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Longitudinal Dynamics
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Introduction Longitudinal Dynamics

O0F, ot

acceleration
bunching

?

circular accelerators:
e cyclotron
* synchrotron

questions to be answered:

* How can a beam be accelerated continuously?

* For electrons: How can energy loss be compensated?
* What are conditions for longitudinal stability?

* How to calculate properties like bunch length, energy spread, oscillation
frequency around synchronous particle?

* How can slow and fast particle beams be compressed longitudinally?



Reminder: particles and relativistic factors

particles with varying rest mass:

* electron:
*  muon:

e proton:

* uranium:

E? = 02p2 + mgc
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Impact of Acceleration on Transverse Oscillations

acceleration in the direction of the design
orbit reduces transverse oscillations

acceleration
by op

angle x’ P21 = P1l

N

P =D
P21 PiL 1 0
jche angular deviation Do < D Lo = ( 0 B ) 1 = R,7;
is reduced. , / P2
Ty < X7 ‘

DetR, < 1!



Adiabatic Damping

2 /
<zt> <zx' > LT
Yy = = (T -

! <<:Ua:’> <:c’2>) < )

emittance = statistical propert Y —

of particle coordinates x, x :

1 0
after acceleration: Yo =R, 2 RE, R, = ( P1 )

0 1
P2
€9 = v/ DetXo = Ec‘?l = by €1
P2 Bary2

see also Wiedemann

The normalised emittance is o— 5’75 eq. 10.146
invariant during acceleration: n




Circular Accelerators: Classical Cyclotron

two capacitive electrodes ,,Dees”, two gaps
per turn

internal ion source, homogenous B, field

constant revolution time for low energy

magnetic
/ rigidity
fymoc _ g
(&
@ . eB,
R ’ Y1

cyclotron frequency:
not exactly constant

RF
voltage
dee
a |
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source |
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Cyclotron: Isochronicity and Scalings

continuous acceleration — revolution time should stay constant, though E,, R vary
magnetic rigidity: BR=1 p Brymoc

orbit radius from isochronicity: R o< 3

deduced scaling of B: — B(R) x v(R)
\, needs dR <0
R dB R dB
but focusing! =l — = —
ut focusing! - v/- + BdRr 7z B dR

[radial, vertical tunes in cyclotron, without proof]

two solutions to overcome isochronous synchro-cyclotron,
energy limitation: cyclotron, B, ocy g ramps down




Summary Cyclotrons

longitudinal dynamics:

* isochronous cyclotron ensures constant circulation time throughout
acceleration process; RF frequency fixed, but field more complicated

* for synchrocyclotron RF frequency must scale down in certain
relation to B field; gain: simple magnet; loss: low intensity

* cyclotron = single pass machine, no longitutinal oscillations, few
hundred turns only

PSl isochronous Ring
Cyclotron, 590MeV
& 15m

vertical focusing through
spiral sectors
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Next: Synchrotron

phase stability and strong focusing
RF cavity, harmonic number

comparison of circular accelerators

10



Synchrotron

McMillan (USA) and Veksler (UdSSR) independently in 1945
* concept of phase stability (longitudinal focusing) and alternating gradient focusing
(lessons on linear dynamics), magnets are ,,ramped” with the particles energy

* RF system
e dipoles
e quadrupoles

(+ sextupoles, injection,
extraction ...)

dipol magnet

quadrupol magnet
sextupol magnet

correction coil

small synchrotron:
(PIA at DESY, Positron
Intensity Accumulator)

[ LT o
R
\ Vo3

septum magnet ———=




Synchrotron

Bending
magnhet

R = average bending radius
R > p due to straight sections

particles are synchronous with RF wave on
every turn

energy loss per turn (electrons, SR) is
compensated in cavity

during acceleration the required increment
of energy per turn is provided by RF

deviating particles are focused back / are
oscillating around the synchronous particle

for vac the RF frequency can be constant

12



voltage

Synchrotron: Phase Stability & Strong Focusing

phase stability:

surfing on the RF-wave” including restoring
force; constant bending radius!

energy boost

time

horizontal

vertical

strong focusing:

alternating gradient, beam size independent of
machine size

OHOHOHOHO OH

FODOFODOFODOFODOFO OF OD
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Acceleration in a Radio-Frequency (RF) Cavity

RF Cavity

\f) V(t) = V sin(w,st)

AE =¢e-V(t)

