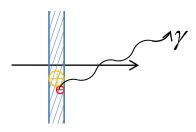
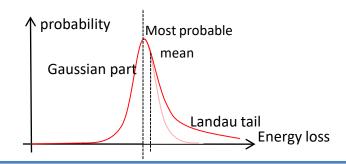
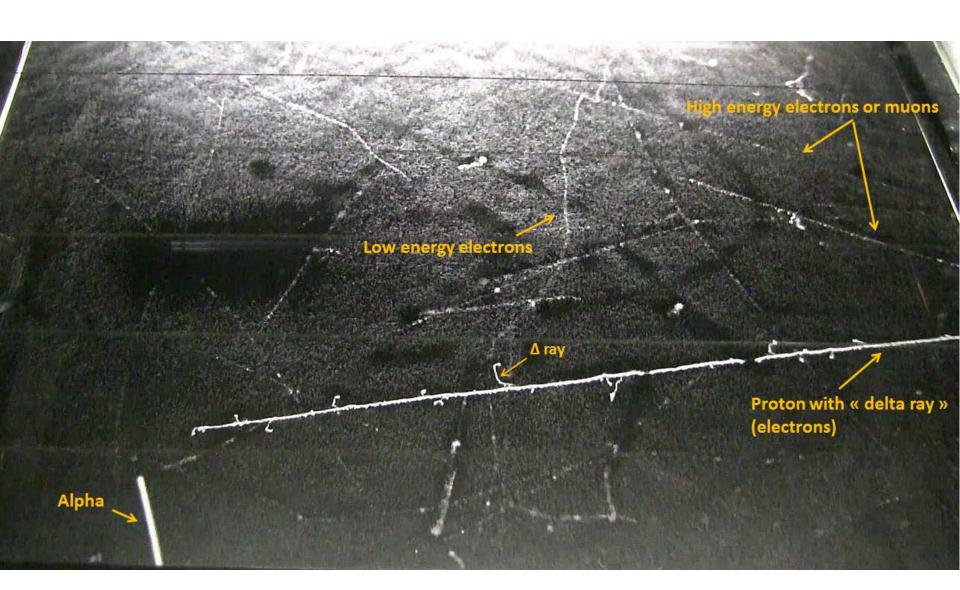

Measure the energy loss of 10'000 "identical" charged heavy particles (same mass and same energy) traversing a layer of material. What is the distribution of the amount of energy loss?

Bethe-Bloch only gives the mean dE/dX!

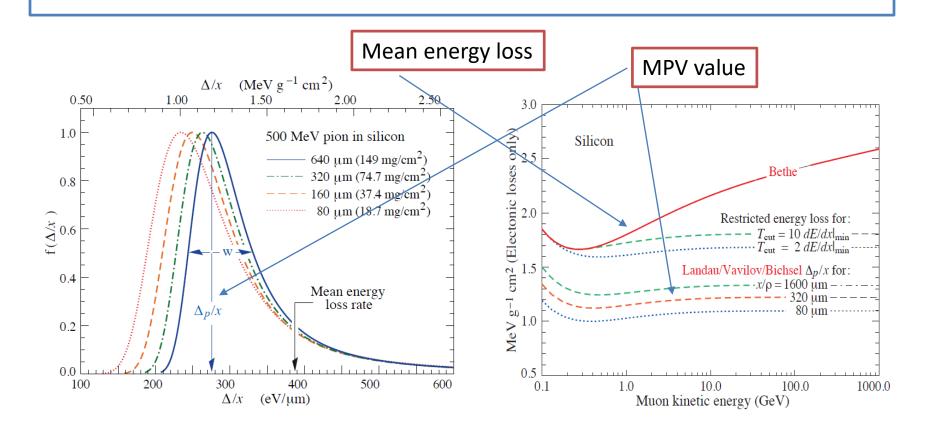
Thick absorber: Always contributions from many exchanges to total energy loss in a layer


