
Lecture 1

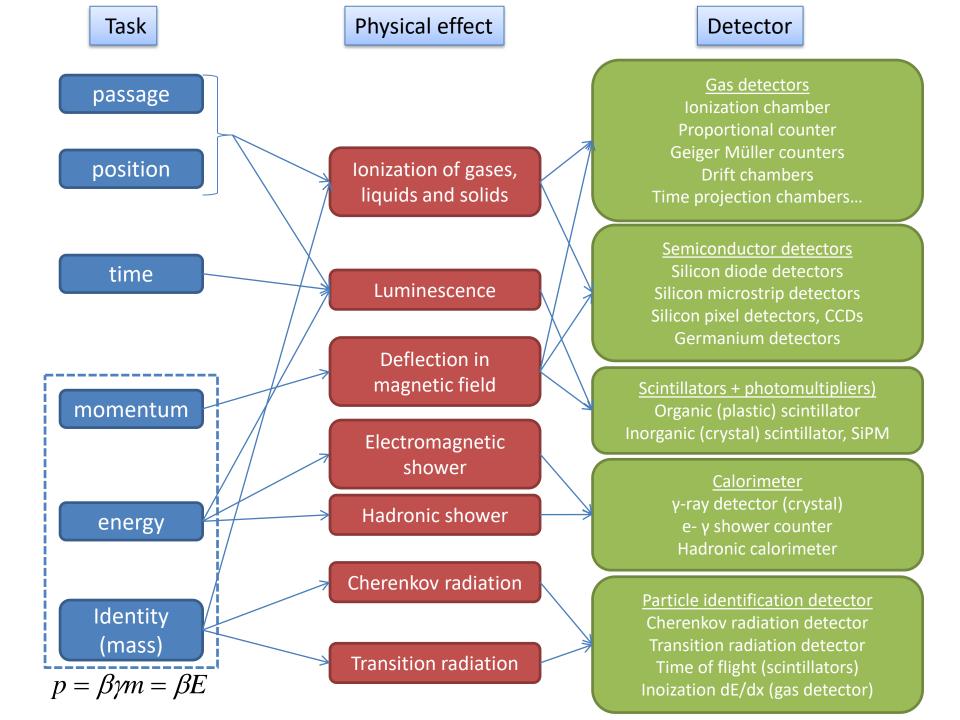
Guido.Haefeli@epfl.ch

Website: http://lphe.epfl.ch/~ghaefeli/Particle_Detectors_EPFL/2020/index.htm

Major historical discoveries with new particle detectors

Many discoveries in history were enabled by new instruments. Some examples:


- 1896 Discovery of X-rays w. photographic plate (Nobel prize W.C. Röntgen 1901)
- 1912 Invention of the cloud chamber (Nobel prize C.T.R. Wilson 1927)
- 1953 First observations of charged particle tracks in a bubble chamber (Nobel prize D.A. Glaser 1960. For his invention of the bubble chamber")
- 1968 Invention of the Multiwire Proportional Chamber (MPC) (Nobel prize G. Charpak 1992. For his
 invention and development of particle detectors, in particular the multiwire proportional chamber")
- 1986 Neutrino oscillations in solar and atmospheric neutrinos (Nobel prize R. Davies and T.Koshiba 2002. Development of neutrino detection techniques")

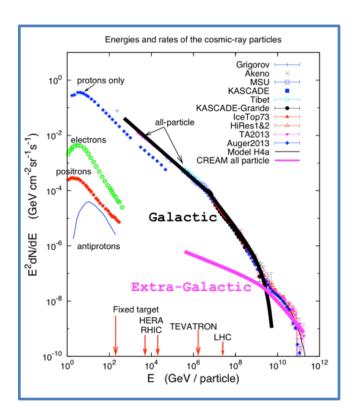


Major historical discoveries with new particle accelerators

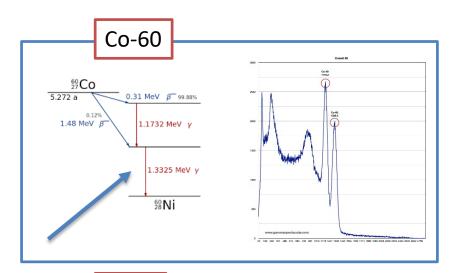
Particle accelerators in the history. Some examples:

