Solutions serie 3

1 Primary ionization / Efficiency

Avec $\langle n_p \rangle \approx 22 \text{ cm}^{-1}$, for a layer with the thickness of 1mm, $\langle n_p \rangle = 2.2$. the maximum efficiency is

$$\epsilon_{\text{det}} = 1 - e^{-\langle n_p \rangle} = 1 - e^{-2.2} = 88.9\%$$

2 Photon interactions

1. With the formula given in the notes, the efficiency for the different processes as a function of the energy of the Z and the reduced photon energy $\epsilon = E_{\gamma}/m_e$:

	Z	ϵ	$\sigma_{\rm ph}$ [b]	$\sigma_{\rm c}~[{ m b}]$	$\sigma_{\rm p}~[{ m b}]$	dominant process
a)	13	2	$5 \cdot 10^{-4}$	2.74	0	Compton
b)	1	0.2	$3 \cdot 10^{-6}$	0.49	0	Compton
c)	26	0.2	35.7	12.8	0	Photo elctric
d)	6	20	$1 \cdot 10^{-6}$	0.30	0.07	Compton
e)	82	20	0.53	4.14	13.4	pair production

2. With $P=(k,\vec{k})$, $P'=(k',\vec{k'})$ the four vector of the incident photon and the diffused photon are: $P_0=(m_e,\vec{0})$, $P_e=(E,\vec{p})$ the one for the electron in rest and the recoiled electron are also: $T=E-m_e=k-k'$ the kinetic energy of this electron.

With conservation:

$$P = P' + P_e - P_0$$

 $k = k' + E - m_e = k' + T$
 $\vec{k} = \vec{k}' + \vec{p}$

One can express p^2 in two different ways :

$$p^{2} = k^{2} + k'^{2} - 2\vec{k} \cdot \vec{k}' = k^{2} + k'^{2} - 2kk' \cos \theta$$

$$p^{2} = E^{2} - m_{e}^{2} = T^{2} + 2m_{e}T$$

$$= (k - k')^{2} + 2m_{e}(k - k')$$

$$k^{2} + k'^{2} - 2kk' \cos \theta = k^{2} + k'^{2} - 2kk' + 2m_{e}T$$

$$kk' \cos \theta = kk' - m_{e}T$$

One can replace k' par k-T,

$$m_e T = (1 - \cos \theta)(k^2 - kT)$$
$$T(m_e + k(1 - \cos \theta)) = k^2(1 - \cos \theta)$$

$$T = \frac{k^2(1 - \cos \theta)}{m_e + k(1 - \cos \theta)} = \frac{E_{\gamma}^2(1 - \cos \theta)}{m_e + E_{\gamma}(1 - \cos \theta)}$$

The energy of the electron is minimal for $\theta = 0$, soit $T \approx 0$. It is maximal therefore at $\theta = \pi$, which is when the photon direction is backwards. This is the so called Compton Edge

$$T = \frac{2E_{\gamma}^2}{m_e + 2E_{\gamma}} = E_{\gamma} \frac{2E_{\gamma}}{m_e + 2E_{\gamma}} = E_{\gamma} \frac{1}{1 + \frac{m_e}{2E_{\gamma}}} \xrightarrow{E_{\gamma} \gg m_e} E_{\gamma} - \frac{m_e}{2} \quad \text{donc} \quad k' = \frac{m_e}{2}$$