Particle Colliders

Laboratory for Particle Accelerator Physics

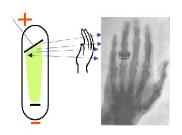
[includes material by D.Schulte, CERN]

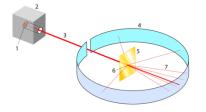
History ...

1895 W.C. Röntgen discovers X-ray production in discharge tubes when sufficiently high voltage is applied.

1896 A.H. Bequerel discovers radioactivity (of U), further studied by **Pierre** and **Marie Curie**.

1897 J.J. Thompson measures the ratio q/m of cathodic rays :they are **electrons**


1900 E. Rutherford finds there are different species of radioactive products :


- He nuclei
- electrons
- neutral (e.m.) radiation

1909 E. Rutherford performs scattering experiment using α -particles on gold foil

Lord Kelvin, 1900: Address to the British Association for the Advancement of Science

There is nothing new to be discovered in physics now, All that remains is more and more precise measurement.

examples of the unknown (1900): structure of atoms and nuclei, energy production in sun, forces other than gravitation & electromagnetic

incredible journey since 1900, many nobel prices related to accelerators

Year	Name	Accelerator-Science Contribution to Nobel Prize- Winning Research		
1939	Ernest O. Lawrence	Lawrence invented the cyclotron at the University of Californian at Berkeley in 1929 [12].		
1951	John D. Cockcroft and Ernest T.S. Walton	Cockcroft and Walton invented their eponymous linear positive-ion accelerator at the Cavendish Laboratory in Cambridge, England, in 1932 [13].		
1952	Felix Bloch	Bloch used a cyclotron at the Crocker Radiation Laboratory at the University of California at Berkeley in his discovery of the magnetic moment of the neutron in 1940 [14].		
1957	Tsung-Dao Lee and Chen Ning Yang	Lee and Yang analyzed data on K mesons (θ and τ) from Bevatron experiments at the Lawrence Radiation Laboratory in 1955 [15], which supported their idea in 1956 that parity is not conserved in weak interactions [16].		
1959	Emilio G. Segrè and Owen Chamberlain	Segrè and Chamberlain discovered the antiproton in 1955 using the Bevatron at the Lawrence Radiation Laboratory [17].		
1960	Donald A. Glaser	Glaser tested his first experimental six-inch bubble chamber in 1955 with high-energy protons produced by the Brookhaven Cosmotron [18].		
1961	Robert Hofstadter	Hofstadter carried out electron-scattering experiments on carbon-12 and oxygen-16 in 1959 using the SLAC linac and thereby made discoveries on the structure of nucleons [19].		
1963	Maria Goeppert Mayer	Goeppert Mayer analyzed experiments using neutron beams produced by the University of Chicago cyclotron in 1947 to measure the nuclear binding energies of krypton and xenon [20], which led to her discoveries on high magic numbers in 1948 [21].		
1967	Hans A. Bethe	Bethe analyzed nuclear reactions involving accelerated protons and other nuclei whereby he discovered in 1939 how energy is produced in stars [22].		
1968	Luis W. Alvarez	Alvarez discovered a large number of resonance states using his fifteen-inch hydrogen bubble chamber and high-energy proton beams from the Bevatron at the Lawrence Radiation Laboratory [23].		
1976	Burton Richter and Samuel C.C. Ting	Richter discovered the J/Ψ particle in 1974 using the SPEAR collider at Stanford [24], and Ting discovered the J/Ψ particle independently in 1974 using the Brookhaven Alternating Gradient Synchrotron [25].		
1979	Sheldon L. Glashow, Abdus Salam, and Steven Weinberg	Glashow, Salam, and Weinberg cited experiments on the bombardment of nuclei with neutrinos at CERN in 1973 [26] as confirmation of their prediction of weak neutral currents [27].		

