
Interaction of charged (heavy) 
particles in matter

Lecture 2



Principle of particle detection

In order to detect a particle it must interact with 
the material of the detector. 
A transfer of energy between particle and the 
detector medium is required.

The detection of particles happens via their 
energy loss!



Particle type: e±, µ±, p, α, ɣ

Particle properties: Z, m, E, Θ

Performance of particle detectors
Detection efficiency εeff = Ndetected particle / Nincident particles

Position resolution σx

Energy resolution σE/E
Time resolution σt , CTR, SPTR
Particle identification (PID)  Separation power (e, µ, τ, ν, n, K, π)

Detector medium characteristics: 
Z, A, ρ, d



Interaction in matter overview
• Charged particles:

– Ionisation and excitation of the electrons on the shell of the absorber 
medium

– Coulomb scattering in the field of the nucleus
– Bremsstrahlung as a consequence of the deflection and therefore 

acceleration
• Photons: 

– Photo electrical effect
– Compton scattering
– Pair production

• Hadrons:
– Inelastic scattering ( hadron + nucleus -> new hadrons K, π±0, n)

• Neutrinos:
– Scattering on nucleus ( νe + n0 → p++ e-)

....



Neutrino events in Emulsion Cloud Chamber (ECC)



Display of the reconstructed emulsion tracks 
of one of the νe candidate events. The 
reconstructed neutrino energy is 32.5 GeV. 
Two tracks are observed at the neutrino 
interaction vertex. One of the two generates 
an electromagnetic shower and is identified 
as an electron. In addition, two showers from 
γ conversions are observed (overlapping in 
this projection), starting from 2 and 3 films 
downstream of the vertex. 



Charged heavy particle in matter



Dominant process for energy loss is the electromagnetic interaction with 
electrons of atoms.

Interaction with nuclei negligible for energy loss, but they play a role in the 
angular deflection (multiple scattering).

Particle M: mass,                     v: velocity (v=βc)
Material refractive index: n,    dielectric constant:  ε = ε1 + i ε2 ,  𝑛𝑛2 = 𝜀𝜀1

dispersion absorption
𝛾𝛾

Θ𝐶𝐶

𝑃𝑃 = 𝐸𝐸
𝑝𝑝

𝑃𝑃𝛾𝛾
=

𝜔𝜔
𝑘𝑘

𝑃𝑃𝑃 = 𝐸𝐸𝐸
𝑝𝑝′

Virtual or real photon

Assumption: 𝜔𝜔 << 𝛾𝛾𝛾𝛾 = 𝐸𝐸 ⇒ 𝜔𝜔 << 𝐸𝐸 ⇒ 𝑘𝑘 << 𝑝⃗𝑝

1) Energy-momentum conservation: 𝜔𝜔 = 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒. . . = 𝑣𝑣𝑣𝑣 cosΘ𝐶𝐶

2) Dispersion relation: 𝜔𝜔2 =
𝑘𝑘2𝑐𝑐2

𝜀𝜀
𝜀𝜀
𝑣𝑣
𝑐𝑐 cosΘ𝐶𝐶 = 1

With: 𝑐𝑐𝑚𝑚 =
𝑐𝑐
𝜀𝜀

=
𝑐𝑐
𝑛𝑛 and 𝛽𝛽𝑚𝑚 =

𝑣𝑣
𝑐𝑐𝑚𝑚 cosΘ𝐶𝐶 = 1/𝛽𝛽𝑚𝑚



3 Regions, depending on the photon:
1) Below excitation energy (optical region)

Cherenkov radiation

𝜀𝜀 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝜀𝜀 > 1
⇒ Θ𝐶𝐶 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑓𝑓𝑓𝑓𝑓𝑓 𝛽𝛽𝑚𝑚 > 1

2) Excitation energy (2eV … 5keV) (resonance region)

Photons are virtual, no radiation but ionization by exchange of virtual photons. 

