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Lorentz Force

S

N+ -

electric field
energy gain: Δ𝐸𝐸𝑘𝑘 = 𝑒𝑒𝑒𝑒
→ this lesson

magnetic field 
bending: 𝐵𝐵𝜌𝜌 = 𝑝𝑝/𝑒𝑒,Δ𝐸𝐸𝑘𝑘 = 0
cyclotron frequency: 𝜔𝜔𝑐𝑐 = 𝑒𝑒𝑒𝑒

𝛾𝛾𝑚𝑚0

path bending and acceleration 
of particles are fundamental 
mechanisms of each particle 
accelerator

H.A.Lorentz
1853-1928
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Introduction Longitudinal Dynamics

questions to be answered:
• How can a beam be accelerated continuously?
• For electrons: How can energy loss be compensated?
• What are conditions for longitudinal stability?
• How to calculate properties like bunch length, energy spread, oscillation 

frequency around synchronous particle?
• How can slow and fast particle beams be compressed longitudinally?

acceleration
bunching

?
circular accelerators:
• cyclotron
• synchrotron

3



Reminder: particles and relativistic factors
particles with varying rest mass:
• electron: E0 = 0.511 MeV
• muon: E0 = 106 MeV
• proton: E0 = 938 MeV
• uranium: E0 = 220 GeV
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acceleration in the direction of the design 
orbit reduces transverse oscillations

acceleration 
by δp

Impact of Acceleration on Transverse Oscillations

the angular deviation 
is reduced.

angle x’
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Adiabatic Damping

after acceleration:

The normalised emittance is 
invariant during acceleration:

emittance = statistical property 
of particle coordinates x, x’ :
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see also Wiedemann 
eq. 10.146



Circular Accelerators: Classical Cyclotron

• two capacitive electrodes „Dees“, two gaps 
per turn

• internal ion source, homogenous By field

• constant revolution time for low energy

magnetic 
rigidity

cyclotron frequency: 
not exactly constant
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Cyclotron: Isochronicity and Scalings

magnetic rigidity:

orbit radius from isochronicity:

deduced scaling of B:

continuous acceleration → revolution time should stay constant, though Ek, R vary

two solutions to overcome 
energy limitation:

isochronous 
cyclotron, Bavg∝ γ

synchro-cyclotron, 
ωRF ramps down

but focusing! →
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[radial, vertical tunes in cyclotron, without proof]

needs



Summary Cyclotrons

longitudinal dynamics: 
• isochronous cyclotron ensures constant circulation time throughout 

acceleration process; RF frequency fixed, but field more complicated
• for synchrocyclotron RF frequency must scale down in certain 

relation to B field; gain: simple magnet; loss: low intensity
• cyclotron = single pass machine, no longitutinal oscillations, few 

hundred turns only

PSI isochronous Ring 
Cyclotron, 590MeV
∅ 15m
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vertical focusing through
spiral sectors



Next: Synchrotron

• phase stability and strong focusing
• RF cavity, harmonic number
• comparison of circular accelerators
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Synchrotron
• McMillan (USA) and Veksler (UdSSR) independently in 1945
• concept of phase stability (longitudinal focusing) and alternating gradient focusing 

(lessons on linear dynamics),  magnets are „ramped“ with the particles energy

small synchrotron:
(PIA at DESY, Positron 

Intensity Accumulator)

• RF system
• dipoles
• quadrupoles
(+ sextupoles, injection, 
extraction …)
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Synchrotron

• particles are synchronous with RF wave on 
every turn

• energy loss per turn (electrons, SR) is 
compensated in cavity

• during acceleration the required increment 
of energy per turn is provided by RF

• deviating particles are focused back / are 
oscillating around the synchronous particle

• for v≈c the RF frequency can be constant

R = average bending radius
R > ρ due to straight sections

B

injection extraction

Bending 
magnet

bending
radius

cavity

E
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Synchrotron: Phase Stability & Strong Focusing

phase stability:
“surfing on the RF-wave” including restoring 
force; constant bending radius!

strong focusing:
alternating gradient, beam size independent of 
machine size
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Acceleration in a Radio-Frequency (RF) Cavity