	1980	James W. Cronin	Cronin and Fitch concluded in 1964 that CP		
	1700	and	(charge-parity) symmetry is violated in the decay of		
		Val L. Fitch	neutral K mesons based upon their experiments		
١		vai L. Fitch	using the Brookhaven Alternating Gradient		
ł	1001	IZ .' M. C' L. L.	Synchrotron [28].		
	1981 Kai M. Siegbahn		Siegbahn invented a weak-focusing principle for		
			betatrons in 1944 with which he made significant		
			improvements in high-resolution electron		
ļ			spectroscopy [29].		
	1983	William A. Fowler	Fowler collaborated on and analyzed accelerator-		
			based experiments in 1958 [30], which he used to		
			support his hypothesis on stellar-fusion processes in		
			1957 [31].		
	1984	Carlo Rubbia and	Rubbia led a team of physicists who observed the		
		Simon van der	intermediate vector bosons W and Z in 1983 using		
		Meer	CERN's proton-antiproton collider [32], and van		
			der Meer developed much of the instrumentation		
			needed for these experiments [33].		
Ī	1986	Ernst Ruska	Ruska built the first electron microscope in 1933		
			based upon a magnetic optical system that provided		
			large magnification [34].		
Ī	1988	Leon M. Lederman,	Lederman, Schwartz, and Steinberger discovered		
		Melvin Schwartz,	the muon neutrino in 1962 using Brookhaven's		
		and	Alternating Gradient Synchrotron [35].		
. 1	Jack Steinberger		, , ,		
		Jack Stelliberger	I .		
	1989		Paul's idea in the early 1950s of building ion traps		
	1989	Wolfgang Paul	Paul's idea in the early 1950s of building ion traps grew out of accelerator physics [36].		
	1989 1990		grew out of accelerator physics [36].		
		Wolfgang Paul Jerome I. Friedman,	grew out of accelerator physics [36]. Friedman, Kendall, and Taylor's experiments in		
		Wolfgang Paul	grew out of accelerator physics [36].		
		Wolfgang Paul Jerome I. Friedman, Henry W. Kendall, and	grew out of accelerator physics [36]. Friedman, Kendall, and Taylor's experiments in 1974 on deep inelastic scattering of electrons on		
		Wolfgang Paul Jerome I. Friedman, Henry W. Kendall, and Richard E. Taylor	grew out of accelerator physics [36]. Friedman, Kendall, and Taylor's experiments in 1974 on deep inelastic scattering of electrons on protons and bound neutrons used the SLAC linac [37].		
	1990	Wolfgang Paul Jerome I. Friedman, Henry W. Kendall, and	grew out of accelerator physics [36]. Friedman, Kendall, and Taylor's experiments in 1974 on deep inelastic scattering of electrons on protons and bound neutrons used the SLAC linac [37]. Charpak's development of multiwire proportional		
	1990	Wolfgang Paul Jerome I. Friedman, Henry W. Kendall, and Richard E. Taylor	grew out of accelerator physics [36]. Friedman, Kendall, and Taylor's experiments in 1974 on deep inelastic scattering of electrons on protons and bound neutrons used the SLAC linac [37]. Charpak's development of multiwire proportional chambers in 1970 were made possible by		
	1990 1992	Wolfgang Paul Jerome I. Friedman, Henry W. Kendall, and Richard E. Taylor Georges Charpak	grew out of accelerator physics [36]. Friedman, Kendall, and Taylor's experiments in 1974 on deep inelastic scattering of electrons on protons and bound neutrons used the SLAC linac [37]. Charpak's development of multiwire proportional chambers in 1970 were made possible by accelerator-based testing at CERN [38].		
	1990	Wolfgang Paul Jerome I. Friedman, Henry W. Kendall, and Richard E. Taylor	grew out of accelerator physics [36]. Friedman, Kendall, and Taylor's experiments in 1974 on deep inelastic scattering of electrons on protons and bound neutrons used the SLAC linac [37]. Charpak's development of multiwire proportional chambers in 1970 were made possible by accelerator-based testing at CERN [38]. Perl discovered the tau lepton in 1975 using		
	1990 1992 1995	Wolfgang Paul Jerome I. Friedman, Henry W. Kendall, and Richard E. Taylor Georges Charpak Martin L. Perl	grew out of accelerator physics [36]. Friedman, Kendall, and Taylor's experiments in 1974 on deep inelastic scattering of electrons on protons and bound neutrons used the SLAC linac [37]. Charpak's development of multiwire proportional chambers in 1970 were made possible by accelerator-based testing at CERN [38]. Perl discovered the tau lepton in 1975 using Stanford's SPEAR collider [39].		
	1990 1992	Wolfgang Paul Jerome I. Friedman, Henry W. Kendall, and Richard E. Taylor Georges Charpak Martin L. Perl David J. Gross,	grew out of accelerator physics [36]. Friedman, Kendall, and Taylor's experiments in 1974 on deep inelastic scattering of electrons on protons and bound neutrons used the SLAC linac [37]. Charpak's development of multiwire proportional chambers in 1970 were made possible by accelerator-based testing at CERN [38]. Perl discovered the tau lepton in 1975 using Stanford's SPEAR collider [39]. Gross, Wilczek, and Politzer discovered asymptotic		
	1990 1992 1995	Wolfgang Paul Jerome I. Friedman, Henry W. Kendall, and Richard E. Taylor Georges Charpak Martin L. Perl David J. Gross, Frank Wilczek, and	grew out of accelerator physics [36]. Friedman, Kendall, and Taylor's experiments in 1974 on deep inelastic scattering of electrons on protons and bound neutrons used the SLAC linac [37]. Charpak's development of multiwire proportional chambers in 1970 were made possible by accelerator-based testing at CERN [38]. Perl discovered the tau lepton in 1975 using Stanford's SPEAR collider [39]. Gross, Wilczek, and Politzer discovered asymptotic freedom in the theory of strong interactions in 1973		
	1990 1992 1995	Wolfgang Paul Jerome I. Friedman, Henry W. Kendall, and Richard E. Taylor Georges Charpak Martin L. Perl David J. Gross,	grew out of accelerator physics [36]. Friedman, Kendall, and Taylor's experiments in 1974 on deep inelastic scattering of electrons on protons and bound neutrons used the SLAC linac [37]. Charpak's development of multiwire proportional chambers in 1970 were made possible by accelerator-based testing at CERN [38]. Perl discovered the tau lepton in 1975 using Stanford's SPEAR collider [39]. Gross, Wilczek, and Politzer discovered asymptotic freedom in the theory of strong interactions in 1973 based upon results from the SLAC linac on		
	1990 1992 1995 2004	Wolfgang Paul Jerome I. Friedman, Henry W. Kendall, and Richard E. Taylor Georges Charpak Martin L. Perl David J. Gross, Frank Wilczek, and H. David Politzer	grew out of accelerator physics [36]. Friedman, Kendall, and Taylor's experiments in 1974 on deep inelastic scattering of electrons on protons and bound neutrons used the SLAC linac [37]. Charpak's development of multiwire proportional chambers in 1970 were made possible by accelerator-based testing at CERN [38]. Perl discovered the tau lepton in 1975 using Stanford's SPEAR collider [39]. Gross, Wilczek, and Politzer discovered asymptotic freedom in the theory of strong interactions in 1973 based upon results from the SLAC linac on electron-proton scattering [40].		
	1990 1992 1995	Wolfgang Paul Jerome I. Friedman, Henry W. Kendall, and Richard E. Taylor Georges Charpak Martin L. Perl David J. Gross, Frank Wilczek, and H. David Politzer Makoto Kobayashi	grew out of accelerator physics [36]. Friedman, Kendall, and Taylor's experiments in 1974 on deep inelastic scattering of electrons on protons and bound neutrons used the SLAC linac [37]. Charpak's development of multiwire proportional chambers in 1970 were made possible by accelerator-based testing at CERN [38]. Perl discovered the tau lepton in 1975 using Stanford's SPEAR collider [39]. Gross, Wilczek, and Politzer discovered asymptotic freedom in the theory of strong interactions in 1973 based upon results from the SLAC linac on electron-proton scattering [40]. Kobayashi and Maskawa's theory of quark mixing		
	1990 1992 1995 2004	Wolfgang Paul Jerome I. Friedman, Henry W. Kendall, and Richard E. Taylor Georges Charpak Martin L. Perl David J. Gross, Frank Wilczek, and H. David Politzer Makoto Kobayashi and	grew out of accelerator physics [36]. Friedman, Kendall, and Taylor's experiments in 1974 on deep inelastic scattering of electrons on protons and bound neutrons used the SLAC linac [37]. Charpak's development of multiwire proportional chambers in 1970 were made possible by accelerator-based testing at CERN [38]. Perl discovered the tau lepton in 1975 using Stanford's SPEAR collider [39]. Gross, Wilczek, and Politzer discovered asymptotic freedom in the theory of strong interactions in 1973 based upon results from the SLAC linac on electron-proton scattering [40]. Kobayashi and Maskawa's theory of quark mixing in 1973 was confirmed by results from the KEKB		
	1990 1992 1995 2004	Wolfgang Paul Jerome I. Friedman, Henry W. Kendall, and Richard E. Taylor Georges Charpak Martin L. Perl David J. Gross, Frank Wilczek, and H. David Politzer Makoto Kobayashi	grew out of accelerator physics [36]. Friedman, Kendall, and Taylor's experiments in 1974 on deep inelastic scattering of electrons on protons and bound neutrons used the SLAC linac [37]. Charpak's development of multiwire proportional chambers in 1970 were made possible by accelerator-based testing at CERN [38]. Perl discovered the tau lepton in 1975 using Stanford's SPEAR collider [39]. Gross, Wilczek, and Politzer discovered asymptotic freedom in the theory of strong interactions in 1973 based upon results from the SLAC linac on electron-proton scattering [40]. Kobayashi and Maskawa's theory of quark mixing in 1973 was confirmed by results from the KEKB accelerator at KEK (High Energy Accelerator		
	1990 1992 1995 2004	Wolfgang Paul Jerome I. Friedman, Henry W. Kendall, and Richard E. Taylor Georges Charpak Martin L. Perl David J. Gross, Frank Wilczek, and H. David Politzer Makoto Kobayashi and	grew out of accelerator physics [36]. Friedman, Kendall, and Taylor's experiments in 1974 on deep inelastic scattering of electrons on protons and bound neutrons used the SLAC linac [37]. Charpak's development of multiwire proportional chambers in 1970 were made possible by accelerator-based testing at CERN [38]. Perl discovered the tau lepton in 1975 using Stanford's SPEAR collider [39]. Gross, Wilczek, and Politzer discovered asymptotic freedom in the theory of strong interactions in 1973 based upon results from the SLAC linac on electron-proton scattering [40]. Kobayashi and Maskawa's theory of quark mixing in 1973 was confirmed by results from the KEKB accelerator at KEK (High Energy Accelerator Research Organization) in Tsukuba, Ibaraki		
	1990 1992 1995 2004	Wolfgang Paul Jerome I. Friedman, Henry W. Kendall, and Richard E. Taylor Georges Charpak Martin L. Perl David J. Gross, Frank Wilczek, and H. David Politzer Makoto Kobayashi and	grew out of accelerator physics [36]. Friedman, Kendall, and Taylor's experiments in 1974 on deep inelastic scattering of electrons on protons and bound neutrons used the SLAC linac [37]. Charpak's development of multiwire proportional chambers in 1970 were made possible by accelerator-based testing at CERN [38]. Perl discovered the tau lepton in 1975 using Stanford's SPEAR collider [39]. Gross, Wilczek, and Politzer discovered asymptotic freedom in the theory of strong interactions in 1973 based upon results from the SLAC linac on electron-proton scattering [40]. Kobayashi and Maskawa's theory of quark mixing in 1973 was confirmed by results from the KEKB accelerator at KEK (High Energy Accelerator Research Organization) in Tsukuba, Ibaraki Prefecture, Japan, and the PEP II (Positron Electron		
	1990 1992 1995 2004	Wolfgang Paul Jerome I. Friedman, Henry W. Kendall, and Richard E. Taylor Georges Charpak Martin L. Perl David J. Gross, Frank Wilczek, and H. David Politzer Makoto Kobayashi and	grew out of accelerator physics [36]. Friedman, Kendall, and Taylor's experiments in 1974 on deep inelastic scattering of electrons on protons and bound neutrons used the SLAC linac [37]. Charpak's development of multiwire proportional chambers in 1970 were made possible by accelerator-based testing at CERN [38]. Perl discovered the tau lepton in 1975 using Stanford's SPEAR collider [39]. Gross, Wilczek, and Politzer discovered asymptotic freedom in the theory of strong interactions in 1973 based upon results from the SLAC linac on electron-proton scattering [40]. Kobayashi and Maskawa's theory of quark mixing in 1973 was confirmed by results from the KEKB accelerator at KEK (High Energy Accelerator Research Organization) in Tsukuba, Ibaraki Prefecture, Japan, and the PEP II (Positron Electron Project II) at SLAC [41], which showed that quark		
	1990 1992 1995 2004	Wolfgang Paul Jerome I. Friedman, Henry W. Kendall, and Richard E. Taylor Georges Charpak Martin L. Perl David J. Gross, Frank Wilczek, and H. David Politzer Makoto Kobayashi and	grew out of accelerator physics [36]. Friedman, Kendall, and Taylor's experiments in 1974 on deep inelastic scattering of electrons on protons and bound neutrons used the SLAC linac [37]. Charpak's development of multiwire proportional chambers in 1970 were made possible by accelerator-based testing at CERN [38]. Perl discovered the tau lepton in 1975 using Stanford's SPEAR collider [39]. Gross, Wilczek, and Politzer discovered asymptotic freedom in the theory of strong interactions in 1973 based upon results from the SLAC linac on electron-proton scattering [40]. Kobayashi and Maskawa's theory of quark mixing in 1973 was confirmed by results from the KEKB accelerator at KEK (High Energy Accelerator Research Organization) in Tsukuba, Ibaraki Prefecture, Japan, and the PEP II (Positron Electron		

2013: François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider"

Colliding Beams

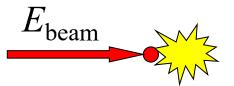
1943

R. Wideroe .. "...I had thus come upon a simple method for improving the exploitation of particle energies available .. for nuclear reactions. As with cars (collisions), when a target particle (at rest) is bombarded, a considerable portion of the kinetic energy (of the incident particle) is used to hurl it (or the reaction products) away.

