
EPFL Autumn semester 2019/2020

Introduction to Particle Accelerator Physics

Final Exam

Numerical results without derivation are not sufficient. Do symbolic derivations first and
insert numbers only at the end (unless stated otherwise). You may use books, notes, and
tutorials. You can also make use of your tablet or laptop but only if constantly set on
plane mode!

I. Transverse Beam Dynamics (11 points)

Part I: FODO cell stability
Assume a synchrotron with a circumference of C = 3 km composed only of symmetric
FODO cells. The horizontal tune is Qx = 7.28 and the total number of FODO cells is
NFODO = 48.

Figure 1: FODO cell, part I.

(a) Calculate the horizontal phase advance per FODO cell µFODO. (1 point)
The horizontal tune is defined as

Qx = NFODO · µFODO

2π → µFODO = 2π ·Qx

NFODO
= 0.9529 rad.
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(b) Knowing µFODO, calculate the focal length f of the quadrupoles using the thin-lens
approximation. Recall that the FODO cell transport matrix between the centers of
two consecutive focusing quadrupoles reads (see Fig. 1) (3 points)

MFODO, I =
 1− L2

2f2 2L+ L2

f

− L
2f2

(
1− L

2f

)
1− L2

2f2

 .
Equate the FODO transport matrix to the common Twiss matrix with µ = µFODO 1− L2

2f2 2L+ L2

f

− L
2f2

(
1− L

2f

)
1− L2

2f2

 =
(

cosµ βx sinµ
− sinµ

βx
cosµ

)
.

The half-length of the FODO cell is L = C
2·NFODO

= 31.25 m

→ cosµ = 1− L2

2f 2 → f = L

√
1

2(1− cosµ) = 34.07 m.

(c) Is the transverse particle motion stable for the given lattice? Explain why. (1 point)
Yes, since f > L/2 = 15.625 m.

Part II: FODO cell equivalence
We consider again a FODO cell with focal lengths ∓f and equal drift lengths L between
the focusing and defocusing quadrupoles as illustrated in Fig. 2, left. However, other than
in part I of the exercise we now define the transport matrix MFODO starting just before
the focusing quadrupole instead of at its center

MFODO, II =
1− L

f
− L2

f2 2L+ L2

f

− L
f2 1 + L

f

 .
We are going to study the transport matrix MOFO of the drift-lens-drift arrangement
shown in Fig. 2, right. It is defined by a single focusing quadrupole of focal length −f̃
between two drift sections of possibly different lengths L1 and L2.

(a) Compute the transport matrix MOFO of the drift-lens-drift system analytically.
(2 points)

MOFO =
(

1 L2
0 1

)
·
(

1 0
−1/f̃ 1

)
·
(

1 L1
0 1

)
=
1− L2

f̃
L1 + L2 − L1L2

f̃

− 1
f̃

1− L1
f̃

 .
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Figure 2: Left: FODO cell, part II. Right: Drift-lens-drift (OFO) structure.

(b) Show that MOFO is indeed equivalent to MFODO and express f̃ , L1, and L2 in terms
of f and L. (4 points)
We can define 4 equations by setting MFODO = MOFO. We need 3 equations to
express f̃ , L1, and L2 with the FODO parameters f and L (we use equations from
matrix elements M21, M22, and M11, respectively)

f̃ = f 2

L
, L1 = −Lf̃

f
= −f, L2 = f + L.

The 4th equation from matrix element M12 should be used to demonstrate consis-
tency between found relationships to prove the full equivalence of the two transport
matrices.

II. Longitudinal Beam Dynamics (9 points)

Assume a proton storage ring with a circumference of C = 650 m. The stored protons
have a kinetic energy of Ekin = 4.5 GeV. In this storage ring the bending magnets account
for 30 % of the circumference. Furthermore, the average value of the dispersion in the
bending magnets, which are all assumed to have identical field strengths, is 〈Dx〉 = 0.8 m.