- 1896 X-rays tube (Nobel prize W.C. Röntgen 1901)
- 1931 Lawrence proposal: Cyclotron (Nobel prize E.O. Lawrence 1939. Invention and development of cyclotron")
- 1989-2000 Precision measurements at LEP test QCD and establish the precise form of asymptotic freedom (Nobel prize D.J. Gross, H.D. Politzer, F. Wilczek For the discovery of asymptotic freedom")
- 1995 Discovery of the top quark by D0 and CDF, first pp collisions at ps = 1.8 TeV at the Tevatron
- 2013 Discovery of a Higgs boson by ATLAS and CMS, first pp collisions at ps = 7 TeV at the LHC 2010 (Nobel prize P. Higgs and F. Englert 2013. For the theoretical discovery of a mechanism . . . recently confirmed through the discovery of the predicted fundamental particle . . . ")

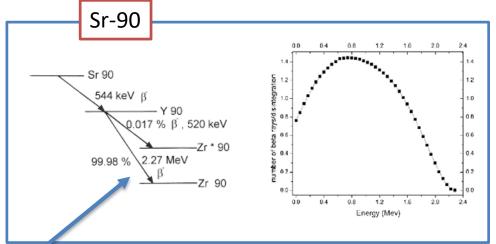
High energy particle source

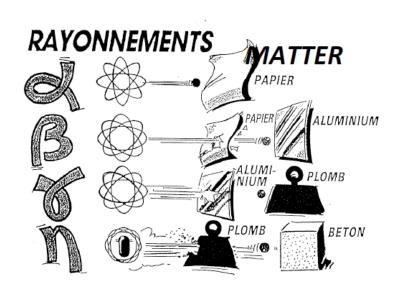

- Cosmic rays they have the highest energy but very low collision rate
- Linear colliders RF cavity resonators for accelleration, typically 8 MV/m, future: e.g. ILC > 35 MV/m, high cost due to length, ~100km
- Storage ring, circular accelerator, particle traverses the same potential difference many times (eg. LHC). Circular accelerators are also called (cyclotron, synchrotron), the particle traverses the same potential difference many times, magnetic field keeps particles on circular orbit.
 - Conventional coils: 1.5T
 - Superconducting: LHC 10T (most challenging technological part of the circular accelerators

The particle looses energy by synchrotron radiation, electrons with the same energy loose much more than protons.


$$\Delta E = \frac{4\pi}{3} \frac{\gamma^4 e^2}{R}$$

LEP: Energy loss per turn R=4.3km, E=100GeV, m_0 =0.5MeV, v=2*10⁵ -> Δ E=2.24GeV

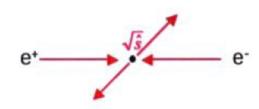

LHC: Energy loss per turn R=4.3km, E=7TeV, γ =7*10³-> Δ E=3.4keV

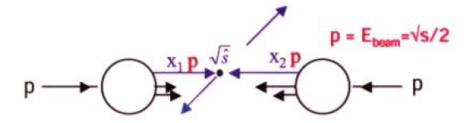


Radioactive sources

Particles	Radiation	Isotopes examples
⁴ Не	α	$^{241}_{95}Am$
e^\pm	eta^{\pm}	$^{90}_{38}Sr$, $^{22}_{11}Na$
γ	γ	¹³⁷ ₅₅ Cs, ⁶⁰ ₂₇ Co
n	n	$^{241}_{95}Am/Be$

Muons from cosmic rays on the surface (sea level) and underground


A summary for all cosmic rays is given in:


http://pdg.lbl.gov/2019/reviews/rpp2019-rev-cosmic-rays.pdf

- Muons are produced in the high atmosphere (15km) and have a mean energy of ≈4GeV at the sea level.
- The muon rate is I \approx 1 cm⁻² min⁻¹ \approx 1.7 sm⁻² s⁻¹ for horizontal detectors, I \propto cos² Θ (zenith angle Θ) for 3GeV muons
- Muons underground, dominant energy loss by ionisation

E_{μ}	R	a	$b_{ m brems}$	$b_{ m pair}$	$b_{ m nucl}$	$\sum b_i$	$\sum b_{ m ice}$
${ m GeV}$	km.w.e.	$MeV g^{-1} cm^2$		1	$10^{-6} \text{ g}^{-1} \text{ cm}^2$		
10	0.05	2.17	0.70	0.70	0.50	1.90	1.66
100	0.41	2.44	1.10	1.53	0.41	3.04	2.51
1000	2.45	2.68	1.44	2.07	0.41	3.92	3.17
10000	6.09	2.93	1.62	2.27	0.46	4.35	3.78

pp/pp Colliders

Energy of elementary interaction known

$$\sqrt{\hat{s}} = E(e^-) + E(e^+) = \sqrt{s}$$

Only two elementary particles collide \rightarrow clean final states

Mainly EW processes

Energy of elementary interaction not known

$$\sqrt{\hat{s}} = \sqrt{x_1 x_2 s} < \sqrt{s}$$

smaller

Elementary interaction (hard) + interaction of "spectator" q,g (soft) overlapp in detector