𝜀𝜀 = 𝜀𝜀1 + 𝑖𝑖𝜀𝜀2 complex with                                   can oscillate𝜀𝜀2 > 0, 𝜀𝜀1~1

3) Above excitation energy (X-ray region) 
Little absorption: 

Photons are virtual, no radiation except at discontinuities
Transition radiation 

𝜀𝜀2 << 1, 𝜀𝜀1 < 1
𝛾𝛾 𝛾𝛾



3 Regions, depending on the photon energy:

𝜀𝜀2

1               10             100           1K                10K          100K         Photon energy [eV]

𝜀𝜀1

1               10             100           1K                10K          100K         Photon energy [eV]

1

Optical Resonance X-ray

Cherenkov 
radiation

Ionization Transition radiation

Re(ε)>1, 
Im(ε)=0

Re(ε)>oscillates, 
Im(ε)>0

Re(ε)<1, 
Im(ε) ->0
(vacuum properties, ε=1)



Transverse range of virtual photons 
relativistic riseIn the resonance region: What is the transverse range of the virtual photons? 

How far can they ionize?

Dispersion relation: 𝜔𝜔2 =
𝑘𝑘2𝑐𝑐2

𝜀𝜀

2-dimensionl (z: longitudinal, y=transverse)                          from: 𝑘𝑘𝑧𝑧 =
𝜔𝜔
𝑣𝑣

𝜔𝜔 = 𝑣𝑣𝑣𝑣 cosΘ𝐶𝐶

𝑘𝑘2 = 𝑘𝑘𝑦𝑦2 + 𝑘𝑘𝑧𝑧2 =
𝜔𝜔2𝜀𝜀
𝑐𝑐2

⇒ 𝑘𝑘𝑦𝑦2 =
𝜔𝜔2𝜀𝜀
𝑐𝑐2

− 𝑘𝑘𝑧𝑧2 =
𝜔𝜔2𝜀𝜀
𝑐𝑐2

−
𝜔𝜔2

𝑣𝑣2

⇒ 𝑘𝑘𝑦𝑦 =
𝜔𝜔
𝑣𝑣

𝑣𝑣2𝜀𝜀
𝑐𝑐2 − 1 =

𝜔𝜔
𝑣𝑣 𝛽𝛽𝑚𝑚2 − 1

𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝛾𝛾𝑚𝑚 =
1

1 − 𝛽𝛽𝑚𝑚2



2 cases:
1) (faster than speed of light in medium, water, quartz,…) ky and kz

real -> a real wave (Cherenkov radiation) 
𝛽𝛽𝑚𝑚 > 1

2)                  (slower than speed of light in medium, gas) ky imaginary 
damping

Attenuation length:

Attenuation length increases linearly with                !
->Expansion of transverse field!
-> relativistic rise in energy loss!

𝛽𝛽𝑚𝑚 < 1

exp 𝑖𝑖(𝑘𝑘 ⋅ 𝑟𝑟 − 𝜔𝜔𝜔𝜔) = exp 𝑖𝑖
𝜔𝜔
𝑣𝑣

(𝑧𝑧 − 𝑣𝑣𝑣𝑣) exp −
𝑦𝑦
𝑦𝑦0

𝑦𝑦0 = −
𝑖𝑖
𝑘𝑘𝑦𝑦

=
𝑣𝑣
𝜔𝜔

1

1 − 𝛽𝛽𝑚𝑚2
=
𝛽𝛽𝑚𝑚𝛾𝛾𝑚𝑚
𝑘𝑘 =

𝑐𝑐
𝜔𝜔

𝛽𝛽
1
𝛾𝛾2 + 𝛽𝛽2(1 − 𝜀𝜀)

exp 𝑖𝑖(𝑘𝑘 ⋅ 𝑟𝑟 − 𝜔𝜔𝜔𝜔)

𝛽𝛽𝑚𝑚𝛾𝛾𝑚𝑚



Transverse range of virtual photons, relativistic rise:

2)
𝑦𝑦0 =

𝑐𝑐
𝜔𝜔

𝛽𝛽
1
𝛾𝛾2 + 𝛽𝛽2(1 − 𝜀𝜀)

(optical region)              because              for the optical region. 

