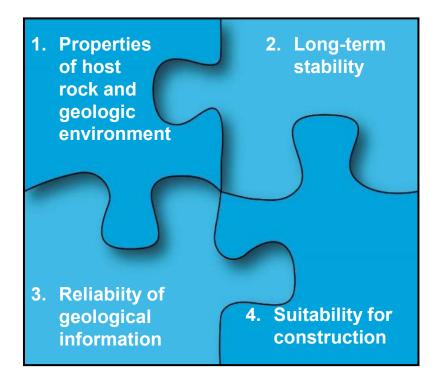
Student Outreach & Internship Programme

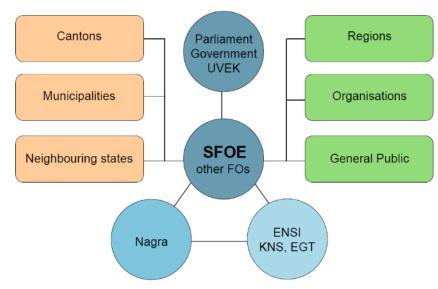
EPFL, 19.11.2024

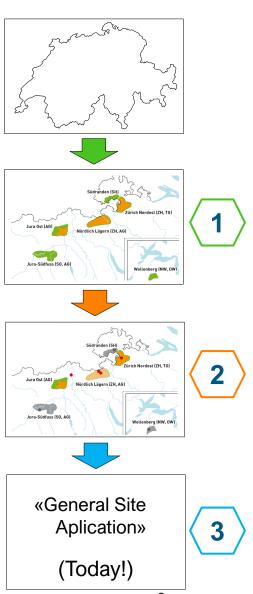
Introduction: Who are we?

- We are the Swiss National Cooperative for the Disposal of Radioactive Waste ↔ Nagra
- Established in 1972 by
 NPP operators & Swiss government
- Around 130 employees: mainly scientists and engineers
- Financed by the waste producers:
 Nuclear Power Plants: 92%
 Swiss government: 8%
- Cost contained in electricity price: approx. 1 €-Cent per kWh

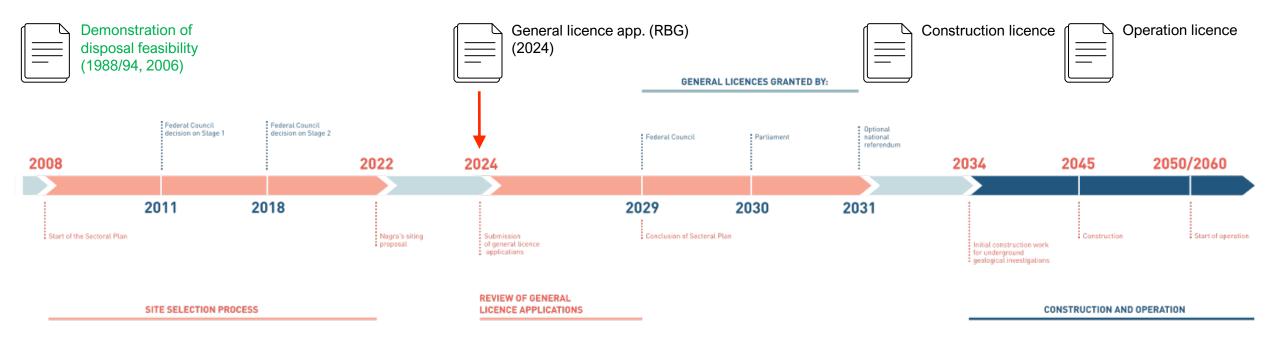

Introduction: What is our goal?

Safety and Engineering Feasibility highest priority

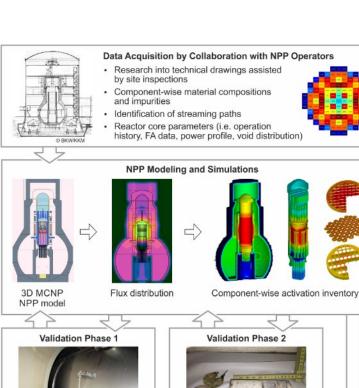



Site Selection

- Process and responsibilities
- Criteria (safety, environmental impact, socio-economic issues)


Actors in the site selection process

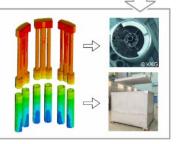
Radioactive waste disposal – Status in switzerland


- Nagra's → design, optimization, and safety analyses of the planned deep geological repository DGR
- In 2022, Nagra proposed a site for the repository
- General license application (RBG) to be submitted today!