Only a relatively small portion of the accelerated particle's energy is used to actually to split or destroy the colliding particles. However, when the collision is frontal, most of the available kinetic energy can be exploited.

For nuclear particles, relativistic mechanics must be applied, and .. the effect .. be even greater ".

In addition:


"... If it were possible to **store the particles in rings for longer periods**, and if these 'stored' particles were **made to run in opposite directions**, the result would be one opportunity for collision at each revolution.

Because the accelerated particles would move very quickly they would make many thousand revolutions per second and one could expect to obtain a collision rate that would be sufficient for many interesting experiments."

Fixed target vs collisions

What energy is available in collisions (center-of-mass energy)?

fixed target geometry:

$$E_{\rm cm} = \sqrt{2mc^2} \cdot \sqrt{E_{\rm beam}}$$

Colliding beams:

$$E_{\mathrm{beam}}$$
 E_{beam}

$$E_{\rm cm} = 2 \cdot E_{\rm beam}$$

unequal energy:

$$E_1$$
 E_2

$$E_{\rm cm} = 2 \cdot \sqrt{E_1 E_2}$$

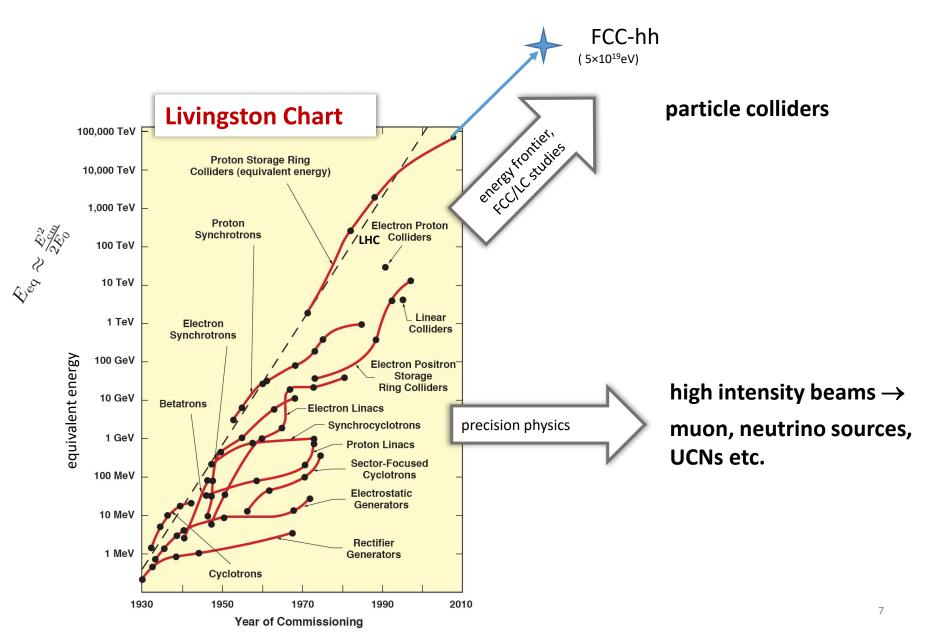
example HERA collider Hamburg/Germany:

27.5 GeV electrons against 920 GeV protons,

 E_{cm} = 318 GeV

→ exploring the structure of the proton

First Collider

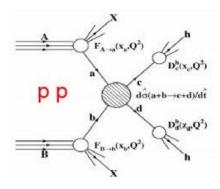


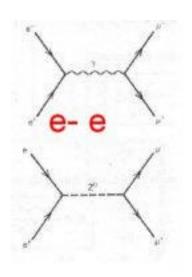
Anello di Accumulazione AdA B. Touschek 1960

the first collider facility AdA was built 1960 in Frascati by Bruno Touschek

Branches of Accelerators for Particle Physics

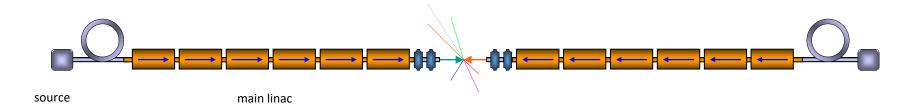
Collider Choices


Hadron collisions: compound particles


- Protons or ions
- Mix of quarks, anti-quarks and gluons: variety of processes
- Parton energy spread
- QCD processes large background sources
- Hadron collisions ⇒ can typically achieve higher collision energies

Lepton collisions: elementary particles

- Electrons, positrons and probably muons
- Collision process known
- Well defined energy
- Less background
- Lepton collisions ⇒ precision measurements


Photons also possible

D. Schulte

Solutions for Leptons

use a linear collider

- no synchrotron radiation
- But
 - must accelerate beams rapidly
 - collide only once

hence challenges

- High accelerating gradient
- Small beams at collision

use a ring collider

strong synchrotron radiation

$$\Delta E \propto \left(\frac{E}{m_0}\right)^4 \frac{1}{R}$$

Or use heavier particles
Muons are 200 times heavier than electrons
But they have a short lifetime (2µs)

Considerations for Colliders

Physics goals

 discoveries vs. precision measurements, addressing specific open questions → choice of particles to collide

Physics reach

- center of mass energy (size/cost, choice of technology)
- event rate and sensitivity (Luminosity, backgrounds)

Practical aspects

- cost (size, technology)
- conceptual maturity (complexity etc.)
- operation time
- energy consumption and environmental compatibility

Examples of Collider Variants

Ring Collider

Leptons PETRA (DESY/DE) LEP (CERN) PEP-II (SLAC/US) KEK-BII (KEK/JP) FCC-ee (CERN) **CEPC (China)**

HERA (DESY/DE) **EIC (BNL/US)**

Hadron/Lepton FCC-eh (CERN)

Hadron **TEVATRON** (Fermilab/US) RHIC (BNL/US) LHC (CERN) FCC-hh (CERN) SppC (China)

Linear Collider

Leptons SLC (SLAC/US) **ILC (int./Japan) CLIC (CERN)**

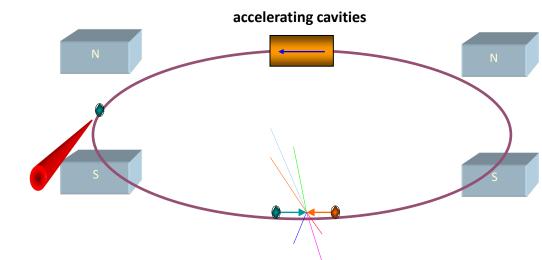
Muon Collider

Studies MAP (US) LEMMA (int./IT) MICE exp. (UK)

past facility operating facility approved project concept study

The Energy Limit for Rings

Hadron colliders are circular Maximum energy defined magnetic field and size


Required radius R of the ring is given by

$$R \propto \frac{E}{B}$$

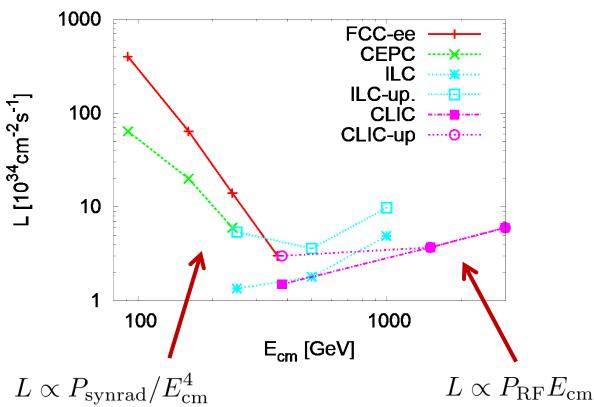
→ magnetic field B of bending dipoles as strong as possible

convenient:

- accelerate beam in many turns
- let beam collide many times

Electron-Positron Colliders have been mostly circular so far (one exception)

Energy (and luminosity) are limited by synchrotron radiation


$$\Delta E \propto \left(\frac{E}{m}\right)^4 \frac{1}{R}$$

Electrons are 1800 times lighter than protons

→ LEP2 lost 2.75GeV/turn for E=105GeV

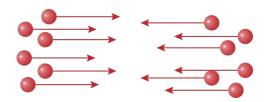
Electron-positron Luminosity

At low energies **circular colliders** look good → Reduction at high energy due to synchrotron radiation