* cavity voltage varies harmonically

* the energy gain of a particle depends on
the arrival time

* the RF frequency must be synchronized
with the revolution time of the particle

* multiple cavities at same frequency act
like one strong cavity



Harmonic Number in a Ring

Wrf = h - Wrev

the RF frequency must be a multiple of the
revolution frequency

[imagine a toothed wheel with integer number
of buckets in which the particles are sitting]

the harmonic number h denotes the number of
RF buckets for ring and is an integer number

see also Wiedemann
sec. 3.4.5
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Examples superconducting multi-cell cavities
for Rings

DESY/HERA, 500MHz

CERN/LEP, 352MHz

low losses allow continuous operation

QO ~ 1010

17



classification of circular accelerators

bending | bending | bending | RF operation

radius field vs. | field vs. | frequency | mode

vs. time | time radius vs. time (pulsed/CW)
isochronous suited for
cyclotron high power!
synchro- — higher E,,
cyclotron — E ™ ~ SEEE but low P
synchrotron — 7 4 A1l high Ey,

strong focus

18




What is different in a linear accelerator?

the beam is not recirculated, so there is no harmonic number; no
dispersion — no path length change

however: the beam must still be in phase with the RF frequency when
it travels along the linac and is accelerated

drift tubes radio-frequency cavity
/\ ’/ pOWer source
S T — \ low 3 structure: drift length
= s o= P U™ increases with speed

..J__;»f e e

J
1 Yo’ s wx’ 3 Yo JL o

high B structure: fixed cell
length for speed of light

19



Next: longitudinal motion in
synchrotrons

e circulation time, momentum compaction, slippage factor
e stable and unstable motion

e synchrotron oscillations

=PrL

20



Protons and Acceleration of Particles

 only during acceleration energy is transferred to the beam, in storage
mode protons generate no synchrotron radiation, i.e. no power is
transferred from the RF system (term: “stationary bucket”)

* nevertheless the RF system is needed to keep the beam bunched

e with the RF system running, protons are accelerated simply by ramping
the magnets — when moving to a smaller radius particles arrive at a
different time, experience more voltage and accelerate to their old radius

when ramping magnets, particles
accelerate automatically to stay in
their fixed pattern of buckets

21



Acceleration of Electrons
V(t) = V sin(w,st)

\r) AE =¢-V(t)

e electronsin aring generate synchrotron radiation
* this energy loss must be compensated in the RF
cavity by transferring the missing energy U,
* energy loss U, by SR:
E4
P

4 4

-5 E*|GeV7]

Uy[GeV] = 8.86 - 1 e

extreme example:

LEP ring @ 104GeV

C=27km, p=3.100m, I, = 6MA
U, =3.3 GeV, Py =20MW




Circulation Time and Synchronous Particle

the synchronous particle arrives at the same phase ¢, at
the accelerating civility during every turn

the circulation time 1 of arbitrary particles varies due to:
1. varying velocity v
2. varying path length C

AT_AC_AU
r C v

we use the momentum compaction factor a.:

AC Ap Av 1 Ap
— = —, p—
C “p’ v A% p
time delay vs momentum deviation through
slip factor 7.

AT _ e — L) ap — @ note definition of n_in some
i p p literature with opposite sign!




reminder: Momentum Compaction

for an off-momentum particle the path length changes:

AC = jf ro(5) 4

ols) // (1 o
e 4 = (1472)

X
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Transition Energy

7= circulation time
p = momentum

the o, in this formula can be expressed by a transition energy:

AT_(l 1)Ap
T Yoo ) D

1 1 j{ D(s)
— = e = — ds
Vir CJ p(s)

2

Ei = Yer o C

the transition energy is a parameter of the magnet lattice

see also Wiedemann
sec. 9.2.2
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Above or below transition ?

V(t)

E<E,: with increasing energy
circulation time is reduced n
(dominated by velocity) /

i< > i pP>p;

i: =i p=p, (synchronous particle)

— > p<p,
E>E,,: with increasing energy \
circulation time is increased i i .
(dominated by path length) | | ‘

- > pop,

p=p, (synchronous particle)
P<ps 26




Transition Energy: Discussion

* electron rings operate above transition since electrons are quickly
relativistic

* for proton and ion rings crossing transition during the acceleration

process might be required; the phase has to be shifted to keep the
particles stable

* crossing transition is possible since at 77.=0 the circulation time is
independent of energy and the synchrotron oscillation stops

estimate of transition 1 1

energy from smooth Qe N QQ , Y = = ~ Q,
approximation: x Vv e

see also Wiedemann
eq. 10.104



Crossing Transition

Synchrotron
(all CERN)