- -> Central limit theorem applies
- -> Gaussian distribution of energy loss




<u>Thin absorber</u>: <u>Most of the time</u>, still <u>many</u> exchanges of low energy photons (those have the highest probability) -> Gaussian part

However, <u>sometimes</u> one high-energy exchange producing $\delta\delta$ -rays can dominate -> large tail, together: Landau distribution


Cloud chamber can reveal "Delta rays"

Landau distribution

The fluctuations of energy loss of a charged particle in a thin layer (concerns tracking detectors) was described by Landau (1944). The Landau distribution is an asymmetric probability distribution.

- Small energy transfers are most likely
- Tail is caused by rate collisions with small impact parameter. In these collisions, electrons with high energies (keV) are produced called δ-electrons

Energy loss of e⁺ and e⁻

They are special because of their low mass (m_e=511keV/c²)

Two main effects for energy loss: ionization and radiation (Bremsstrahlung)

<u>lonization</u>: $e^- + atom -> e^- + ion + e^-$

The Bethe-Bloch formula needs modification:

- Identical mass for target electrons and ionizing particle
- Scattering of identical, undistinguishable particles
- electrons have very small mass => β->1

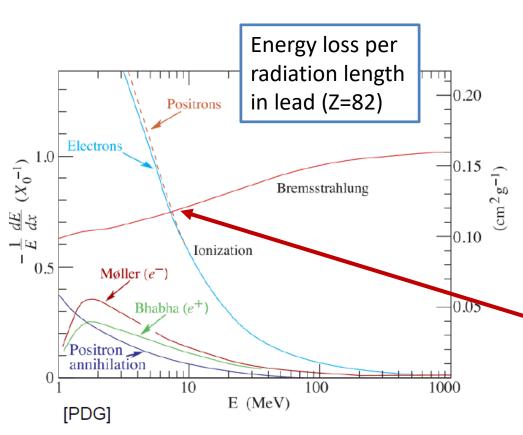
$$\left\langle -\frac{dE}{dX} \right\rangle_{tot} = \left\langle -\frac{dE}{dX} \right\rangle_{ion} + \left\langle -\frac{dE}{dX} \right\rangle_{Brems}$$

$$\left\langle -\frac{dE}{dX}\right\rangle_{ion} = K \frac{Z}{A} \frac{1}{\beta^2} \left[\ln \frac{m_e c^2 \beta^2 \gamma^2 T}{2I^2} + F(\gamma) \right]$$

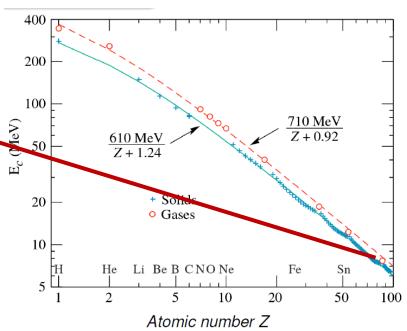
T: kinetic energy of e, $W_{max}=1/2T$

<u>Bremsstrahlung</u>: e^- + field (nucleus) -> e^- + γ

Deceleration in Coulomb-field of nuclei => radiation


Dominates above a certain energy, the critical energy E_c (O(10Mev) for solids)

Approx.:


$$-\left(\frac{dE}{dX}\right)_{Brems} = 4\alpha N_A r_e^2 K \frac{Z^2}{A} E \ln \frac{183}{\sqrt[3]{Z}} \equiv \frac{E}{X_0}$$

Energy loss of electrons and E_c

Critical Energy E_c:

- $\left(\frac{dE}{dx}\right)_{Brems} = \left(\frac{dE}{dx}\right)_{ion}$
- $E_c \approx \frac{610 MeV}{Z + 1.24}$

- Ionisation decreases logarithmically with E
- Bremsstrahlung increases linear with E
- Bremsstrahlung dominates for E>1GeV

Radiation length X₀

Radiation length X_0 is a characteristic length for both Bremsstrahlung and Pair production!