EW processes suffer from huge backgrounds from strong processes

Synchrotron radiation is $\sim (m_p/m_e)^4 \sim 10^{13}$

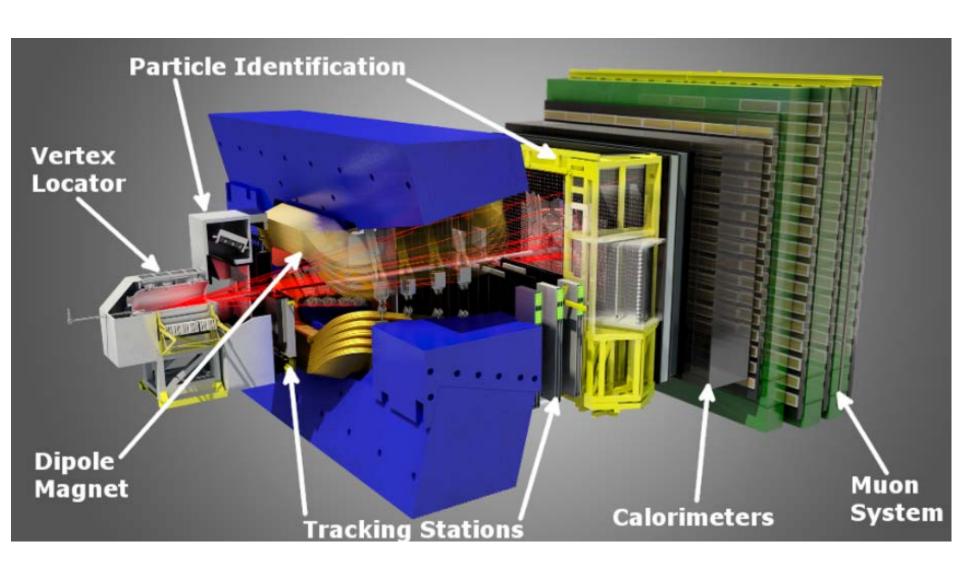
 \sqrt{s} limited by e^{\pm} synchrotron radiation:

$$E_{\mathrm{loss}} \sim \frac{E_{beam}^4}{R} \frac{1}{m_{P}^4}$$

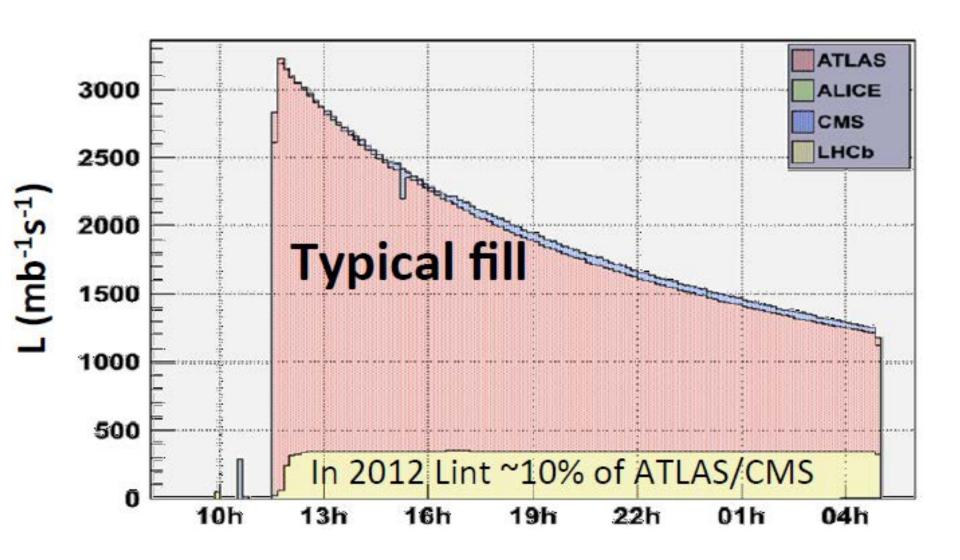
 $E_{\rm loss} \sim 2.5~{\rm GeV/turn}$

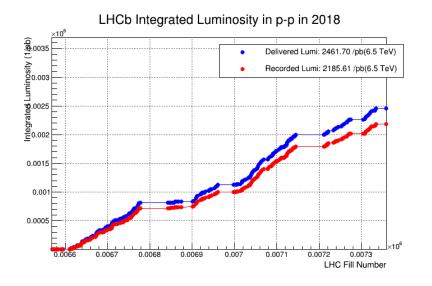
LEP 2 ($E_{\rm beam} \sim 100 \text{ GeV}$)