RF Cavity

• cavity voltage varies harmonically
• the energy gain of a particle depends on 

the arrival time
• the RF frequency must be synchronized 

with the revolution time of the particle
• multiple cavities at same frequency act 

like one strong cavity 
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Harmonic Number in a Ring

the RF frequency must be a multiple of the 
revolution frequency

[imagine a toothed wheel with integer number 
of buckets in which the particles are sitting]

the harmonic number h denotes the number of 
RF buckets for ring and is an integer number

h = 6
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see also Wiedemann 
sec. 3.4.5



PEP-II Ring Cavities
[J.Seeman, SLAC et al]
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Examples superconducting multi-cell cavities
for Rings

CERN/LEP, 352MHz

DESY/HERA, 500MHz

low losses allow continuous operation
Q0 ∼ 1010
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classification of circular accelerators

bending 
radius 
vs. time

bending 
field vs.
time

bending 
field vs. 
radius

RF 
frequency 
vs. time

operation 
mode 
(pulsed/CW)

isochronous 
cyclotron

suited for 
high power!

synchro-
cyclotron

higher Ek, 
but low P

synchrotron high Ek, 
strong focus
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What is different in a linear accelerator?

the beam is not recirculated, so there is no harmonic number; no 
dispersion → no path length change
however: the beam must still be in phase with the RF frequency when 
it travels along the linac and is accelerated

low β structure: drift length 
increases with speed

high β structure: fixed cell 
length for speed of light
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Next: longitudinal motion in 
synchrotrons

• circulation time, momentum compaction, slippage factor
• stable and unstable motion
• synchrotron oscillations
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Protons and Acceleration of Particles
• only during acceleration energy is transferred to the beam, in storage 

mode protons generate no synchrotron radiation, i.e. no power is 
transferred from the RF system (term: “stationary bucket”)

• nevertheless the RF system is needed to keep the beam bunched
• with the RF system running, protons are accelerated simply by ramping 

the magnets – when moving to a smaller radius particles arrive at a 
different time, experience more voltage and accelerate to their old radius

when ramping magnets, particles 
accelerate automatically to stay in 
their fixed pattern of buckets
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Acceleration of Electrons

• electrons in a ring generate synchrotron radiation 
• this energy loss must be compensated in the RF 

cavity by transferring the missing energy U0
• energy loss U0 by SR:

extreme example:
LEP ring @ 104GeV
C = 27km, ρ = 3.100m, Ibeam = 6mA
U0 = 3.3 GeV,  PRF = 20MW
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Circulation Time and Synchronous Particle

we use the momentum compaction factor αc: 

time delay vs momentum deviation through 
slip  factor ηc: 
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note definition of ηc in some 
literature with opposite sign! 

the synchronous particle arrives at the same phase φs at 
the accelerating civility during every turn
the circulation time τ of arbitrary particles varies due to:
1. varying velocity v
2. varying path length C



reminder: Momentum Compaction
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for an off-momentum particle the path length changes:

ρ

x

momentum compaction factor αc:



Transition Energy

the transition energy is a parameter of the magnet lattice

the αc in this formula can be expressed by a transition energy:
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τ = circulation time
p = momentum

see also Wiedemann 
sec. 9.2.2



Above or below transition ?

E<Etr: with increasing energy 
circulation time is reduced 
(dominated by velocity)

E>Etr: with increasing energy 
circulation time is increased 
(dominated by path length)

p>ps

p<ps

p=ps (synchronous particle)

t

p>ps

p<ps

p=ps (synchronous particle)

t
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V(t)



Transition Energy: Discussion

• electron rings operate above transition since electrons are quickly 
relativistic

• for proton and ion rings crossing transition during the acceleration 
process might be required; the phase has to be shifted to keep the 
particles stable

• crossing transition is possible since at ηc=0 the circulation time is 
independent of energy and the synchrotron oscillation stops

estimate of transition 
energy from smooth 
approximation:
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see also Wiedemann 
eq. 10.104



Crossing Transition

Synchrotron 
(all CERN)