At high energies **linear colliders** excel

→ Luminosity per beam power roughly constant

Next: Selected Physics Aspects of Colliders


- luminosity
- beam-beam interaction

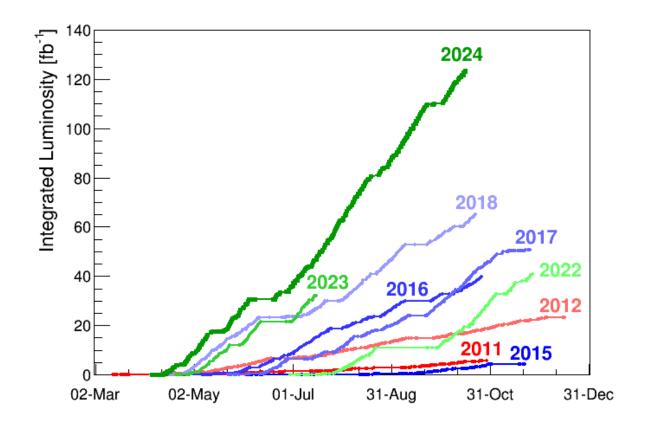
Luminosity for Research

Luminosity relates event rate for a specific type of event with its cross section.

$$\dot{N}_{
m event} = L \cdot \sigma_{
m event}$$

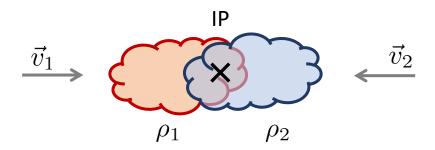
physics property [1barn = 10^{-24} cm²]

collider property [cm⁻² s⁻¹]


a related and common unit is integrated luminosity (e.g. for one run or one year):

$$N_{\rm event} = \sigma_{\rm event} \int L(t) dt$$

for example LHC run I: 30 fb⁻¹


e.g.: [fb⁻¹] = "inverse femto-barn"

Example LHC Operation, integrated Luminosity over the year

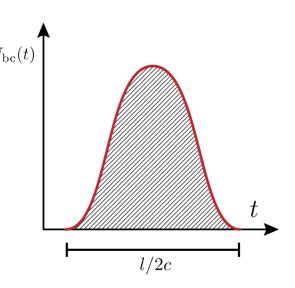
- → very significant improvements over time
- → integrated luminosity unit: 1/area or "inverse femto-barns"
- → Total cross section pp collisions: **100 mb** huge number of uninteresting events

Luminosity from Machine Parameters

instantaneous event rate from overlapping bunch distributions:

$$\dot{N}_{\rm bc}(t) = |\vec{v}_1 - \vec{v}_2| \ \sigma_{\rm event} \int \rho_1(\vec{r},t) \rho_2(\vec{r},t) \, d^3r$$
 event rate during $K \approx 2c$ cross section bunch crossing

with crossing angle:
$$K=\sqrt{(\vec{v}_1-\vec{v}_2)^2-\vec{v}_1 imes\vec{v}_2}$$


Luminosity per Bunch Crossing

$$\dot{N}_{\rm bc}(t) = 2c \,\, \sigma_{\rm event} \int \rho_1(\vec{r},t) \rho_2(\vec{r},t) \, d^3r \,\, \begin{array}{c|c} & & & \\ &$$

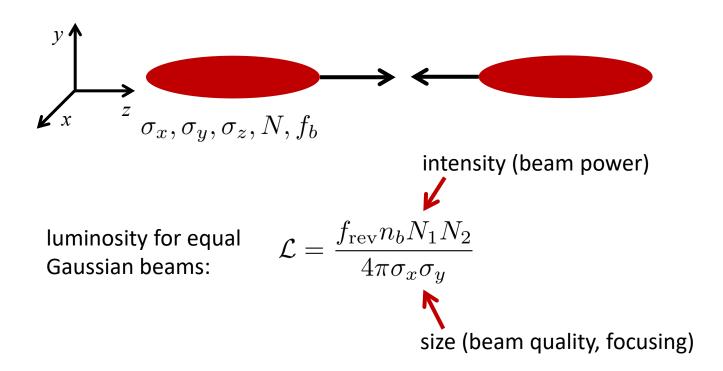
events for one bunch crossing:

$$N_{\text{bc}} = \int \dot{N}_{\text{bc}}(t) dt$$

$$= 2c \,\sigma_{\text{event}} \iint \rho_1(\vec{r} + \vec{v}_1 t) \rho_2(\vec{r} - \vec{v}_2 t) dt d^3 r$$

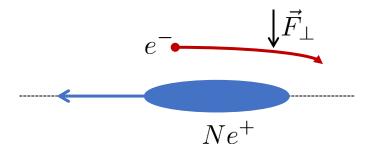
Total Luminosity

$$\dot{N}_{
m event} = n_b \, f_{
m rev} \, N_{
m bc} = \mathcal{L} \, \sigma_{
m event}$$
 revolution frequency bunches per turn

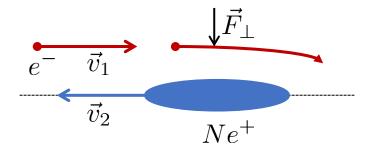

recipe for computing luminosity:

$$\mathcal{L} = 2c n_b f_{\text{rev}} \iint \rho_1(\vec{r} + \vec{v}_1 t) \rho_2(\vec{r} - \vec{v}_2 t) dt d^3 r$$

Gaussian beams:


$$\rho_{1,2}(\vec{r},t) = \frac{N_{1,2}}{(2\pi)^{\frac{3}{2}}\sigma_x\sigma_y\sigma_z} \exp\left(-\frac{x^2}{2\sigma_x^2} - \frac{y^2}{2\sigma_y^2} - \frac{(z \pm v_{1,2}t)^2}{2\sigma_z^2}\right)$$

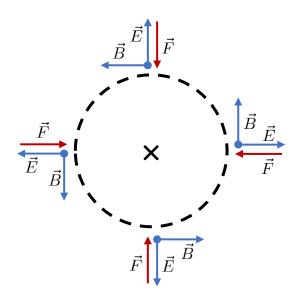
Luminosity for Gaussian Beams


colliders use "low beta insertions" to focus beams at the collision point

Beam-Beam Force

- strong force focuses in both planes
- quadrupole like, causes tune shift
- nonlinear force causes tune spread
- extreme forces in linear collider

Computing the Beam-Beam Force

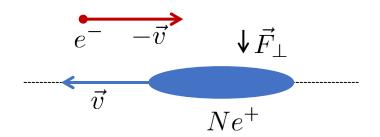


$$\vec{F}_{\perp} = -e(\vec{E}_{\perp} + \vec{v}_1 \times \vec{B}_{\perp})$$
$$= -e(1 + \beta_1 \beta_2) \vec{E}_{\perp}$$
$$\approx -2e\vec{E}_{\perp}$$

related Lorentz transformations of fields and bunch length:

$$ec{E}_{\parallel} = ec{E}_{\parallel}^*, \quad ec{E}_{\perp} = \gamma ec{E}_{\perp}^*$$
 $ec{B}_{\parallel} = 0, \qquad ec{B}_{\perp} = rac{\gamma}{c^2} ec{v}_2 imes ec{E}_{\perp}^*$ $l = rac{1}{\gamma} l^*$

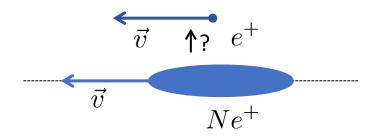
Orientation of the Beam-Beam Force


Beam-beam force for an electron in the field of an opposing positron bunch

Unlike quadrupoles this force is focusing in both planes which can be explained by the presence of the opposing beam:

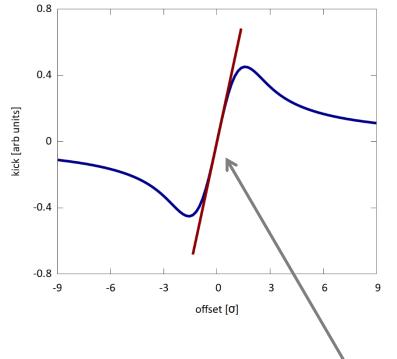
$$\operatorname{rot} \vec{B} = \mu_0 \vec{j} \neq 0$$

Related: Why do bunches not blow up during normal beam transport?


Beam-beam:

$$\vec{F}_{\perp} = -e \left(\vec{E}_{\perp} + \vec{v} \times \vec{B}_{\perp} \right)$$
$$= -e \left(1 + \beta^2 \right) \vec{E}_{\perp}$$
$$\approx -2e \vec{E}_{\perp}$$

Force doubles.


Co-moving positron:

$$\vec{F}_{\perp} = e \left(\vec{E}_{\perp} - \vec{v} \times \vec{B}_{\perp} \right)$$
$$= e \left(1 - \beta^2 \right) \vec{E}_{\perp}$$
$$= \frac{e}{\gamma^2} \vec{E}_{\perp}$$

Force cancels nearly.