Bremsstrahlung

High energy electrons: $-\frac{dE}{dz}\Big|_{rad} = \frac{E}{X_0}$

$$\langle E(z) \rangle = E_0 \cdot \exp\left(-\frac{z}{\chi_0}\right)$$

 X_0 = average distance needed to reduce the energy of a high-energy electron by a factor of 1/e

i.e.
$$\langle E(X_0) \rangle = 36.8\% E_0$$

Pair production

High energy photons: $\sigma_{pp} pprox rac{7}{9} rac{M}{
ho N_A X_0}$

$$\langle I(z) \rangle = I_0 \cdot \exp\left(-\frac{7}{9}\frac{z}{X_0}\right)$$

 $X_0 = 7/9$ of the mean free path for pair production by a high-energy photon

The thickness of materials (detectors or absorbers) are often given in units of X_0 ,

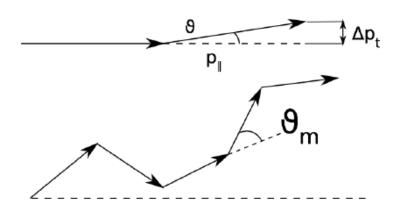
i.e.
$$\langle I(X_0) \rangle = 45.9\% I_0$$

Calculation:
$$X_0 \rho [g/cm^2] = \frac{716.4g/cm^2 A}{Z(Z+1) \ln(287/\sqrt{Z})}$$

 ρ = density, Z = atomic number, A = mass number

	X _{0*} ρ [g/cm²]	X ₀ [cm]	E _c [MeV]
H ₂	63	700000 (gas)	340
H ₂ O	36	36	93
Pb	6.3	0.56	6.9
Si	21.82	9.37	40.19
PS*	43.79	41.31	93.11

d=300 μ m of Si is equal to X/X $_0$ =0.32% or d=1.35mm polystyrene plastic fibres X/X $_0$ =0.33 %, (comparison of 0.3mm Si and 1.35mm PS)


http://pdg.lbl.gov/2019/AtomicNuclearProperties/HTML/polystyrene.html

^{*}Scintillating plastic fibres made of polystyrene (C₆H₅CHCH₂)_n

Multiple (Coulomb) scattering

Incident particle can also scatter in the Coulomb field of the NUCLEUS!

The consequence is a deflection of trajectory which depends on the factor Z!

$$\frac{d\sigma}{d\Omega} \propto \frac{1}{\sin^4(\Theta/2)}$$

Single collision (thin absorber) is called Rutherford scattering Many (>20) collisions requires statistical treatment "Molière theory"

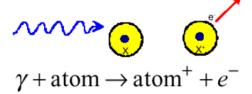

Multiple (Coulomb) scattering "Molière theory"

Obtain the mean deflection angle in a plane by averaging over many collisions and integrating over b:

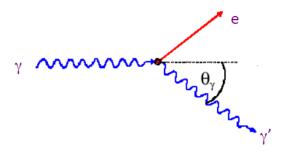
$$\sqrt{\langle heta^2(x)
angle} = heta_{\mathsf{rms}}^{\mathsf{plane}} = rac{13.6 \; \mathsf{MeV}}{eta pc} z \sqrt{rac{x}{X_0}} (1 + 0.038 \ln rac{x}{X_0})$$

- Material constant X₀: radiation length
- $\propto \sqrt{x} \rightarrow \text{use thin detectors}$
- $\propto 1/\sqrt{X_0} \rightarrow \text{use light detectors}$
- $\propto 1/\beta p \rightarrow$ serious problem at low momenta

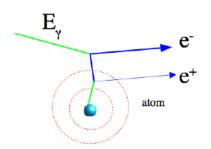
In 3 dimensions:
$$\theta_{\rm rms}^{\rm space} = \sqrt{2} \; \theta_{\rm rms}^{\rm plane}$$
 13.6 \rightarrow 19.2


