s)%/ \
r'(s) = — A (acos(p(s)) + sin(p(s))) + D'(s)%

v B(s) Po




Summary Beam Dynamics - |

//,:\ area = 21J = 7(yx? + 2axz’ + Bz'?)

/\/m X phase space area is preserved

single particle vs. emittance

tune = number of 1 ds
oscillations per turn: Qo = 2r | B.(s)
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Appendix, Derivation: Equation of Motion |

starting with general dp s o

equation of motion: dt ymolt = I
ﬁ = re;tyey,, r=p+x

€., €y, es unit vectors R = re, Hre, it e,

R = ie, +rle, +ye,
R = ie,+ (270 +rb)e, +0rbe )+ jje,
R = (¥ — r0%)e, + (270 + rb)e, + ije,
used here: ¢é, = fe,, e, = —fe,

comment: the main purpose here is to correctly treat the effect of
the curved coordinate system, i.e. the moving unit vectors e,, e,



Derivation: Equation of Motion Il

right side of equation, the force:

ev X B

g
|

. use:
assumptions:

L= * no B B, = By + gx
ITx B = Vg Uy fusz/. B (y=0) = 0 \

B, B, 0 Bz = gy

— _vsByecc -+ UsBmey + (UCEBEJ o vyB:B)es g aBy — 0B,
Ox oy

result: two equations hor/vert from X,y components:

in literature g has varying sign
. conventions
EUs (BO + g.’L’) Wiedemann, Table 6.2: g=+dB, /dx
Schmiser/Hillert: g=-dB /dx
EVsgyY Y

ymo (7 — r6?)
YmoYy



Derivation: Equation of Motion Il|

introduce path length s as independent variable:

fymo(fi‘—réz) =
ymoy =

2 = 1_ €
r o Ymou

o €

Y — gy

—evs(By + gz)
Vs gy



Derivation: Equation of Motion IV

1

!

1/

/!

r

YMmMov

(Bo + gx)

use:




Floguet Theorem :: related to normalized coordinates

2" 4+ K(s)r =0, with K(s+ L) = K(s)

has two solutions in the form:
z1(s) = exp(+ius/L) p1(s), w2(s) = exp(—ius/L)p2(s)

with:

pi(S + L) — pi(S) [envelope functions]

for accelerators we note:

1
COS [t = étraceM

see also Schmiuiser/Rossbach sect. 4.2,
Wiedemann chap. 10.2.1



Applying Floquet to transport matrix

transport matrix M can be factorized in an ,oscillatory” and an ,,envelope”
part; oscillatory part describes a circle in normalised coordinates

M(s)=T"-R-T, R(M):( oo SM)

— sin K COS [
/\/Ti \/f

then for k turns in accelerator (M = one turn matrix):
Z(s)y = M"*Z,

=(T"'RT)-(T"'RT)-(...) (I"'RT) - %y
— (T™'RFT) - &,

with:
R"(p) = R(kp)



