Neutronics Exercises

14	DEPLETION	2
14.1	Fuel evolution	2
	Average burn-up	
14.3	Xe poisoning I	4
14.4	Xe poisoning II	5

14 Depletion

14.1 Fuel evolution

Exercise description:

For a reactor fuelled with low enriched uranium, show that the 239 Pu concentration (relative to that of 235 U), after an irradiation corresponding to a fluence of θ n/cm² may be expressed as:

$$\frac{N_9(\theta)}{N_5(\theta)} = \frac{N_{8,0}}{N_{5,0}} \frac{\sigma_{a,8}}{\sigma_{a,9}} \frac{1 - e^{-\sigma_{a,9}\theta}}{e^{-\sigma_{a,5}\theta}}$$

 $N_{5,0}$ being the initial 235 U concentration and $N_{8,0}$ being that of 238 U. It is assumed that the 238 U concentration remains constant (it indeed does not vary significantly). $\sigma_{a,5}$, $\sigma_{a,8}$, and $\sigma_{a,9}$ are the microscopic (1-group) absorption cross-sections of 235 U, 238 U and 239 Pu, respectively.

(a) Calculate the 239 Pu/ 235 U ratio for a reactor operating during 2yrs with a constant flux of 4.10^{13} n/cm².s, given the following data:

$$\sigma_{a5} = 344 \ b \qquad \qquad \sigma_{a8} = 1.5 \ b \qquad \qquad \sigma_{a9} = 820 \ b$$

$$N_{50} = 1.7 \cdot 10^{20} \ cm^{\text{-3}}, \qquad \qquad N_{80} = 6.7 \cdot 10^{21} \ cm^{\text{-3}}$$

(b) What is the ratio of the fission rate of 239 Pu to that of 235 U at the end of the 2-year period? Take $\sigma_{f,5}$ = 293b and $\sigma_{f,9}$ = 607b.

Knowledge to be applied:
$$\theta = \int_{t} \Phi(t) dt$$
, $\frac{N_{9}(\theta)}{N_{5}(\theta)} = \frac{N_{8,0}}{N_{5,0}} \frac{\sigma_{a,8}}{\sigma_{a,9}} \frac{1 - e^{-\sigma_{a,9}\theta}}{e^{-\sigma_{a,5}\theta}}$, $R = \Phi N \sigma$
Expected results: (a) $\frac{N_{9}(\theta)}{N_{5}(\theta)} = 0.15$ (b) $\frac{F_{9}}{F_{5}} = 0.31$

14.2 Average burn-up

Exercise description:

- (a) Let's consider a $100MW_{th}$ reactor made of 120 fuel assemblies. Knowing that each fuel element contains 10 kg of fuel, what is the average burn-up in MWd/kg after a 1-year operational period?
- (b) The initial percentage of fissile atoms in the fuel is 15.2%. What is the fraction of fissile material which, on average, (i) has undergone fission, (ii) has been destroyed?

(Consider that 10^6 MWd correspond to the fissioning of 1t of fissile material and use $\sigma_f = 582$ b, $\sigma_a = 681$ b for the fissile nuclide.)

Expected results: (a) $Burnup = 30.4 \frac{MWd}{kg}$ (b) (i) $F_{fissioned} = 20\%$ (ii) $F_{destroyed} = 23.4\%$

14.3 Xe poisoning I

Exercise description:

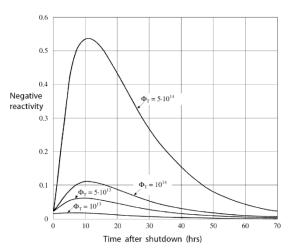
(a) ¹³⁵Xe is the fission product with the largest poisoning effect in a thermal reactor. The direct production rate from fission is relatively low ($\sim 0.3\%$) and it is primarily formed by the $\beta^$ decay of the much more abundant fission product, ^{135}I (production rate ~ 6.1%): $I\overline{\beta}^-, T_{1/2} = 6.6 \overrightarrow{h} \text{Xe} \overline{\beta}^-, T_{1/2} = 9.1 \overrightarrow{h} \text{Cs(stable)}$

For a reactor at steady-state with a flux Φ , show that the equilibrium xenon concentration (relative to the number density of fissile atoms) is given by: $\frac{N_x}{N_f} = \frac{(\gamma_i + \gamma_x)(\sigma_f/\sigma_x)}{1 + \lambda_x/(\phi\sigma_x)}$, where γ_i is the fission yield for 135 I, γ_x that for 135 Xe, σ_f the microscopic cross-section for thermal fission, σ_x that for Xe absorption, and λ_x is the disintegration constant for ¹³⁵Xe. (N.B.: One may neglect absorptions in ¹³⁵I.)

- (b) Show that the reactivity effect of ¹³⁵Xe at equilibrium in a large thermal reactor fuelled with ²³⁵U, is given approximately by: $\rho = -\frac{\gamma_i + \gamma_x}{\tilde{\nu}p\varepsilon(1+\lambda_x/\phi\sigma_x)}$, where $\tilde{\nu}$, p, ε have their usual meaning. Calculate the reactivity effects for a reactor operating with a thermal neutron flux of (i) 10¹⁰, (ii) 10^{12} , (iii) 10^{14} n/cm².s, using the data from table.
- (c) What is theoretically the maximal reactivity effect?

Expected results: (b) $\rho = (i) -3.4.10^{-5}$, (ii) $-3.0.10^{-3}$, (iii) -2.5% (c) $\rho_{\text{max}} = -2.75\%$

14.4 Xe poisoning II


Exercise description:

A reactor is in steady-state operation with equilibrium concentrations $N_{i,0}$ and $N_{x,0}$ of ^{135}I and ^{135}Xe , respectively. The reactor is shutdown.

(a) Show that the ¹³⁵Xe concentration varies as: $N_x(t) = N_{x,0}e^{-\lambda_x t} + \frac{\lambda_i}{\lambda_i - \lambda_x}N_{i,0}(e^{-\lambda_x t} - e^{-\lambda_i t})$

Considering that $N_{i,0}$ and $N_{x,0}$ depend on the flux level, it is clear that the increase in the Xe concentration following the shutdown can prevent restarting the reactor during a certain time, in the case of a high-flux reactor. The figure alongside indicates the evolution of the Xe-concentration (through the negative reactivity in the system due to the presence of Xe-135) after reactor shutdown for different operational flux values. Consider now the case of a nominal flux value of 10^{14} n/cm².s.

(b) Estimate the waiting time necessary in order to be able to restart the reactor, if the maximal reactivity reserve held by the control system is: (i) 10%, (ii) 5%, (iii) 2%. (Assume that it is not

possible to restart before the Xe concentration has passed its peak value.)

Knowledge to be applied: After t=0, $\frac{dN_x(t)}{dt} = -\lambda_x N_x(t) + \lambda_i N_i(t)$,

Expected results: (a) $N_x(t) = N_{x,0}e^{-\lambda_x t} + \frac{\lambda_i}{\lambda_i - \lambda_x} N_{i,0} \left(e^{-\lambda_x t} - e^{-\lambda_i t} \right)$ (b) reading off from the curve $\Phi = 10^{14}$, the waiting time is: (i) $t \approx 10h$, (ii) $t \approx 31h$, (iii) $t \approx 44h$,