If                    y0  increases until                 where                    Cherenkov radiation
sets in

𝜀𝜀1 > 1 𝜀𝜀 = 𝜀𝜀1 𝜀𝜀2 = 0

𝛽𝛽𝑚𝑚 → 1 𝛽𝛽𝑚𝑚 = 1 𝑦𝑦0 = ∞

(above ionization threshold)

y0  increases with  until           up to a maximum:

This is the “relativistic rise” increased transverse range -> interaction with 
more atoms effect saturates when:

𝜀𝜀1 < 1

𝛽𝛽𝑚𝑚

𝑦𝑦0 =
𝑐𝑐
𝜔𝜔

𝛽𝛽
1
𝛾𝛾2 + 𝛽𝛽2(1 − 𝜀𝜀)

𝛽𝛽𝛽𝛽→∞
𝑦𝑦0max =

𝑐𝑐
𝜔𝜔

1
1 − 𝜀𝜀



Transverse range of virtual photons, relativistic rise:

Fermi-Plateau

This saturation (described by ε) is classically due to the polarisation of the 
medium, which will screen the effect of remote atoms.

This effect is larger in denser media                      

“Density effect” -> see density correction in Bethe-Bloch

1 − 𝜀𝜀 ∝ 𝜌𝜌

(𝛽𝛽𝛽𝛽)𝑠𝑠𝑠𝑠𝑠𝑠 ≈
1

1 − 𝜀𝜀

(𝛽𝛽𝛽𝛽)𝑠𝑠𝑠𝑠𝑠𝑠 ∝
1
𝜌𝜌





Electronvolt “eV”

Measurement Unit SI value of unit 

Energy eV 1.602176634×10−19 J 

Mass eV/c2 1.782662×10−36 kg 

Momentum eV/c 5.344286×10−28 kg*m/s 

Temperature eV/kB 1.160451812×104 K 

Time ħ/eV 6.582119×10−16 s 

Distance ħc/eV 1.97327×10−7 m



(dE/dX) classical derivation (Bohr)

−
𝑑𝑑𝑑𝑑
𝑑𝑑𝑋𝑋

= 𝐾𝐾 𝑧𝑧2
𝑍𝑍
𝐴𝐴

1
𝛽𝛽2

1
2

ln
2𝑚𝑚𝑒𝑒𝑐𝑐2𝛽𝛽2𝛾𝛾2

𝐼𝐼
K = 4 𝜋𝜋 𝑒𝑒

4

𝑐𝑐2𝑚𝑚𝑒𝑒
𝑁𝑁𝐴𝐴 = 0.31 𝑀𝑀𝑀𝑀𝑀𝑀𝑐𝑐𝑐𝑐2/𝑔𝑔

• Mean energy loss normalized to the density of the absorber (x -> X)
• Almost independent of the material of the absorber ∝ Z/A (H is an exception) and ln 1

𝐼𝐼
• Particle “energy dependence” is ∝ 1/𝛽𝛽2

• Units [dE/dx]=MeV/cm   and  [dE/dX]=MeV cm2 g-1

∝ 1/𝛽𝛽2
Classical effect:
Faster particles have less time to 
interact and therefore loose less 
energy!



(dE/dX) Bethe-Bloch formula (quantum mechanical effects)
The mean energy loss of relativistic charged heavy particles is described by the 

“Bethe-Bloch equation”.

𝑊𝑊𝑀𝑀𝑀𝑀𝑀𝑀 =
2𝑚𝑚𝑒𝑒𝑐𝑐2𝛽𝛽2𝛾𝛾2

1 + 2𝛾𝛾𝑚𝑚𝑒𝑒/𝑀𝑀 + (𝑚𝑚𝑒𝑒/𝑀𝑀)2 ≈ 2𝑚𝑚𝑒𝑒𝑐𝑐2𝛽𝛽2𝛾𝛾2

(max. kin. energy transferred to a  free electron in single collision) 