(a) Calculate the total energy Etot of the particles, the relativistic β and γ, the revolu-
tion period T0 of the beam, its momentum p and the magnetic field B in the dipoles.
(3 points)
Let E0 = m0c

2 = 0.938 GeV,

Etot = Ekin + E0 = 5.438 GeV,

γ = Etot

E0
= 5.80,

β =
√

1− γ−2 = 0.985,
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T0 = C

βc
= 2.20µs,

p = 1
c

√
E2

tot − E2
0 = 5.36 GeV/c,

ρ = Ldip

2π = 0.3C
2π = 31.04 m → B = p[GeV/c]

0.29979 ρ = 0.58 T.

(b) Using the smooth approximation calculate the momentum compaction factor αc of
the storage ring as well as the absolute path length change ∆C for a particle with
a relative momentum deviation of 1.5 %. (2 points)

αc = 〈Dx〉
C ρ

Ldip = 2π 〈Dx〉
C

= 7.73× 10−3.

With δ = 0.015,
∆C = αcC δ = 75.4 mm.

(c) Explain the concept of transition crossing (max. 5 sentences). (2 points)

(d) Is the beam above or below transition energy? Based on your answer: what is
the possible range for the synchronous phase φs to guarantee phase stability in the
longitudinal plane and to ensure particle acceleration? (2 points)
To know whether we are above or below transition, we need to calculate γtr and
compare it to γ calculated earlier.

γtr = 1
√
αc

= 11.37 → γtr > γ.

We are hence below transition (η < 0). The possible range for φs for phase stability
is in that case

0 < φs <
π

2 .

III. Luminosity (11 points)

The Cornell Electron Storage Ring (CESR) is an electron-positron e−e+ collider at Cornell
University in Ithaca, New York (USA). It has a physical circumference of 768 m. Assume
that the machine operates at a beam momentum of 4.5 GeV/c and that the two counter-
rotating beams each contain 9 colliding bunches of e+ and e−, respectively. The current per
bunch is initially 7 mA and their normalized emittances are 100 µm rad and 500 µm rad
in the horizontal and the vertical plane, respectively. The β-functions at the interaction
point (IP) have values of β∗

x,y = 0.3 m.
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(a) Calculate the center-of-mass energy of the e−e+ collisions for this machine. (1 point)
One finds that we are in an ultra-relativistic regime and hence Etot ≈ cp. The
center-of-mass energy is thus ECM = 2Etot = 9 GeV.

(b) What is the desired value of dispersion at the IP? Explain why. (1 point)
The desired value for dispersion at the IP is zero. This is to reduce the beam size at
the IP as much as possible (σx,y =

√
β∗
x,yε

geo
x,y +D2

x,yσ
2
δ ) to maximize the luminosity

[L ∝ 1/(σxσy)].

(c) Assume that the machine is set up to have the desired dispersion at the IP. Calculate
the root mean square (rms) horizontal and vertical beam sizes at the collision point.
(2 points)
Since we are in the ultra-relativistic regime, p ≈ Etot, and β ≈ 1.
From Etot,me → (βγ)rel ≈ γ ≈ 8806.
Given that we have Dx,y = 0 at the IP, we can compute σx,y using

εgeo
x,y =

εnorm
x,y

(βγ)rel
and σx,y =

√
β∗
x,yε

geo
x,y ,

with εnorm
x = 0.2 mm rad and εnorm

y = 5.0 mm rad. The numerical values are hence
σx = 58.4 µm and σy = 130.5 µm.

(d) Calculate the luminosity L0 for the given parameters. (2 points)
If you did not manage to solve c), use σx = 40 µm and σy = 200 µm to continue.
As explained above, we can safely use the approximation β ≈ 1.

frev = βc

C
≈ c

C
= 390.4 kHz,

N = N1,2 = I1,2

efrev
= 1.12× 1011 e±/b,

L0 = nbN
2frev

4πσxσy
= 4.6× 1031 cm−2s−1.

Or, if student did not manage to solve c)

L0 = 4.4× 1031 cm−2s−1.