6 GeV 1.4 GeV  27.7 GeV

SPS 22.7 GeV  27.7 GeV 450 GeV
LHC 55 GeV 450 GeV 7 TeV
A phase jump
[ o

crossing
required

when crossing transition
energy the RF signal must
be shiftet in phase:
,phase jump“

28



Equation of Motion - Energy

energy change per turn for arbitrary particle (k = turn number):

A

E,—FE,_ 1=AF= eV sin ¢ 14 = acc. voltage
E = 7771002 = total energy

we are interested in the deviation of the arb. particle from the synchronous particle oE:

A(OE) = eV (sin ¢ — sin ¢;) comment: two “Deltas”:
A: change between turns
O: difference to E

d(0F) AQWE) ewrey

— N = Tom V (sin ¢ — sin ¢)

this is one equation relating energy change and phase of particles
— next we look at the phase change



Equation of Motion — Phase Change

phase change per turn for arbitrary particle:

d¢ ~ ¢n T ¢n—1 _ h AT WRF = hwrev h = harmonic number
dt T rev T 1, = circulation time

Y, = at transition energy

using the slip factor n_:

do op 1 0F 1 1 - tor
L — il — - —_ _ s = tot. energy synchr. p.
dt o hwrevnc Ds o hwrevnc 63 ES Ne = ,-)/th ,.YQ B, = velocity synchr. p.

another derivative w.r.t. f and insertion in energy equation from previous slide
yields equation of motion for phase of particle ¢:

E.82 d*¢ eV
hnw2.  dt2 2w

rev

(sin ¢ — sin ¢y)

30



Solution for small oscillations
expand for small deviations from ¢,:
sin ¢ = sin(¢s + Ag)

~ sin @5 + A¢ cos ¢,

results in harmonic oscillations with synchrotron frequency Q:

PA — Q2 must be positive for
¢ 4 Q§A¢ —0 stable solutions, depending

dt? on ¢, and sign of e
02 & thwl?ev - expopemtial1 growth for
= —1eCOS QPg——"—= ¢
8 Ne S 27TE55§ negative values

see also Wiedemann

sec.9.2.1 31



Discussion Synchrotron Oscillations

synchrotron tune =
synchrotron oscillations per turn

(2
Qs —

wrev

* synchrotron oscillations typically slower that transverse oscillations

* in electron rings higher voltages than in proton rings needed
(energy loss), so often Q. higher for electrons

ring examples: | /P 7/

SLS (288m) 1 MHz 20.38/8.16 0.002..0.005
LEP (27km) 11.2 kHz 60..100 0.08..0.13

LHC (27km) 11.2 kHz 64.28 / 59.31 0.006

32
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Next: Equation of motion discussed using
a mechanical example

biased pendulum with equivalent dynamics

Hamiltonian and Separatrix

L 33



Biased Pendulum = equivalent dynamics

mQO

set torques equal:

miglsin g = mogr

simple with: m1 = mo, [ = 2r

1
sin ¢, = 3 — ¢s =_ 150deg, 30deg

stable fix point:
oscillations

unstable fix point: runs
away after small distortion

equation of motion (see appendix slide):

¢
dt?

= mgl(sin ¢ — sin ¢y)

— same form as longitudinal particle motion!

\

(1) |

I = moment m

of inertia

34



Hamiltonian Function

energy method of integration: multiply function by qb and integrate once:

I/dt bp = mgl/dt d(sin ¢ — sin )

results in:
1 . .
§Igb + mgl(cos ¢ + ¢sin ¢5) = const I = moment of inertia
\ J \ v J Hr_l

kineticenergy  potential energy total energy

with ¢ corresponding to ¢
Y — iL2 4 V(qb) and angular momentum L corresponding to p

21 :
L =¢l, V(Cf)) = mgl(COSQﬁ + ¢sin Qbs)

35




Equations of Motion

1
H = ﬂL2 + mgl(cos ¢ + ¢ sin @)

in this case the canonical coordinates are:

* q = ¢,angle
* p =L = I¢, angular momentum

results in equations of motion:

. OH L
Y=ol T T
OH

L — _% — mgl(SlIlCﬁ — sin Qbs)

= sum of the torque moments

36



Potential and Separatrix for Pendulum

fix-points: 0’5 = 0, L=0
— L =0, sin ¢ = sin ¢

stable fix-point: Pstab = Ps
unstable fix-point:  @unstab = Qu = T — @4

phase space: draw lines for fixed H

separatrix is boundary between stable and

unstable motion, defined by unstable fixpoint \OZ

I — i\/QI (H — mgl(cos ¢ + ¢sin ¢y))

2

1.8

1.6

1.4

1.2

potential

1

0.8

0.6

0.4

—
-0.5

-1

-1.5

-2

unstable

l stable

0 @ n/2 ¢ n

phase [rad]