Beam-Beam Force for Round Beams (see Appendix, by integration over distribution)

beam-beam kick:

$$\Delta r' = -\frac{2Nr_e}{\gamma} \frac{1 - e^{-\frac{r^2}{2\sigma_r^2}}}{r}$$

$$\approx (KL) \cdot r = -\frac{Nr_e}{\gamma \sigma_r^2} \cdot r$$

near center similar to quadrupole

Beam-Beam parameter and tune shift (ring)

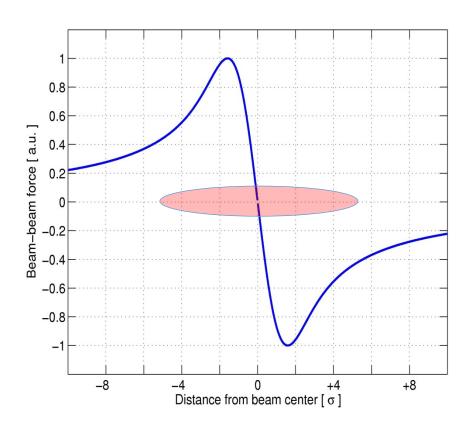
compute tune shift in same way as quadrupole error:

$$\Delta Q = \frac{1}{4\pi} \oint \beta(s) \Delta K(s) ds = \frac{\beta^*}{4\pi} \frac{Nr_e}{\gamma \sigma_r^2}$$

define tune shift parameter ξ .

for round beams:

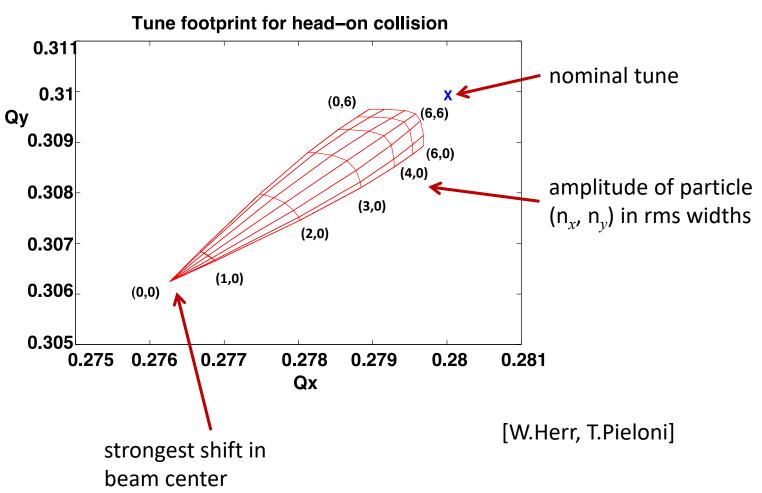
for non-round beams:


$$\xi = \frac{\beta^*}{4\pi} \cdot \frac{d(\Delta r')}{dr} = \frac{\beta^*}{4\pi} \frac{Nr_e}{\gamma \sigma_r^2}$$

$$\xi_{x,y} = \frac{\beta_{x,y}^*}{4\pi} \frac{Nr_e}{\gamma \sigma_{x,y}(\sigma_x + \sigma_y)}$$

Examples of Tune Shift

Parameters	LEP (e ⁺ e ⁻)	LHC(pp)	LHC 2012
Intensity N _{p,e} /bunch	4 10 ¹¹	1.15 10 ¹¹	1.7 10 ¹¹
Energy GeV	100	7000	4000
Beam size H	160-200 μm	16.6 μm	18 μm
Beam size V	2-4 μm	16.6 μm	18 μm
$\beta_{x,y}^*$ m	1.25-0.05	0.55-0.55	0.6-0.6
Crossing angle µrad	0	285	290
ξ _{bb}	0.07	0.0037	0.009


Beam Particles are spread across the Beam-Beam Force Distribution of the opposing Beam

particles experience a range of beam-beam forces

→ results in tune spread

Tune Footprint (- Distribution)

Next: Ring Colliders

- Collider Examples
- Magnet Technology
- Beam power & Collimation

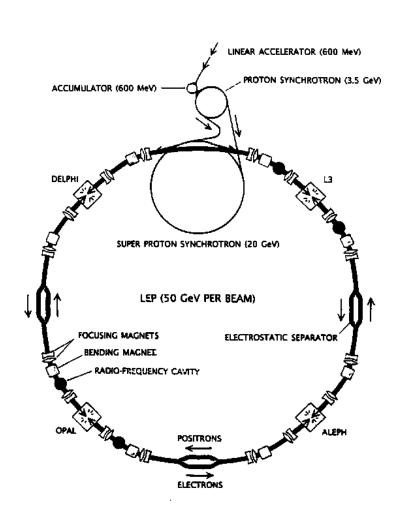
Ring Colliders

LEP (at CERN)

27km circumference

Electron-positron collider

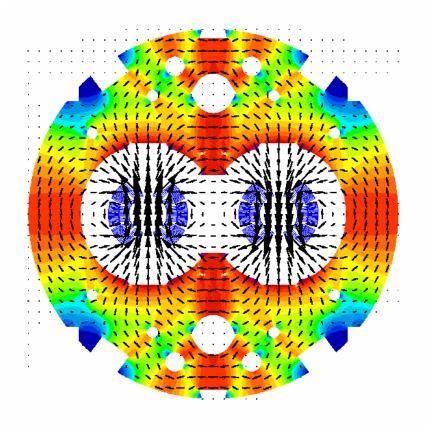
4 experiments: ALEPH, DELPHI, L3, OPAL


CMS energy: 90GeV (LEP I) - 209GeV (LEP II)

Peak Luminosity: 10³²cm⁻²s⁻¹

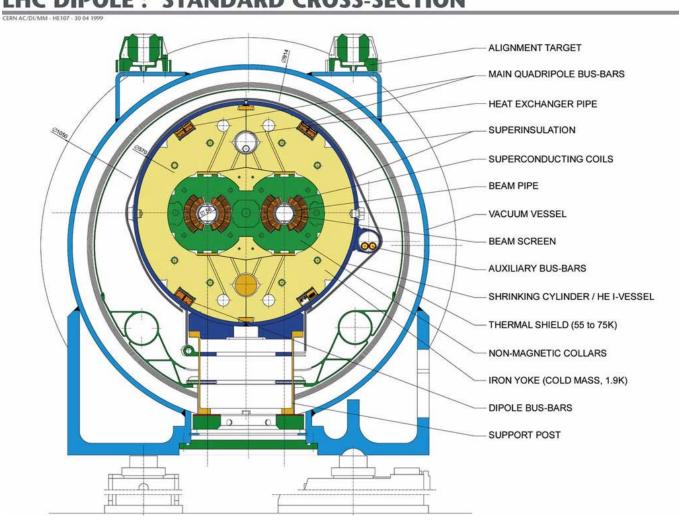
Operation: 1989-2000

Highest particle speed in any accelerator



Next: Hadron Collider Technologies

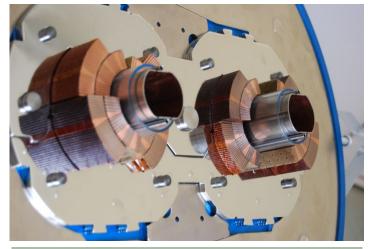
- Superconducting magnets
- Energy & Collimation


LHC two-in-one dipole magnets

- → economic solution to fit two beams in one cryostat
- → tunnel diameter 3.8 m (comparably small, originally for LEP)

LHC Dipole cross section

LHC DIPOLE: STANDARD CROSS-SECTION



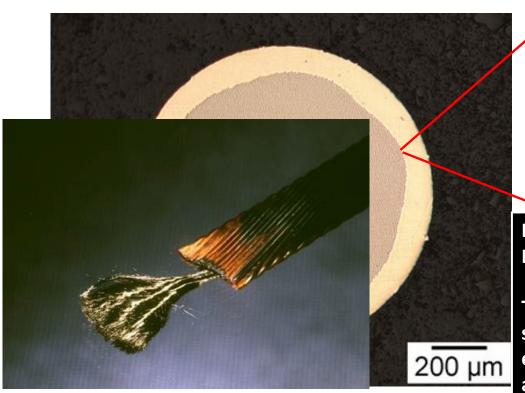
CERN AC - HE 109 RHIC 2001/09/20

Hadron Collider Magnets: Hall of fame

DIPOLE MAGNETS

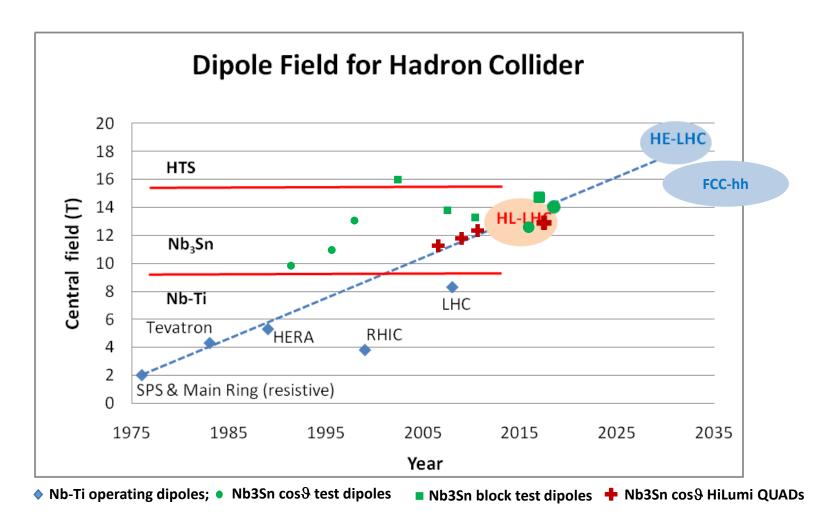
LHC has been the summit of > 40 y developements with SC Nb-Ti magnets. Magnet design soon converged to Cos ϑ

LHC Dipole Cross section: $Cos\vartheta$ layout



HERAB = 4.7 T
BORE : 75 mm

The key factor: superconductor (but not the only factor!)