𝑀𝑀 >> 2𝛾𝛾𝑚𝑚𝑒𝑒

−
𝑑𝑑𝑑𝑑
𝑑𝑑𝑋𝑋 = 𝐾𝐾𝑧𝑧2

𝑍𝑍
𝐴𝐴

1
𝛽𝛽2

1
2 ln

2𝑚𝑚𝑒𝑒𝑐𝑐2𝛽𝛽2𝛾𝛾2𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚
𝐼𝐼2 − 𝛽𝛽2 −

𝛿𝛿(𝛽𝛽𝛽𝛽)
2

Describes well the mean energy loss in the region of      0.1 < 𝛽𝛽𝛽𝛽 <1000               
for intermediate Z materials with an accuracy of a few percent. 

number of charges of incident particle density correction

relativistic rise

Classical without Wmax



Bethe-Bloch formula
Discussion:
• Function of β only independent of the incident particle mass!  
• Lower limit valid:      βc larger than that of orbital electrons
• Upper limit valid:      As long as radiative effects do not dominate
• Dependence on absorber material is small ∝ Z/A (H is an exception)
• I is the mean excitation energy
• Incident particle charge ∝ z2

Minimum ionization Particle (MIP)
In typical high energy physics experiments, most particles are MIP

Relativistic rise Transverse extension of ionization is a relativistic effect and 
increases for higher relativistic particles

Density effect limitation of transverse range through polarization of medium 
large correction for high density 50%-70% relativistic rise for noble gases 
much less for liquids and solids.

𝐼𝐼 ≈ (10 ± 1)𝑒𝑒𝑒𝑒 × 𝑍𝑍

𝛽𝛽𝛽𝛽 ≈ 3 − 3.5, 𝛾𝛾 = 1 + (𝛽𝛽𝛽𝛽)2 ≈ 3.2 − 3.6,𝛽𝛽 ≈ 0.95



∝ 1/𝛽𝛽2

∝ 2 ln (γ𝛽𝛽)





Range of particles
Integration of the energy loss from the initial energy E to zero allows to 
calculated the range.

The graph shows the range of heavy 
charged particles in liquid hydrogen, 
gaseous helium, carbon, iron, and 
lead.  
R: Range M: particle mass
Example: K+ of p=700MeV/c => 
β𝛾𝛾=1.42, ρPb=11.3g/cm3 R/M=396 => 
R=195gcm-2  (r=17cm)

𝑅𝑅 = �
𝐸𝐸

0 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑/𝑑𝑑𝑑𝑑



Bragg-Peak
The high specific energy per distance in a material of charged heavy particle 
produce a “sharp” penetration depth. The large energy deposit at for the 
“nearly” stopped particle is known by the name Bragg-Peak.  

The ion-beam treatment (proton, 12C) is used in medical applications allowing to deposit a large 
relative dose at a defined depth (water illustrated on the bottom right hand plot). Precise 3D 
irradiation profiles can be obtained. The large cost of the complex installation of hadron 
accelerators make the “conventional” gamma irradiation based on electron accelerators (Linacs) 
the more practical solution.   





Example: Energy loss in Silicon

Minimal ionizing

Proton 
heavier 
than μ
-> βγ smaller
for same E  

𝑑𝑑𝑑𝑑
𝑑𝑑𝑋𝑋

= 1.67𝑀𝑀𝑀𝑀𝑀𝑀 𝑔𝑔−1𝑐𝑐𝑐𝑐2 For d=300μm silicon (Si) , ρSi=2.33g/cm3

𝑤𝑤𝑒𝑒−ℎ = 3.6𝑒𝑒𝑒𝑒,∆𝐸𝐸 = 117𝑘𝑘𝑘𝑘𝑘𝑘 ⇒ 𝑁𝑁𝑒𝑒−ℎ = 32500

Note that the MPV (median) is smaller 
than the mean energy deposit!

