Neutronics Exercises

16	REACTIVITY FEEDBACKS	2
16.1	Doppler effect reactivity	2
	Doppler coefficient	
	Shut down margin	
16.4	Reactivity coefficients	5

16 Reactivity feedbacks

16.1 Doppler effect reactivity

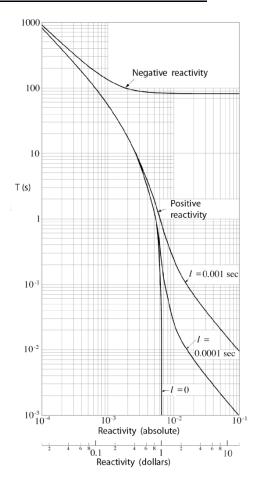
Exercise description:

Consider the following situation:

In a reactor fuelled with ^{235}U and with $\Lambda = 10^{-3}$ s, the average fuel temperature (Tc) changes suddenly from 400°C to 1050°C.

- (a) What is the step change in reactivity (in \$), if the fuel temperature (Doppler) coefficient is: (i) $+3.10^{-6}$ /°C, (ii) -1.10^{-5} /°C? Assume that there are no other changes such as control rod movements, change in moderator temperature, etc.
 - (b) What is the stable period in the two cases?
- (c) Estimate the corresponding values, assuming the complete absence of delayed neutrons.

Knowledge to be applied: $\rho_s = \Delta T_c \alpha_c$,


figure,
$$T' = \frac{\Lambda}{|\rho|}$$

Expected results: (a, i) $\rho_s = 30$ ¢

(a, ii)
$$\rho_s = -1$$
\$

(b, i)
$$T(30c) = 20s$$
 (b, ii) $T(-1s) = 85s$

$$(c, i) T' = 0.51s (c, ii) T' = 0.15s$$

16.2 Doppler coefficient

Exercise description:

The temperature dependence of the resonance integral for fertile captures may be expressed by the following empirical relation: $I_{\rm eff}(T_c) = I_{\rm eff}(300^{\circ}K) \left[1 + C\left(\sqrt{T_c} - \sqrt{300}\right)\right]$, where T_c is the fuel temperature in K, and C is a function of the fuel properties.

Constant C is given approximately by: $C = C_1 + (C_2/a\rho)$, where C_1 , C_2 are constants for a given fuel type, a is the fuel radius in cm, and ρ is the fuel density in g/cm^3 .

- (a) Show that, for a thermal reactor, the resulting expression for the fuel temperature coefficient (due to broadening of the resonances) is: $\alpha_c = -\frac{c}{2\sqrt{T_c}} \ln\left[\frac{1}{p(300^\circ K)}\right]$, where p is the resonance escape probability. Consider now a reactor fuelled with metallic uranium (ρ =19.1 g/cm³), in which p=0.878 for T_c=300K. The fuel rods have a diameter of 2.8 cm.
- (b) Calculate the Doppler coefficient corresponding to a fuel temperature of (i) 450°C, (ii) 1100°C, using appropriate data from the table. N.B.: $\alpha_c \simeq \frac{1}{k} \frac{\mathrm{dk}}{\mathrm{dT}_c} \simeq \frac{1}{p} \frac{\mathrm{dp}}{\mathrm{dT}_c}$ with $p = \exp\left(-\frac{N_c V_c I_{\mathrm{eff}}}{\xi_m N_m V_m}\right)$

Combustible	C ₁ [10 ⁻⁴]	C ₂ [10 ⁻²]
U ²³⁸ (métal)	48	1.28
U ²³⁸ (oxyde)	61	0.94
Th (métal)	85	2.68
ThO ₂	97	2.40

Knowledge to be applied:
$$\alpha_c \simeq \frac{1}{p} \frac{\mathrm{dp}}{\mathrm{dT}_c}$$
, $p = \exp\left(-\frac{N_c V_c I_{\mathrm{eff}}}{\xi_m N_m V_m}\right)$, $I_{\mathrm{eff}}(T_c) = I_{\mathrm{eff}}(300^\circ K)[1 + C(\sqrt{T_c} - \sqrt{300})]$

Expected results: (a)
$$\alpha_c = -\frac{c}{2\sqrt{T_c}} \ln \left[\frac{1}{p(300^\circ K)} \right]$$

(b, i)
$$\alpha_c(723^{\circ}K) = -1.28 \times 10^{-5}/^{\circ}C$$
 (b, ii) $\alpha_c(1373^{\circ}K) = -9.3 \times 10^{-6}/^{\circ}C$

16.3 Shut down margin

Exercise description:

Consider a homogeneous thermal reactor, fuelled with highly enriched uranium (i.e. with p= ϵ =1), which is critical at a temperature of 230°C. The reactor is shut down and the temperature drops to the ambient value of 20°C. The change in temperature modifies the fuel and moderator cross-sections, such that the reactor parameters vary

	230 °C	20 °C
$\eta_{\rm c}$	2.055	2.060
f	0.592	0.596
M^2 (cm ²)	32.0	31.5

according to the values in the table. The delayed neutron fraction for U-235 is equal to 0.0065.

- (a) What is the critical size of the reactor at 230°C, assuming spherical geometry?
- (b) Estimate the minimal reactivity worth of control rods needed to ensure a safety margin of 2\$ for the reactor's shutdown state at 20°C. You may neglect the changes in density and dimensions with temperature.

Knowledge to be applied: $B^2 = \left(\frac{\pi}{R_e}\right)^2 = B_m^2 = \frac{k_{\infty} - 1}{M^2}$, $k_{\text{eff}} = \frac{k_{\infty}}{1 + B^2 M^2}$, safety margin of 2\$,

Expected results: (a) $R_e = 38.2 \text{cm}$ (b) $\rho_{\text{min}} = 3.8$ \$

16.4 Reactivity coefficients

Exercise description:

In a certain PWR, the total reactivity associated with going from cold to hot power conditions for the moderator is -\$ 6.00 and that associated with the fuel is -\$ 4.14. In this reactor cold temperature is $T_c\!\!=\!\!20$ C; mean moderator operating temperature is $T_H\!\!=\!\!320$ C; and the mean fuel operating temperature is $T_f\!\!=\!\!1700$ C . Find the moderator and fuel temperature reactivity coefficients.

Expected results: $\alpha_M = -0.02 \ \text{s/°C}; \ \alpha_F = -0.00246 \ \text{s/°C}$