HLW disposal tunnel (approx. 3 m diameter) **Context: Final Disposal Concept** Surface facility A A Maria Facilities for Test area **URL** Main repository for low- and intermediate-level Pilot repository for waste low- and intermediate-level HLW Pilot repository max. ca. waste for high-level Main repository for 1'000 m waste high-level waste approx. 1-2 km Backfilling Vitrified HLW

Student outreach & internship programme

- Internship topics at Nagra → at the interface between research & industrial application
- Nagra interns actively contribute to Nagra's RD&D, optimisation, technical and safety assessment work by:
 - Carrying out calculations for characterising the Swiss nuclear waste inventory
 - Further developing & optimising packaging concepts
 - Implementing safety case evaluations of the final disposal concept,
 e.g. criticality safety, etc.
 - Developing new computational methods such as AMAC (<u>Advanced Methodology for Activation Characterization</u>)
 - etc.
- Many thanks to all our interns: your contribution is highly appreciated!



Input for Decommissioning Planning

- Segmentation strategies
- Packaging concept
- · Free-release isolines
- · Dose rate calculations
- · Cost Estimates

Student outreach & internship programme: Retrospective

- Programme started in 2009 initiated by Prof. Prasser
- 55 students from 24 countries completed their internship at Nagra

Europe: Spain

France

Lithuania

Poland

Slowakia

Greece

Czech Republic

Italy

Switzerland

Germamy

Ukraine

Croatia

Serbia

Austria

Cyprus

Estonia

UK

Outside Europe:

China

India

Lebanon

Singapore

Egypt

USA

Mexico

Student outreach & internship programme: A success story I

- Outcome:
 - More than 30 scientific papers published
 & conference contributions

Volmert B., Tamaseviciute E. et al: MCNP Neutron Streaming Investigations from the Reactor Core to Regions Outside the RPV for a Swiss PWR; Proceedings of 12th International Conference on Radiation Shielding (ICRS-12), Nara, Japan, September 2-7, (2012).

Pantelias M.; Lierse von Gostomski Ch.; Krumpholz U.; Volmert B.; Artinger R.; Filss M.: Reactor pressure vessel activation - RPV sample analysis and Monte Carlo Simulations; Proc. of KONTEC, Dresden, Germany, April 6-8, [2011].

Schlömer L.; Phlippen P.W.; Volmert B.; Pantelias M.: Aktivierungsrechnungen für Komponenten eines Druckwasserreaktors; Jahrestagung Kerntechnik JTK, May 17-19, Berlin (2011).

Volmert B., Pantelias M., Neukaeter E. and Schloemer L.: Activation Inventory Calculations for the Swiss Decommissioning Study using MCNP and GRSAKTIV2; Proceedings of Joint International Conference on Supercomputing in Nuclear Applications and Monte Carlo (SNA+MC2010), Tokyo, Japan, October 17-21, [2010].

Volmert B.; Scolaro A.; Scheit T.; Fasold W.: Activation Analysis, Validation and Component-wise Packaging Concept for the Decommissioning Planning of the NPP Gundremmingen; Annual Meeting on Nuclear Technology, May 29-30, Berlin, Germany, (2018).

Bykov V.; Mosher S.; Volmert B.; et al: Nagra Activation Analysis for the Optimization of NPP Decommissioning and Component Segmentation Strategy; Proceedings PHYSOR 2018, Cancun, Mexico, April 22-26, (2018).

Vlassopoulos, E.; Bykov V.; Siefman D.; Volmert B.; Pantelias M.: Neutron Streaming Investigations with Classic and Hybrid Monte Carlo Variance Reduction Methods for the AGN-211-P Re-search Reactor in Basel; Proceedings PHYSOR 2016, Sun Valley, Idaho, USA, May 1-5, (2016).

Bykov V.; Volmert B.; Pautz A.: Enhancement and Validation of BWR MCNP Activation Simulations for Swiss Decommissioning Planning; Proceedings of ANS Student Conference, College Station, Texas, USA, April 9-11, (2015).

Pantelias M.; Volmert B.: Activation Neutronics for a Swiss Pressurized Water Reactor; Nuclear Technology, 192, 3, dx.doi.org/10.13182/NT15-13, (2015).

Pantelias M.; Bykov V.; Volmert B.: Activation Neutronics for a Swiss PWR and BWR; American Nuclear Society Annual Meeting, San Antonio, TX, USA, June 7-11, (2015) – Award by the American Nuclear Society.

(List by no means exhaustive)

Student outreach & internship programme: A success story II

- Outcome:
 - More than 30 scientific papers published
 & conference contributions
 - 12 MSc.-Theses completed

MSc Thesis:

Hadjigeorgiou, M. [2022]: Sensitivity Studies on the Structural Response of a PWR Spent Fuel Sub-Assembly using Finite Element Modelling; Master Thesis, EPFL, Lausanne.

Bellotti, M. [2020]: Towards beam modelling for static structural analysis of spent nuclear fuel rods"; EPFL, Lausanne.