Exercise -> π^+ (p=180GeV/c), x/X₀=1%, track deviation? (6.2 μ rad)

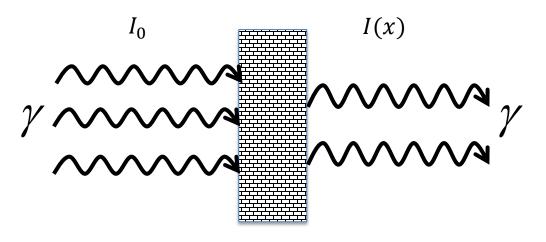
Multiple scattering limits the momentum and tracking resolution, particularly at low momenta!


Photons

3 important processes that either create charged particles from photons or/and transfer energy to charged particles allowing photon detection via charged particle detection.


 Photoelectric effect
 The photon is absorbed by an electron from the atom shell and the transferred energy liberates the electron

• Compton scattering Elastic scattering of a photon on a quasi fee electron



 Pair production
 Electron-positron pair production by a photon in the field of a nucleus. The minimum energy for the incident photon is 2m_e. This effect dominates at high energies.

Photon absorption coefficient and mean free path

Cross section: $\sigma = \sigma(E, Z, A)$ Cross section: $[\sigma] = barn = 10^{-24} cm^2$

$$I(x) = I_0 e^{-\mu x}$$

$$\mu = N\sigma = \frac{N_A}{M}\rho\sigma \equiv \frac{1}{\lambda}$$

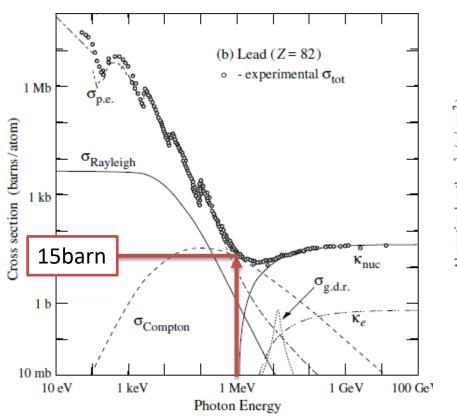
μ: absorption coefficient

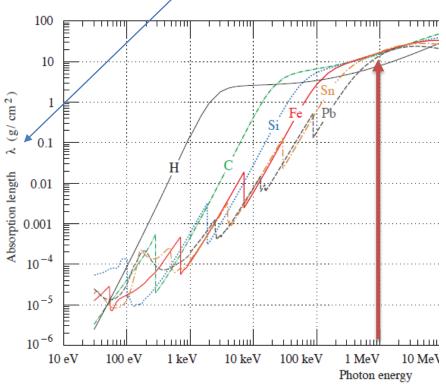
N: atom density

M: molar mass

λ: mean free path of absorption length

 λ is the average distance travelled by a particle between two successive collisions.


Question: What is the value for λ for a γ of 1MeV energy in Pb?


Absorption length of γ

$$\frac{N_A}{M}\rho\sigma = \frac{1}{\lambda}$$

$$\lambda = \frac{M}{N_A \rho \sigma} = \frac{207.2g/mol}{6.022 \cdot 10^{23} 1/mol \cdot 11.3g/cm^3 \cdot 15 \cdot 10^{-24} cm^2} = 2.0 \text{cm}$$

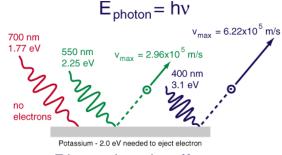
Note: The absorption length is scaled with the density