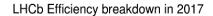
- high energy more difficult

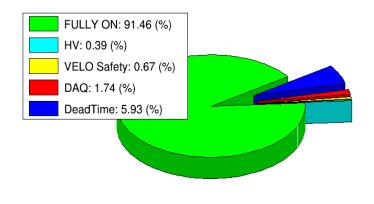

→ next machine: Linear Collider (ILC, CLIC, $\sqrt{s} = 800(3000?)$ GeV?)

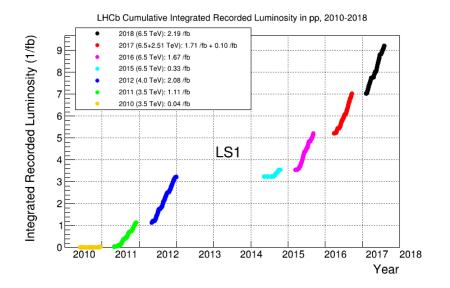
- clean environment → precision measurement machines

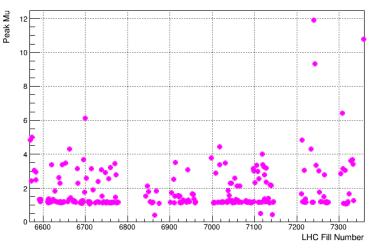

- high energy easier → discovery machines current machine: LHC, pp , $\sqrt{s} = 14 \ TeV$ in the LEP ring