Etr Einj Etop

PS 6 GeV 1.4 GeV 27.7 GeV

SPS 22.7 GeV 27.7 GeV 450 GeV

LHC 55 GeV 450 GeV 7 TeV

phase jump

crossing 
required
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when crossing transition 
energy the RF signal must 
be shiftet in phase:
„phase jump“



Equation of Motion - Energy

energy change per turn for arbitrary particle (k = turn number):

we are interested in the deviation of the arb. particle from the synchronous particle δE:

this is one equation relating energy change and phase of particles
→ next we look at the phase change

comment: two “Deltas”:
∆: change between turns
δ: difference to Es
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= acc. voltage

= total energy



Equation of Motion – Phase Change
phase change per turn for arbitrary particle:

using the slip factor ηc:

another derivative w.r.t. t and insertion in energy equation from previous slide 
yields equation of motion for phase of particle φ:
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h = harmonic number
τs = circulation time

Es = tot. energy synchr. p.
βs = velocity synchr. p.

γtr = at transition energy



Solution for small oscillations

expand for small deviations from φs:

results in harmonic oscillations with synchrotron frequency Ω:

→ Ω2
s must be positive for 

stable solutions, depending 
on φs and sign of e

→ exponential growth for 
negative values
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see also Wiedemann 
sec. 9.2.1



Discussion Synchrotron Oscillations

• synchrotron oscillations typically slower that transverse oscillations
• in electron rings higher voltages than in proton rings needed 

(energy loss), so often Qs higher for electrons

synchrotron tune = 
synchrotron oscillations per turn

frev Qx/Qy Qs

SLS (288m) 1 MHz 20.38 / 8.16 0.002..0.005

LEP (27km) 11.2 kHz 60..100 0.08..0.13

LHC (27km) 11.2 kHz 64.28 / 59.31 0.006

ring examples:
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Next: Equation of motion discussed using 
a mechanical example

• biased pendulum with equivalent dynamics
• Hamiltonian and Separatrix
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Biased Pendulum = equivalent dynamics

set torques equal:

simple with:

stable fix point: 
oscillations

unstable fix point: runs 
away after small distortion

equation of motion (see appendix slide):

→ same form as longitudinal particle motion!
34

I = moment
of inertia



Hamiltonian Function

energy method of integration: multiply function by 𝜙̇𝜙 and integrate once:

results in:

kinetic energy       potential energy          total energy

with φ corresponding to q
and angular momentum L corresponding to p

I = moment of inertia
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Equations of Motion

in this case the canonical coordinates are:
• 𝑞𝑞 �= 𝜙𝜙, angle
• 𝑝𝑝 �= 𝐿𝐿 = 𝐼𝐼𝜙̇𝜙, angular momentum

= sum of the torque moments

results in equations of motion:
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Potential and Separatrix for Pendulum

fix-points: unstable

stable

stable fix-point:

unstable fix-point:

phase space: draw lines for fixed H

separatrix is boundary between stable and 
unstable motion, defined by unstable fixpoint

37
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Compare RF Voltage

φs = 150deg is the 
situation above transition 
energy in an accelerator

38



Next: Application to Longitudinal Potential

• Hamiltonian and Separatrix
• derived: energy acceptance, bucket size
• longitudinal emittance
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back to the accelerator: Hamiltonian 

after integration with energy method:

small ∆φ = φ-φs - circle in phase space (see Appendix):
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Longitudinal Coordinates

• rate of phase change dφ/dt
• energy deviation δE

• phase φ
• time τ

stationary 
bucket
φs = π
(no avg. slope)
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conversion factors
phase → time
d/dt phase → energy
see appendix



Regions of Stability from Hamiltonian

determine Hsep from unstable fixpoint, 𝜙̇𝜙 = 0,𝜙𝜙 = 0, 𝜙𝜙𝑠𝑠 = 𝜋𝜋:

then evaluate 𝜙̇𝜙 on Hsep at 𝜙𝜙 = 𝜙𝜙𝑠𝑠 = 𝜋𝜋:

use relation with δE (deviation from synchronous energy):
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Stationary Bucket and Separatrix

energy acceptance of 
stationary bucket:

unstable fixpoint defines 
Hsep, separatrix

circular trajectories for 
small φ

maximum energy acceptance 
on separatrix

numbers are realistic for a 
small electron synchrotron 43

see also Wiedemann 
sec. 9.3.2



φs = 180deg
V(φs) = 0
(stationary)