Photoelectric effect

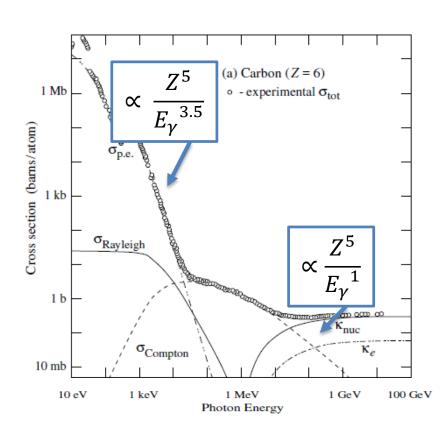
At low energy ($I_0 \ll E_{\gamma} \ll m_e c^2$):

$$\sigma_{ph} = \alpha \pi a_B Z^5 (\frac{I_0}{E_{\gamma}})^{3.5} \propto \frac{Z^5}{E_{\gamma}^{3.5}}$$

At high energy ($E_{\gamma} \gg m_e c^2$):

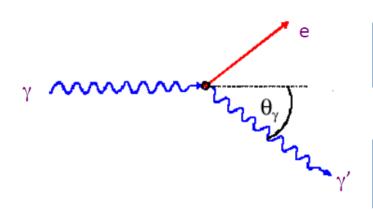

$$\sigma_{ph} = 2\pi r_e^2 \alpha^4 Z^5 \left(\frac{m_e c^2}{E_{\gamma}}\right) \propto \frac{Z^5}{E_{\gamma}^{-1}}$$

I₀: Ionisation potential


Example: $a_B = 0.53 * 10^{-10} \text{ m}$

 $I_0 = 13.6 \text{ eV}$

Strong Z dependence of cross section!

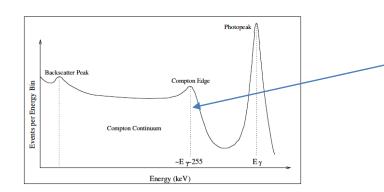


Photoelectric effect

Compton scattering

Scattering of γ on quasi-free electrons: $\gamma + e \rightarrow \gamma' + e$

Energy of the outgoing γ :


$$E_{\gamma'} = \frac{E_{\gamma}}{1 + (E_{\gamma}/m_e c^2)(1 - \cos\theta_{\gamma})}$$

Kinetic energy of the outgoing e:

$$E_{kin}^e = E_{\gamma} \frac{(1 - \cos\theta_{\gamma})(E_{\gamma}/m_e c^2)}{1 + (E_{\gamma}/m_e c^2)(1 - \cos\theta_{\gamma})}$$

Backward scattering $\theta \gamma = \pi$:

$$E_{kin\,max}^{e} = E_{\gamma} \frac{2(E_{\gamma}/m_{e}c^{2})}{1 + 2(E_{\gamma}/m_{e}c^{2})}$$

Example:

$$E_{\gamma} = 1 MeV$$

 $E_{\gamma' min} = 0.2 MeV$
 $E_{bin max}^e = 0.8 MeV$

The e misses some energy!

Compton cross section

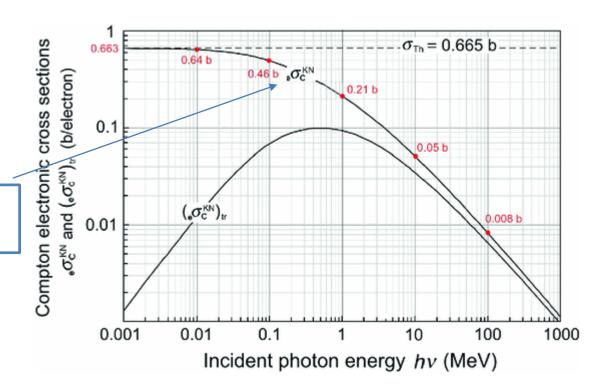
The cross section for the Compton scattering is given by the formula from Klein-Nishina. It is given as the cross section per electron in the atom.