Developing SC is the key in SC accelerators. LHC is indebted to SSC

The perfection of LHC superconductor is such that we basically «forget» the SC effects and is the base of the repeatibility and optimal performance of the collider

[L.Rossi, 2019]

Overview Magnetic Fields for Colliders

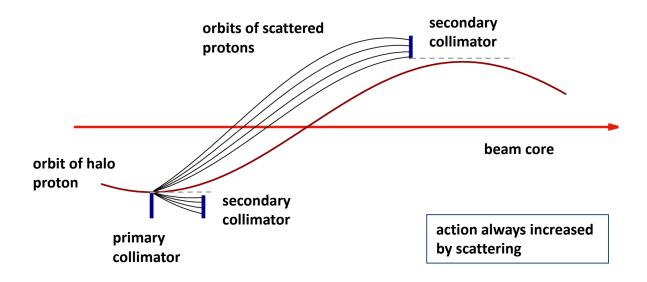
[L.Rossi, 2019]

Energetic Beams in Proton Colliders

collimation + beam abort systems are essential for handling huge energy

- minimizing probability of quench / destruction (beam abort)
- yet allowing operational robustness (collimation)
- available aperture = collimation reserve + luminosity performance !

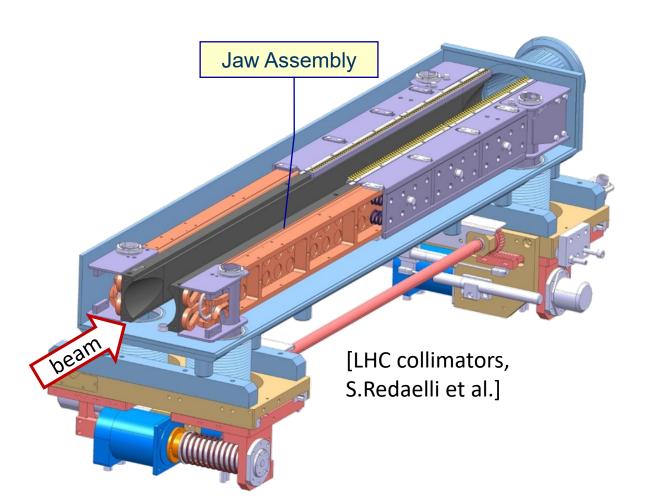
	kinetic energy	tot beam energy	tolerated loss power	
HERA-p	0,92 TeV	1,9 MJ	50kW / minutes	
LHC	7 TeV	360 MJ	500kW / 10 sec	
FCC	50 TeV	8.400 MJ	11MW / seconds	


can melt 12 tons of Cu

Collimation – multidisciplinary R&D fields:

beam dynamics, impedance, radiation transport, efficient / yet safe tuning strategies, advanced materials, thermomechanical problems

Quench: ca 30mW/cm³


Two Stage Collimation

multiphysics challenges for collimation system:

- Beam dynamics: halo diffusion & impact parameter
- Beam dynamics: scattering & multi stage collimation
- Beam material interaction, thermo-mechanics
- Wakefields/Impedance
- in practice also tertiary collimators, LHC: ≈100 jaws

Collimator Unit

halo removal efficiency:

- jaw straightness
- precision adjustment
- reproducibility

robustness:

- thermomechanical stab.
- thermal deformation
- efficient cooling

minimal beam impact

- resistive wall wakefields
- geometric wakefields
- vacuum

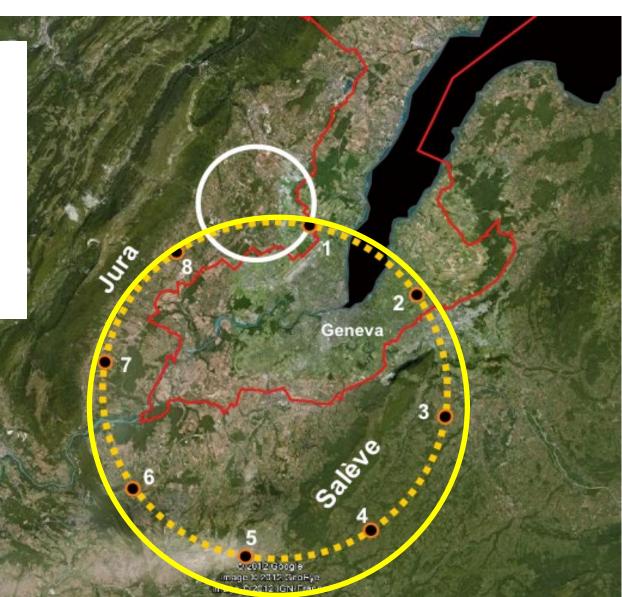
The Future: Study of 80-100 km tunnel in Geneva area - design driven by pp requirements

FCC-hh hadron collider with 100 TeV proton cms energy

FCC-ee a lepton collider as a potential intermediate step

FCC-eh lepton hadron option

International collaboration

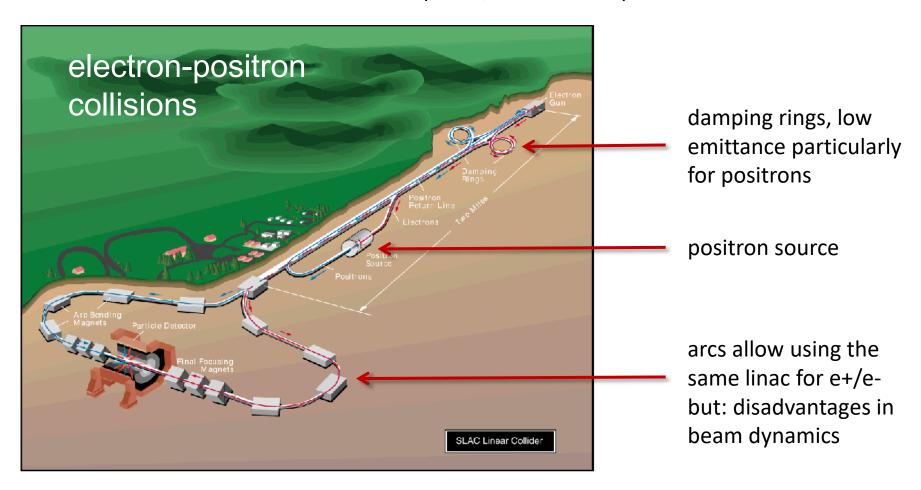

CDR established in 2019

16 T \Rightarrow 100 TeV in 100 km 20 T \Rightarrow 100 TeV in 80 km

LEGEND

LHC tunnel

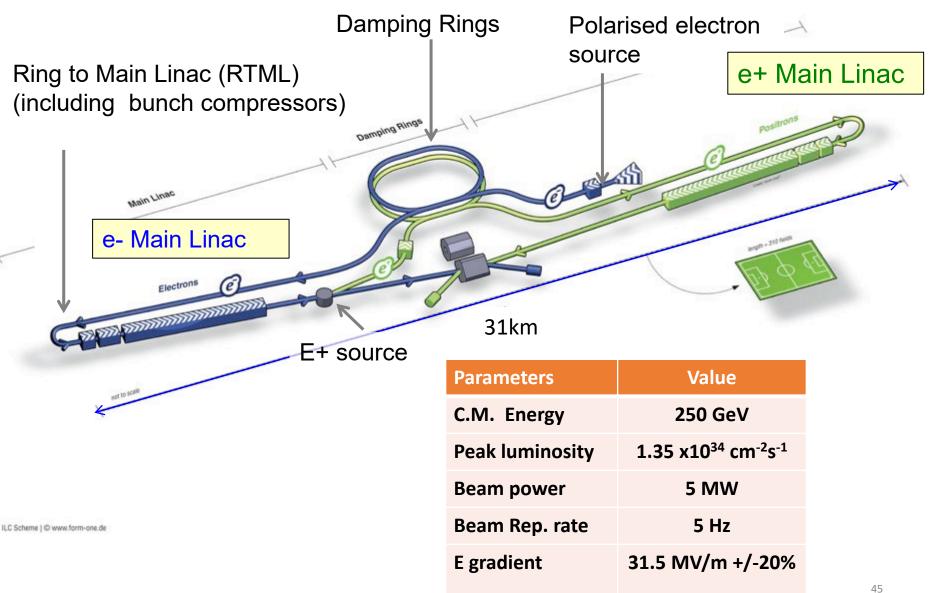
HE_LHC 80km option potential shaft location