Tomic G. [2019]: Validation of the Nagra Advanced Methodology for Activation Characterization for the Leibstadt NPP including Waste Packaging Concept for activated RPV, Internals and Building Structures; EPFL, Lausanne.

Pisano, P. (2018): Validation of the Nagra Activation Calculation Methodology for the Beznau NPP and Development of an Activated Materials Packaging Concept; EPFL, Lausanne.

Scolaro, A. (2016): Implementation of the Nagra Activation Calculation Methodology for the Gundremmingen Nuclear Power Plant; Master Thesis, EPFL, Lausanne.

Vlassopoulos E. (2015): Development of an Optimization Code for the Logistics of Spent Fuel Assembly Loading into Final Disposal Canisters; Master Thesis; EPFL, Lausanne.

Bykov V. (2014): Enhancement and validation of the NPP Mühleberg MCNP activation simulations for Swiss Decommissioning Planning. Master Thesis. ETH, Zürich.

Yan Y. (2013): An MCNP generic sample activation model for validation of the Nagra NPP activation methodology; Master Thesis; EPFL, Lausanne.

Zvoncek P. (2012): Comparison and suitability analysis of codes for NPP ex-core activation calculations; Master Thesis; ETH, Zürich.

Tamaseviciute E. (2011): Neutron streaming investigation outside the RPV of the Gösgen Nuclear Power Plant with the Monte Carlo Method; Master Thesis; ETH, Zürich.

Pantelias Garcés M. (2010): Monte Carlo Simulation for reactor pressure vessel activation analysis; Master Thesis; ETH, Zürich.

Student outreach & internship programme: A success story III

Outcome:

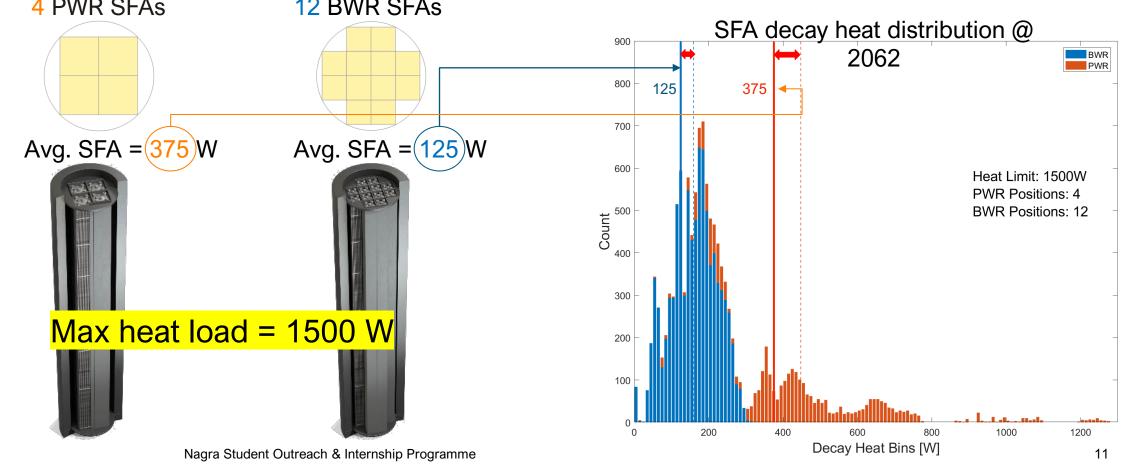
- More than 30 scientific papers published
 & conference contributions
- 12 MSc.-Theses completed
- 4 PhD-Theses completed

PhD Theses:

Shama, A. [2021]: Data-Driven Predictive Models: Calculational Bias in Characterization of Spent Nuclear Fuel, PhD thesis, EPFL, Lausanne.

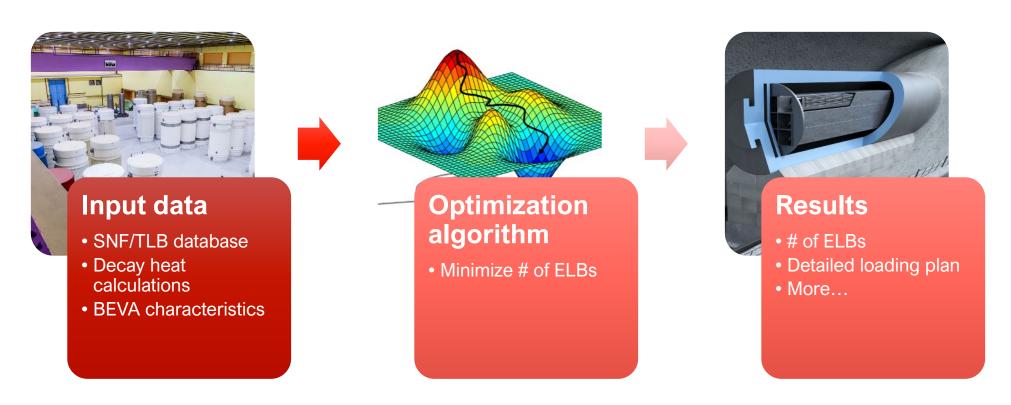
Vlassopoulos, E. [2021]: Structural performance and mechanical properties investigation of spent nuclear fuel rods under static and dynamic bending loads; PhD thesis, EPFL, Lausanne.