(e) To avoid multiple collision points near the IP we now introduce a crossing angle in
the horizontal plane φx = 600 µrad. Given the rms bunch length of σs = 6.5 cm,
calculate by what percentage this reduces the luminosity obtained in d). (2 points)
Since σs � σx and φx � 1, we can safely use

S ≈ 1√
1 +

[
σs

σx

φx

2

]2 = 0.949.
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The luminosity is hence reduced by 5.1 %.

Or, if student did not manage to solve c)

S ≈ 0.899.

The luminosity is hence reduced by 10.1 %.

(f) Assume that the bunch intensities all decay exponentially with a time constant of
τ = 3 h (so-called beam lifetime). Given that all the other beam parameters remain
constant – what is the luminosity L(t) after t = 1.5 h, including the reduction caused
by the crossing angle? (3 points)

N(t) = N(0) e−t/τ ,

L(t) = L0 S e
−2t/τ ,

L(t = 1.5 h) = 1.61× 1031 cm−2s−1.

Or, if student did not manage to solve c)

L(t = 1.5 h) = 1.45× 1031 cm−2s−1.

IV. Synchrotron Radiation (11 points)

The Diamond Light Source located near Oxford (UK) stores an electron beam with a total
energy of 3 GeV at a current of 300 mA. The Diamond dipole bending radius is 7.1 m.

(a) Compute the energy loss per turn due to synchrotron radiation. (1 point)
γ = 3 GeV

0.511 × 10−3 GeV = 5870.84 → U0 = 4π
3 α~c

γ4

ρ
= 1.0092 MeV.

(b) The total power consumption of Diamond is Ptot = 2 MW. What fraction of Ptot
is required to compensate for the synchrotron radiation losses? (Hint: compute the
total average power lost by the stored beam.) (3 points)
The total average power loss due to SR is

Pγ,b = N e
b U0 frev,

where N e
b is the total number of stored electrons.

Using N e
b = Ib/(efrev), we rewrite

Pγ,b = U0 Ib / e = 1.89× 1018 MeV s−1.

Furthermore, Ptot = 2 MW = 1.248× 1019 MeV s−1, hence Pγ,b/Ptot = 15.1 %.
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(c) Let us consider operating the Diamond light source with protons (assume the same
bending radius). What would be the total energy of a proton beam with a current
of 300 mA that radiates the same amount of synchrotron power? (2 points)
It is clear that the proton beam must also be ultra-relativistic to emit this amount
of synchrotron radiation. Hence, its revolution frequency will be the same as that
of the electron beam. Since protons and electrons have the same absolute charge,
the number of protons and electrons in a 300 mA beam will be the same, so
U e

0 = Up
0 → γe = γp = 5870.8922 → Ep = mpγc

2 = 5508.49 GeV.

(d) Imagine that the radio-frequency (RF) system suddenly stops restoring the energy
lost due to synchrotron radiation. Explain what happens to the radius of the beam
orbit? (1 point)
Since the beam is losing energy due to SR it will go on smaller and smaller orbits
(spiraling in) and eventually crash into the inner pipe walls.

(e) Knowing that the maximum horizontal dispersion is 25 cm and the horizontal aper-
ture at this location is ±2 cm, compute the number of turns the beam survives in the
ring without the RF system before it crashes into the wall. For simplicity, assume a
point-like beam and that the energy lost per turn is constant over time. (4 points)
Since we are in an ultra-relativistic regime, p ≈ Etot, and hence δ = ∆p/p0 ≈
∆E/E0.

∆r = −2 cm = Dmax · δ(t) = Dmax ·
(
−U0t

E0

)
,

t = E0

U0Dmax
∆r = 238.1 turns.

Useful constants:

• e = 1.602× 10−19 C
• me = 0.511 MeV/c2

• mp = 0.938 GeV/c2

• c = 299 792 458 m s−1

• α = 1/137
• ~c = 197 MeV fm (1 fm = 1× 10−15 m)
• 1 eV = 1.602× 10−19 J
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