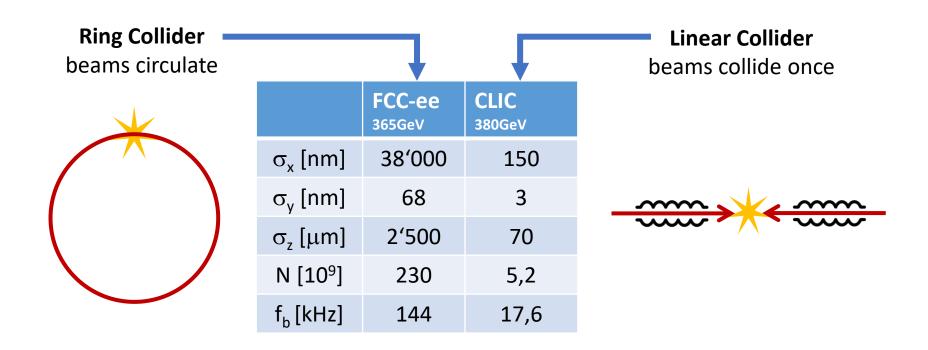
Next: Linear Collider

- Stanford LC, CLIC, ILC
- parameters and disruption during collissions
- accelerating structure technology

Stanford Linear Collider (SLC, till 1997)



only linear collider in world, Stanford / USA

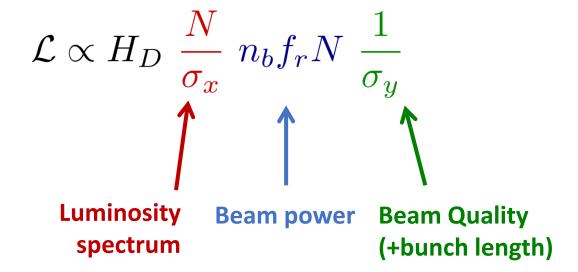

Linac: 3km length

2x50GeV e⁺/e⁻ collisions, polarised!

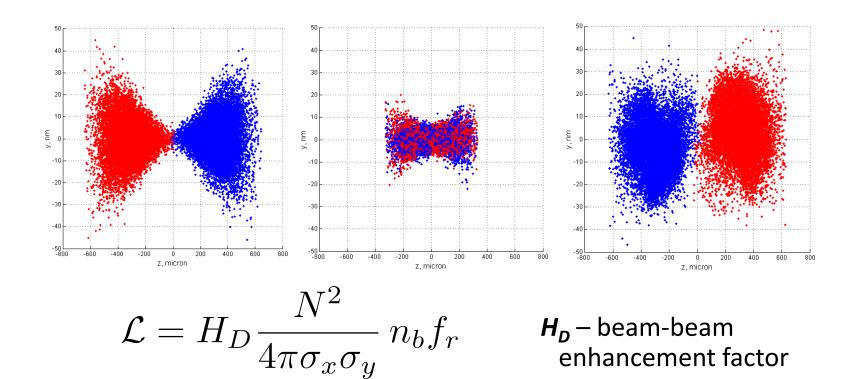
modern version: ILC

Ring Collider vs. Linear Collider

- beam reused
- synchrotron radiation dominated
- equilibrium beamsize → collision parameters limited


- beam used only once
- no synchrotron radiation
- ambitious collision parameters possible (no ring dynamics)

LC: Luminosity and Parameter Drivers


re-write normal luminosity formula:

$$\mathcal{L} = H_D \frac{N^2}{4\pi\sigma_x \sigma_y} \, n_b f_r$$

H_D = luminosity enhancement factor from beam-beam (additional focusing)

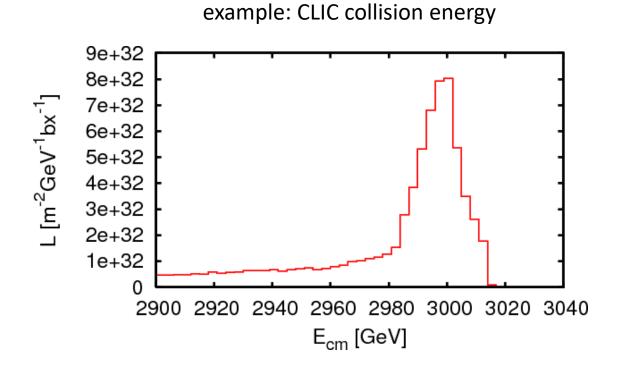
Linear Collider: Beam-Beam enhancement Factor

[D.Schulte]

Linear Collider – Beam Strahlung

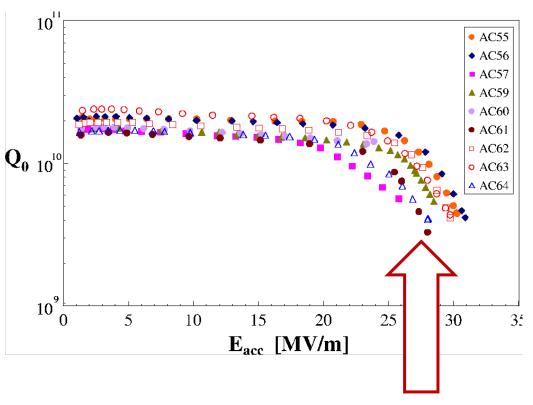
Bunches are squeezed strongly to maximise luminosity

Electron magnetic fields are very strong


Beam particles travel on curved trajectories

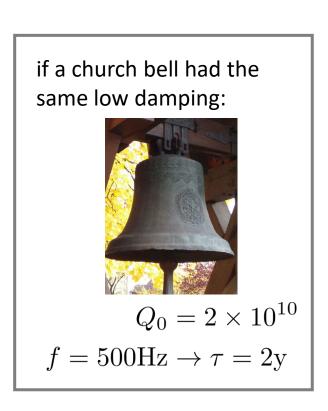
They emit photons (O(1)) (beamstrahlung)

They collide with less than nominal energy


Beamstrahlung is minimized with flat beams, i.e. $\sigma_x \gg \sigma_y$

Next: Linear Collider Technology

• superconducting and room temperature cavities



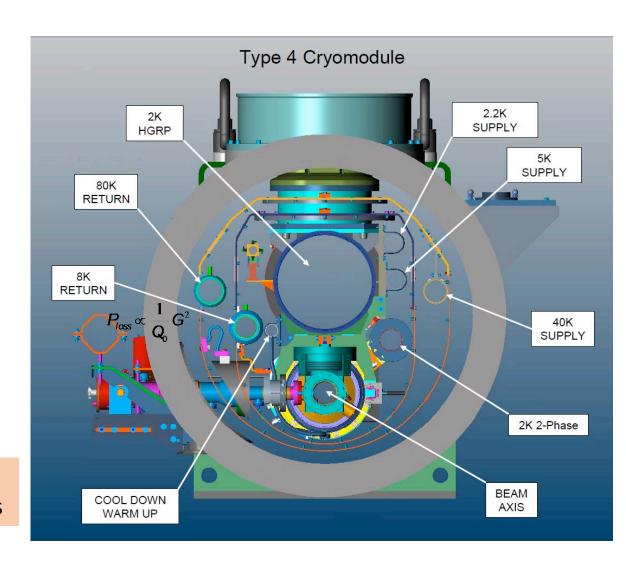
ILC: Superconducting Cavities

todays state of the art

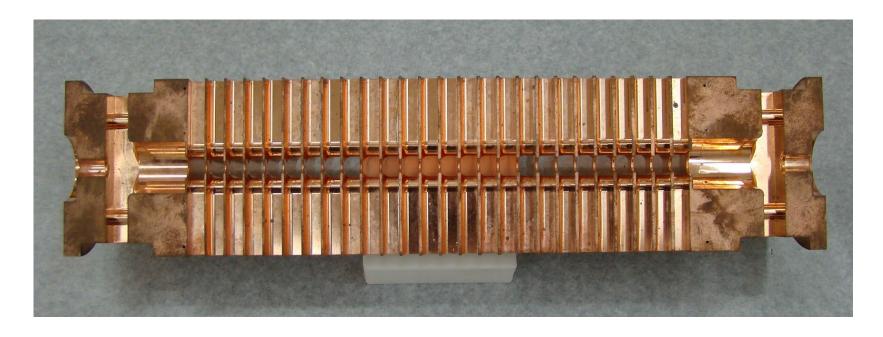
Cryostat and note on cryogenics

Cavities have small losses

$$P_{\rm loss} \propto rac{V^2}{Q_0}$$


About 1W/m

But cooling costly at low temperatures


Carnot Efficiency:

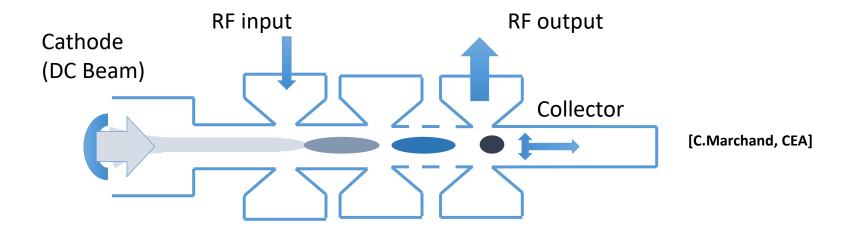
$$P_{\rm cryo} \approx 700 \times P_{\rm loss}$$

The typical heat load of 1 W/m ⇒ about 1 kW/m for cryogenics

CLIC Accelerating Structure (room temperature)

12 GHz, 23 cm long, normal conducting Loaded gradient 100 MV/m

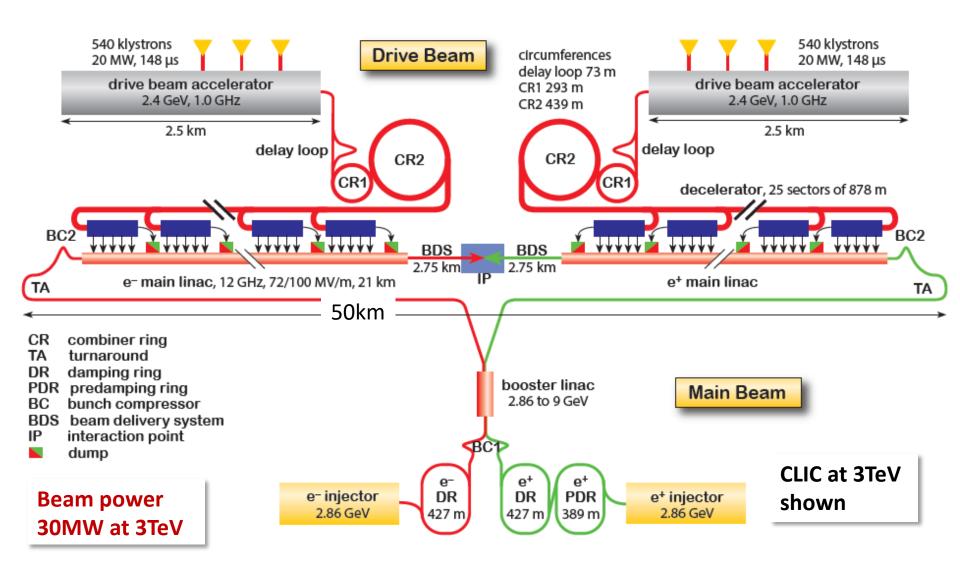
- → Allows to reach higher energies
- \rightarrow 140,000 structures at 3 TeV
- \rightarrow Power during pulse 8.5 x 10⁶ MW (3000 x ILC)

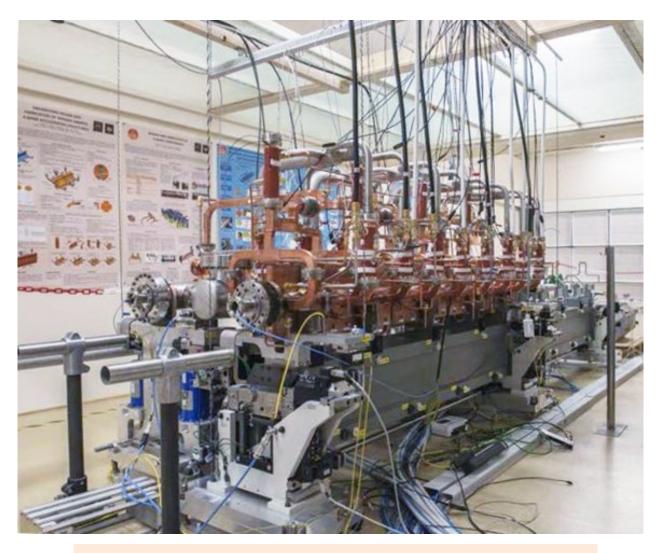

Power flow

- 1/3 lost in cavity walls
- 1/3 into load
- 1/3 into the beam

≈ 1 kW/m into beam

Klystron = RF Source - Principle


- DC beam passes through input
- Electron beam is velocity modulated, bunches formed
- Output cavity is excited by bunches, power extracted


CLIC Idea: Drive Beam Linac like a series of klystrons in a row

→ simplifies concept and improves efficiency

CLIC: The Basis

CLIC Two-beam Module

80 % filling with accelerating structures 11 km for 380 GeV cms, 50 km for 3 TeV

Summary Colliders and Overview Collider Studies

	Leptons	Hadrons
Ring Collider	×	×
Linear Collider	×	

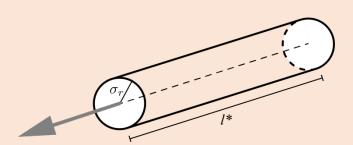
Proposed HEP Projects and Grid Power

		ECM [TeV]	L / IP [10 ³⁴ cm ⁻² s ⁻¹]	P _{Grid} [MW]	power driving effects	
ring collider	FCC-ee (Z)	0.091	230	259	SR Power: 50MW/beam	$P_{ m SR} \propto \left(rac{E}{E_0} ight)^4 rac{1}{R}$
	FCC-ee (t)	0.365	1.5	359	SR power: 50MW/beam	
ring	FCC-hh	100	30	580	SR power: 2.4MW/beam @ 50K, cryogenics	
linear	ILC	1	4.9	300	beam power: 13.6 MW/beam, cryogenics	$L_{ m lc} \propto$
	CLIC	3	5.9	582	beam power: 14 MW/beam	$H_D \sqrt{rac{\delta_E}{arepsilon_{x,n}}} P_{ m beam}$
Muons	muon coll.	6	12	270	mu decay, 1.6MW/drive beam, cycling magnets, but scaling advantages, least developed	$L_{\mu} \propto B \frac{N_0}{\varepsilon_{xy,n}} \gamma P_{\mathrm{beam}}$

Significant energy cost: 4TWh ~ 200M€, and sustainability concerns.

→ need more R&D towards efficient concepts & technology, energy management

Summary Colliders

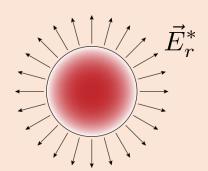

- colliding beams against each other is more effective than fixed target scattering,
 and colliders have been a driving force behind accelerator development
- lepton collisions allow precision measurements as compared to hadron collisions (constituents)
- energy reach and luminosity are key parameters of colliders
- lepton ring colliders are **limited by SR losses**, e.g. 50MW losses for FCC-ee
- linear colliders have no synchrotron radiation but as single pass machines achieving sufficient luminosity is challenging
- the energy of hadron ring colliders is limited by the available magnetic field strength in the range of 8...16Tesla, and by size/cost

Appendix: Computing the Field of a Moving Bunch

solve electrostatic problem in moving frame*, then transform to lab frame

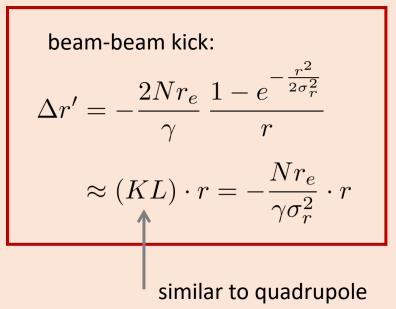
charge density and field in moving frame:

$$\rho^*(r) = \frac{Ne}{2\pi\sigma_r^2 l^*} e^{-\frac{r^2}{2\sigma_r^2}} \qquad \iint \vec{E}^* \, d\vec{A} = \frac{q}{\varepsilon_0}$$

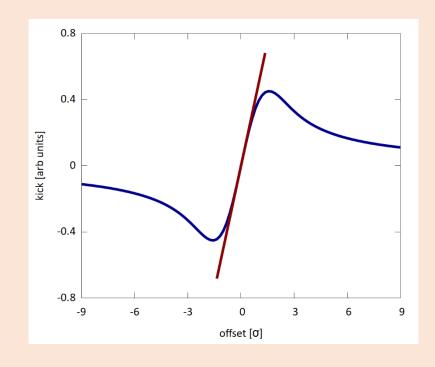

in the moving frame l^* is much larger than $\sigma_{\rm r}$

compute surface integral of E and relate to enclosed charge q:

$$2\pi r l^* E_r^* = l^* \int_0^{2\pi} d\varphi \int_0^r r' dr' \rho^*(r')$$


results in radial field, lab frame:

$$E_r = \gamma E_r^* = \frac{Ne}{2\pi l \varepsilon_0} \frac{1 - e^{-\frac{r^2}{2\sigma_r^2}}}{r}$$



Appendix: Beam-Beam Force for Round Beams

$$\Delta p_{\perp} = F_{\perp} \, \Delta t = -2eE_{\perp} \frac{l}{2c}, \ \Delta r' = \Delta p_{\perp}/p_0$$

$$r_e = \frac{e^2}{4\pi\varepsilon_0 m_0 c^2} = 2.82 \times 10^{-15} \,\mathrm{m}$$