Bykov V. (2019): High-Fidelity Determination of Nuclide Inventories for Radioactive Waste Disposal; Diss. EPFL No. 8960, Lausanne.


Pantelias Garcés M. (2013): Activation Neutronics for the Swiss Nuclear Power Plants; Diss. No 21623. ETH, Zürich.

Example: Loading optimization of SNF in final disposal canisters

Why is optimization required?


• Minimize number of ELBs required for disposal of about 12'500 irradiated fuel assemblies

Given the disposal constraints it's not possible to "easily" load the SFA into a min number of ELBs
 4 PWR SFAs
 12 BWR SFAs

Example: Loading optimization of SNF in final disposal canisters II

- There is <u>no analytical solution</u> and all SFA <u>combinations</u> for given ELBs <u>cannot be computed</u> (CPU time "explodes")
- Numerical solutions using global optimization algorithms provide high quality results
- SIMAN Nagra's logistics optimization tool for ELB loading

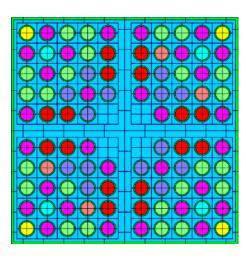
Example: Criticality safety for geological disposal

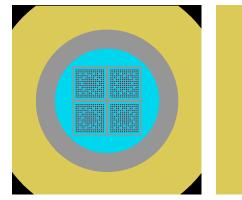
Criticality Safety:

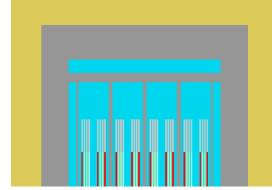
"It has to be ensured through adequate measures that, neither in the operational phase nor after the closure of a geological repository, can a state of nuclear criticality occur."

[ENSI Regulatory Guideline G03]

4 PWR SFAs


12 BWR SFAs


- General approach:
 - Formulate conservative but realistic scenarios ⇒ compute keff & evaluate w.r.t. upper criticality safety limit


Example: Criticality safety for geological disposal II

- What you could be working on:
 - Setting up computational models for various configurations of the final disposal canister (with different fuel assembly types, materials, etc.)
 - Calculating keff, for different canister configurations using Monte Carlo code like SCALE, MCNP, etc.
 - Studying & evaluating different sources of uncertainty in criticality calculations.
 - Look into how to evaluate potential consequences of postulated criticality excursions.

KENO-VI models of a BWR fuel assembly (above) and PWR final disposal canisters

Scope and other potential internship topics

Waste characterisation & packaging optimisation

- What kind of waste do you have? How much? → Volume
- How radioactive is it? What is the half-life? → Activity (t)
- How much heat does it produce? → Decay Heat
- Is it critical (now or later)? → Criticality Analyses
- How is it transported over time (nuclides/packages)? → Safety Analyses / Logistic Optimisation

Disposal concept & safety case relevant assessments

- Developing tools for the optimisation of the final disposal container design
- Modelling work & methodology development: nuclide transport, long-term criticality safety assessments, etc.

Projects in support of & collaboration with waste producers

- Shielding Calculations → Dose Rates
- Decommissioning Planning → Segmentation planning, Packaging Concepts, Dose Rates

What an internship at Nagra looks like

- Typical duration: 3 months (e.g. July September)
 However, different time frames may also be possible depending on availability of topics & time resources.
- Typical workload: 100% full time i.e. 8.5 h/day x 5 days/week
 Other preferences may be accommodated.
- Internship is paid
- Nagra takes care of the work permit application
- MSc Thesis projects may be possible discussion during the internship
- Each intern gets assigned a technical coordinator
- Wherever feasible Nagra interns are encouraged to:
- Publish scientific papers & participate in industry events and conferences
- Get involved in experimental activities

HAA-ELB design optimisation experiments in Mellingen

WATCH THIS SPACE!

All internship projects available on <u>our</u> <u>homepage.</u>

Review periods can also be found on homepage: applications sent before these dates are reviewed in the next available review period.

Application deadlines for summer internship:

- 17.02.2024 (interviews early March)
 preferred
- 14.04.2024 (interviews early May)

Contact us:

For questions concerning the programme: andrea.cavaliere@nagra.ch

For applications:

bewerbungen@nagra.ch

thank you for your attention