0 ¢, 1 n/2 ¢ N

phase [rad]

37



Compare RF Voltage

¢, = 150deg is the
situation above transition
energy in an accelerator %)
S
oc
©
=
g
V(g) S
cOs ¢ — COS ?bs + (¢ o ng) sin ¢s
0 Ps Ps

phase [rad]

38



Next: Application to Longitudinal Potential

Hamiltonian and Separatrix
derived: energy acceptance, bucket size
longitudinal emittance

L s



back to the accelerator: Hamiltonian

- ef/hncwl?ev _ ,
O = TN (sin ¢ — sin ¢y)
02 eV hw2, n. cos ¢
— — 5 1 Qi 02 = _ rev'lc s
CoS g (sin ¢ —sin ;) s 21 E ;32

after integration with energy method:

_ Ll 07
’H—§q5 _cosqbs

(COS@ — COS s + (qb - qbs) sin qbs)

small A¢g = ¢- ¢, - circle in phase space (see Appendix):

1'2 1 2 2
H~ -+ —OQ°A
2¢ 2 S ¢

40



Longitudinal Coordinates

\ | \
G
g
rate of phase change d¢/dt )
. . =2
energy deviation OE o
3 v
\ | \
0 N 21
conversion factors phase [rad]
phase —> tlme —
d/dt phase — energy + phase ¢

see appendix e timert

stationary
bucket

¢; =7

(no avg. slope)

41



Regions of Stability from Hamiltonian

H=—-0¢" — COS ¢ — COS — sin
2 COS@S( ¢ ¢3+(¢ qbs) ¢S)
use relation with 0E (deviation from synchronous energy):
b = hwrevNe OF
— )

determine H,, from unstable fixpoint, $=0¢=0,¢, =m:
Heep = 207

then evaluate ¢ on H,at ¢ = ¢s = m:

. 27,
qb?nax — 4927 or : 5—E = 2668‘/
Es ) s Thn.Es




Stationary Bucket and Separatrix

maximum energy acceptance

on separatrix \

0.06
energy acceptance of
stationary bucket:
0.04
2 A
(5 E) _ 2e02V 0.02
Es ) o Thn.FEs N
o 0
/
L . -0.02
unstable fixpoint defines
Hepr SEParatrix 0
circular trajectories for -0.06 |
\ |
small ¢ /
0 M 2n
see also Wiedemann numbers are realistic for a phase [rad] .

sec.9.3.2 small electron synchrotron



shrinking bucket size
with increasing voltage
for synchronous particle

potential [V/Q?]

¢, = 180deg
V(¢,) =0
(stationary)

potential [V/€2]

¢, = 150deg

-~

V(d,) = 50% V

potential [V/Q2]

¢, = 135deg

A~

V(o) = 71% V

| |
0 by

!
s n
phase [rad]

AE/E

AE/E

AE/E

phase [rad]



Bucket Area

goal: compute phase space area inside bucket / separatrix

1., @ :
7-[_5 —Coscbs(cosgb—cosqbs—I—(qb—qbs)sm%)

insert values for separatrix:
1 .
Heep = 207 = §q52 + Q%*(cosp+ 1) for ¢, =m

reorder for ¢:

$? = 202%(1 — cos ¢)

¢ =2Qssin(¢/2)

= 4 0% sin?(¢/2)

d/dt/Q

phase [rad] 45



Bucket Area |l

compute area by integration:

2m . 27 .
Q/qs do ¢ = 48, /q;_() dosin(¢/2)

=0
= 1682

= 8 X Q-bmax

Bucket Area = long. Acceptance

long. Emittance & 7 X Trpms X (0E) rms

d¢ /dt
A4

Cbmax

n 2n

phase [rad]

46



Energy and Time as practical phase space units

practical variables are 3E, t while we are working so far with ¢, ¢
conversion (see appendix):

2
E., -
OFE = PiEs O, T = @
hwrevnc Wt
B2E, 1

>< N
WrtT)e Wt

/(5E)Sepd7' = 16825 %

size of stationary bucket (acceptance): acceptance is:

" * reduced with RF frequency
A _ g Bs 2eV E * increased with RF voltage
oB,T = Wt Thne * reduced with slippage factor

47



=PrL

Next: acceleration in storage rings

* energy ramping
* frequency change
e storage of electrons (compensate radiation losses)

48



The Synchrotron — LHC Operation Cycle

dipole current (A)

The magnetic field (dipole current) is increased during the acceleration.