For small photon energy ($E_{\gamma} \ll m_e c^2$):

$$\sigma^e_c = \sigma_{Th} (1 - E_{\gamma} / m_e c^2)$$

For high photon energy ($E_{\nu} \gg m_e c^2$):

Thomson cross section:


$$\sigma_{Th} = \frac{8\pi}{3r_e^2} = 0.665 \ barn$$

 $\sigma^e_c \propto (\ln E_\gamma) / E_\gamma$

Cross section per atom:

$$\sigma^{atom}{}_{c} = \mathbf{Z}\sigma^{e}{}_{c}$$

Cross section for Compton scattering

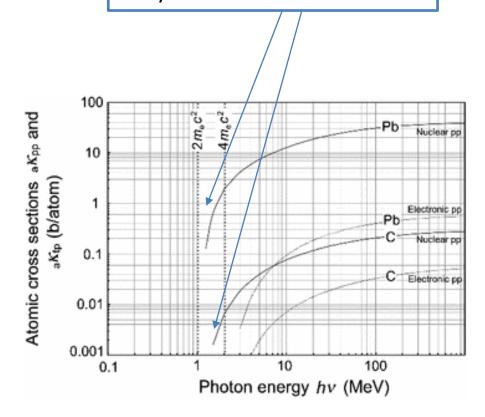
Pair production

For energy-momentum conservation this process can only take place in an EM filed

Pair production in the field of the nucleus:

Threshold process: $E_{\gamma} > 2m_e c^2 (1 + m_e/m_x)$

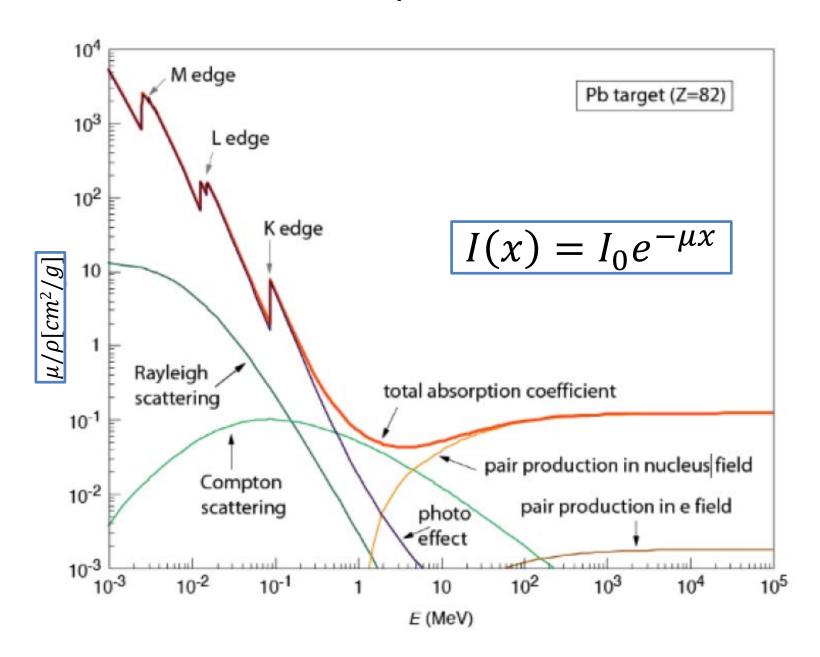
$$\varepsilon = E_{\gamma}/m_e c^2$$


$$1 \ll \varepsilon < 1/\alpha Z^{1/3}$$

$$\sigma_{pair}^{atom} = 4\alpha r_e^2 \mathbf{Z}^2 (\frac{7}{9} \ln(2\varepsilon) - \frac{109}{54})$$

$$\varepsilon \gg 1/\alpha Z^{1/3}$$

$$\sigma_{pair}^{atom} = 4\alpha r_e^2 Z^2 (\frac{7}{9} \ln \left(\frac{183}{Z^{1/3}}\right) - \frac{1}{54})$$


 m_x :Target mass (lighter nuclei means higher threshold), pair production on electrons less likely

Dependence on Z and E

Mass absorption coefficient