φs = 150deg
V(φs) = 50% �V

φs = 135deg
V(φs) = 71% �V

shrinking bucket size 
with increasing voltage 
for synchronous particle
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Bucket Area

insert values for separatrix:

reorder for 𝜙̇𝜙:

goal: compute phase space area inside bucket / separatrix
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Bucket Area II

compute area by integration:

Bucket Area = long. Acceptance

long. Emittance ∝ 𝜋𝜋 × 𝜏𝜏rms × 𝛿𝛿𝐸𝐸 rms
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Energy and Time as practical phase space units
practical variables are δE, τ while we are working so far with 𝜙̇𝜙,𝜙𝜙
conversion (see appendix):

size of stationary bucket (acceptance): acceptance is:
• reduced with RF frequency 
• increased with RF voltage
• reduced with slippage factor
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Next: acceleration in storage rings

• energy ramping
• frequency change
• storage of electrons (compensate radiation losses)
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The Synchrotron – LHC Operation Cycle
The magnetic field (dipole current) is increased during the acceleration.
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Energy Ramping in Synchrotrons

in a synchrotron the beam is accelerated by ramping the bending 
magnets; particles move to the synchronous phase and gain energy

relating energy and momentum change, circulation time and circumference C:

results in an expression for the synchronous phase 
as a function of ramp rate 𝐵̇𝐵 and peak voltage �𝑉𝑉:

(small momentum change per turn)
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Circulating Electrons
the energy loss of electrons by SR must be continuously compensated
energy loss per turn for reference electron:

for arbitrary particle:

results in energy change per turn:
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Circulating Electrons II

relate δE to 𝜙̇𝜙, expand for small φ-φs:

differentiation, small change per revolution time τ0 per turn:

δ: difference to Es

52

This equation describes a harmonic oscillator with a damping term.



Circulating Electrons III

solution is damped oscillator:

δE δE

φ φ

protons electrons

→ treatment ignores quantum excitation, see lecture on synchrotron radiation

(compute U’ in next lecture)
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Summary Longitudinal Dynamics in Synchrotrons

54

p>ps

p<ps

p=ps synchronous p.

t

• particles are “focused” = oscillate around 
synchronous particle

• protons/ions during acceleration and 
electrons (SR!) in general need a net 
accelerating voltage

• oscillation frequency is much lower than for 
transverse planes, Qs≈10-1..10-3

• scaling: Ωs ∝ Qs ∝ sqrt(voltage)

• longitudinal acceptance = (time window) × (energy window) 

„above transition“



Longitudinal Dynamics: Summary

• The normalized emittance is conserved during acceleration: βγ⋅ε

• RF systems and cavities provide harmonic potentials in the longitudinal 
phase space for acceleration and phase stability

• particles oscillate around a synchronous particle with a synchrotron tune 
much lower than in the transverse planes ( Qs = 10-3 .. 10-1 )

• the range of stable motion in phase space is called bucket; phase space is 
measured in time-offset × energy-offset

• bucket area and synchrotron frequency scale with square root of RF voltage

• longitudinal dynamics is also relevant for single pass accelerators, for 
example bunch compression in FEL’s and also proton/ion cyclotrons
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Appendix: Biased Pendulum, Equation of Motion

I) compute fixpoints:
set torques equal:

simple by choice:

result: 

II)    angular acceleration:
(non-zero for φ ≠ φs)

replace:

result EQM: 

moment of interia:



Appendix

Appendix: long. motion, Hamiltonian small ∆φ
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Appendix: Longitudinal Phase Space conversion

phase change per 
turn for arbitrary 
particle:

τs = circulation time
ηc = slip factor
γtr = at transition energy
Es = energy synchronous p.
βs = velocity synchronous p.
h = harmonic number
ωrev = revolution frequency
ωrf = RF frequency

circulation time 
change vs. phase 
change:

conversion 
factors:
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