𝑑𝑑𝑑𝑑
𝑑𝑑𝑋𝑋 = 1.89𝑀𝑀𝑀𝑀𝑀𝑀 𝑔𝑔−1𝑐𝑐𝑐𝑐2 For d=0.584mm polystyrene (PS) , ρPS=1.06g/cm3

∆𝐸𝐸 = 117𝑘𝑘𝑘𝑘𝑘𝑘

Comparison with “plastic” Polystyrene as used for SciFi using the same energy deposit:





Cherenkov radiation detector
A charged particle with velocity β in a medium with refractive index n may emit light 

along a conical wave front in form of Cherenkov radiation. 
The angle (Cherenkov cone half angle) of emission is given by: 
The number of photo electrons detected in a given device is: 

The detection efficiency and the Cherenkov angle depend on the photon energy E. As 
the typical energy dependent variation of n is small, the integral can be split into 
the mean value for the sin2θ and the detection efficiency.

cosΘ𝐶𝐶 =
1

𝛽𝛽 ⋅ 𝑛𝑛(𝜆𝜆)

𝑁𝑁𝑃𝑃𝑃𝑃 = 𝐿𝐿
𝛼𝛼2𝑧𝑧2

𝑟𝑟𝑒𝑒𝑚𝑚𝑒𝑒𝑐𝑐2
�𝜀𝜀(𝐸𝐸) ⋅ sin2 Θ𝐶𝐶 (𝐸𝐸) ⋅ 𝑑𝑑𝑑𝑑 ε(E):   Efficiency for collection and    

detection of Cherenkov light
L:       Length of the detector radiator
n(λ):  Wavelength dependant refractive index
N0: Detector quality factor 

𝑁𝑁0 =
𝛼𝛼2𝑧𝑧2

𝑟𝑟𝑒𝑒𝑚𝑚𝑒𝑒𝑐𝑐2
�𝜀𝜀 𝑑𝑑𝑑𝑑𝑁𝑁𝑃𝑃𝑃𝑃 = 𝐿𝐿𝑁𝑁0 sin2 Θ𝐶𝐶 with

Big Θ𝐶𝐶 ensures large number of photons!



Cherenkov angle for different radiators Example 3 RICH 
detectors at LHCb

• Each radiator is optimized for a different momentum region
• Particle identification PID is based on the measurement of the Cherenkov angle.

Δ𝛽𝛽
𝛽𝛽

= tanΘ𝐶𝐶⋅ ΔΘ𝐶𝐶

Small  θC ensures good velocity 
resolution  (i.e. mass) resolution.
But, NPE grows with θC and ΔθC , so 
The detector is inefficient if θC too 
small.

Small Θ𝐶𝐶 ensures good velocity resolution!

=> Use three different radiators for different β!  



RICH in LHCb



Cherenkov detectors



Transition radiation detector TRD

• The radiation energy per medium to vacuum boundary 
transition

• Plasma frequency                                  for plastic radiators   

• Detector with many transitions (foil stack) to enhance signal 
are usually build. Typical photon energy is in the x-ray 
region. Angular emission is very foreword.

• Particle must traverse a minimum distance, the so-called 
formation zone Zf in order to efficiently emit TR , 
Zf(air)~mm, Zf(CH2)~20um, important for detector radiator 
design.

𝑊𝑊 =
1
3
𝛼𝛼𝛼𝜔𝜔𝑃𝑃𝛾𝛾

Only high energetic e+/- emit TR of 
detectable intensity and can be 
used for PID (high Lorentz factor 𝛾𝛾
is required)

𝜔𝜔𝑃𝑃 =
𝑁𝑁𝑒𝑒𝑒𝑒2

𝜀𝜀0𝑚𝑚𝑒𝑒 ℏ𝜔𝜔𝑃𝑃 ≈ 20𝑒𝑒𝑒𝑒

Θ ∝ 1/𝛾𝛾

Transition radiation is electromagnetic radiation emitted when a charged particle traverses a 
medium with a discontinuous refractive index, e.g. the boundaries between vacuum and a 
dielectric layer.



TRD Xenon straw tubes for 
x-ray detection, 
traverse the full length

Radiator, fleece based

Particle

fleece removed for illustration
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