beam energy
coast "\ dump ramp coast ’_\
12000

) > }E 7 TeV
10000
start of the — |
8000 ramp
6000 -+
injection phase _
4000 .
2000 preparation ; }
and access - ' 450 GeV
O \ \ \ \ \ |
-4000 -2000 O 2000 4000

time from start of injection (s)

49



Energy Ramping in Synchrotrons

in a synchrotron the beam is accelerated by ramping the bending
magnets; particles move to the synchronous phase and gain energy

A .
Bp = P — =P ~ epB (small momentum change per turn)
€ Trev

relating energy and momentum change, circulation time and circumference C:
E? = #p* + mic* — AE = vAp

AE AE eV sin ¢

Teew? O C

epB =

results in an expression for the synchronous phase energy boost

. ~ A
as a function of ramp rate B and peak voltage V' /i
: C . -
¢s = arcsin (pA B "
V

Itag




Circulating Electrons

the energy loss of electrons by SR must be continuously compensated
energy loss per turn for reference electron:

E3GeV]
plm]

U() [keV] = 88.9 - 2

for £y > mygc

for arbitrary particle:

dU
UGSE)=Uy+U'SE E=E—E;, U =|—-=
dE ) p_p.

results in energy change per turn:

AE = Ey, — Ej,_1 = eVsing — U(6E)



Circulating Electrons |l

differentiation, small change per revolution time t, per turn:

d: difference to E, @

E En T En— / rev . . ’
d0E) ~ 0 0 L = evw (sin ¢ — sin ¢5) — Z(SE
dt To0 27 To

relate SE to ¢, expand for small ¢g:

&

q'b'—i—T—q'ﬁnLQi(qb—qu):O
0

This equation describes a harmonic oscillator with a damping term.

52



Circulating Electrons Il
654- (T]—qb + Qﬁ(ab — ¢s) =0 (compute U’ in next lecture)
0

solution is damped oscillator:

d(t) = ¢s + aexp(—t/75) cos(Qst — ¢g), 75 = 279/U’

A A

oF protons OE electrons

0

-
A |

— treatment ignores quantum excitation, see lecture on synchrotron radiation




Summary Longitudinal Dynamics in Synchrotrons

particles are “focused” = oscillate around »above transition”
synchronous particle

protons/ions during acceleration and \
electrons (SR!) in general need a net |
accelerating voltage

oscillation frequency is much lower than for
transverse planes, Q~101..10°3

> p>p,
' p=p, synchronous p.
> p<p,

scaling: (), oc Q, oc sqrt(voltage)

A A Ar

longitudinal acceptance = (time window) x (energy window)



Longitudinal Dynamics: Summary

* The normalized emittance is conserved during acceleration: Py-

* RF systems and cavities provide harmonic potentials in the longitudinal
phase space for acceleration and phase stability

e particles oscillate around a synchronous particle with a synchrotron tune
much lower than in the transverse planes ( O, = 103 .. 101)

* the range of stable motion in phase space is called bucket; phase space is
measured in time-offset x energy-offset

* bucket area and synchrotron frequency scale with square root of RF voltage

* Jlongitudinal dynamics is also relevant for single pass accelerators, for
example bunch compression in FELs and also proton/ion cyclotrons

55
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Appendix: Biased Pendulum, Equation of Motion

compute fixpoints:
set torques equal:

simple by choice:

result:

angular acceleration:

(non-zero for ¢ # ¢,)

replace:

result EQM:

miglsin @ = mogr

mi = msg, | =2r

1
sin g = 5 — ¢s = 150deg, 30deg

I = mglsin ¢ — mgr

moment of interia:

I = ml* + mr?

r = [ sin ¢
2
IC;T;b = mgl(sin ¢ — sin ¢y)




Appendix: long. motion, Hamiltonian small A¢

1., O
= §¢ ; COS Qg

(cos — cos ps + (¢ — ¢s)sings), ¢ = ¢ + A

5 COS @5 cos A — sin @ sin Ap — cos @5 + A sin ¢

COS Qg

1.,
=2 —Q
2¢

_ %&2 — 02 (cos Ag — 1 + tan ¢,(Ad — sin Ag))
\ J

Y
Ag? O(A¢?) = 0

1'2 1 2 2
~ — —ZA




Appendix: Longitudinal Phase Space conversion

phase change per
turn for arbitrary

particle:

circulation time
change vs. phase
change:

conversion
factors:

T, = circulation time

N, = slip factor

Y, = at transition energy

E, = energy synchronous p.

B, = velocity synchronous p.
h = harmonic number

®,,, = revolution frequency
o, = RF frequency
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