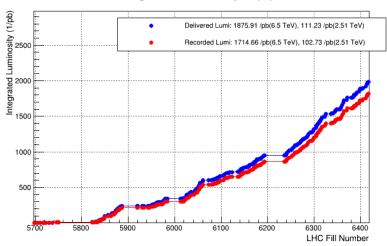

more "dirty" environment


The LHCb detector for Run1&2

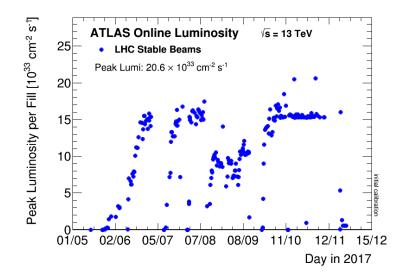


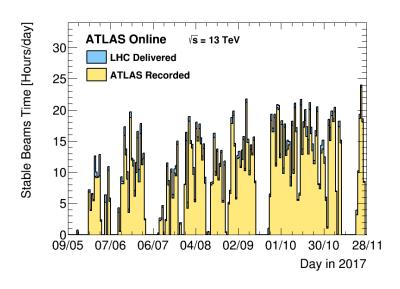

The LHCb detector luminosity compared with ATLAS and CMS



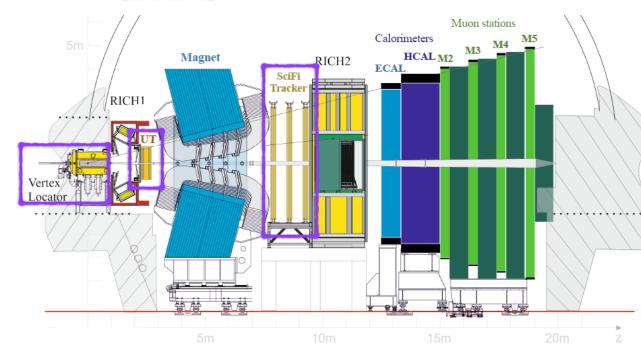




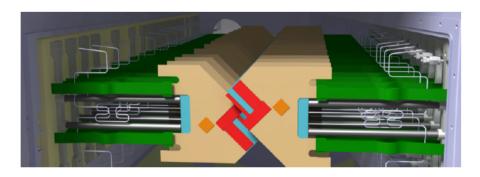

LHCb Peak Mu in p-p in 2018

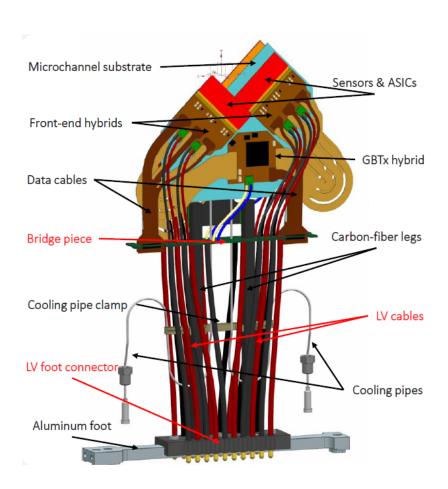


LHCb Integrated Luminosity in p-p in 2017

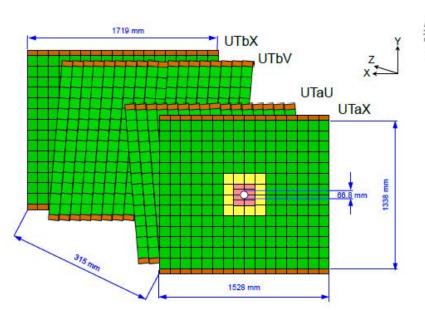


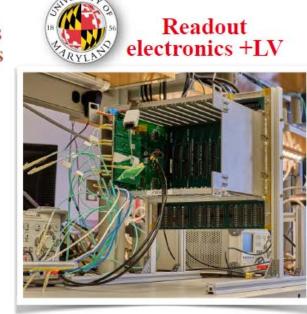
The LHCb Upgrade

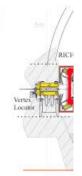



- Remove hardware trigger limitation
 - → All new electronics to read all data at 40 MHz
- Increase granularity and longevity
 - → 3 new trackers
 - → New RICH optics
 - → Lower PMT gain in CALO

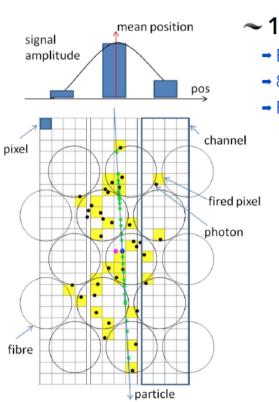
Vertex Locator (VELOPix)

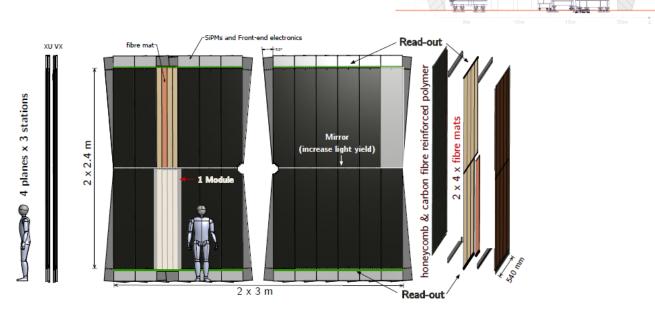

- ~ Replace Si strips with 55 µm×55 µm pixels
 - → 72k strips → 41M pixels with 40 MHz readout
- ∼ Improved IP resolution by moving sensor closer to beam and thinner RF foil
 - \rightarrow 8.1 mm \rightarrow 5.1 mm (active area, module down to 3.5 mm)
- ~ 20× more rad-hard ($8 \times 10^{15} \text{ MeV} \cdot \text{n}_{eq}/\text{cm}^{-2}$)
- ~ **Sophisticated cooling** for VELOPix ASICs
 - → Bi-phase CO₂ passes under chips via microchannels etched on the silicon substrate



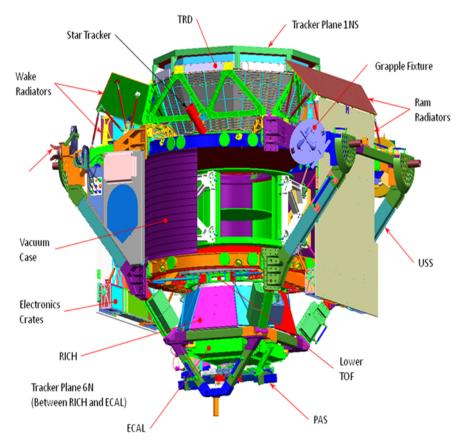

Upstream Tracker (UT)

- ~ 4 layers of silicon strips with same arrangement as TT but
 - ⇒ Finer granularity (95 µm close to the beam)
 - Improved coverage
 - Less material budget
- ~ Crucial for triggering and for long-lived particle reco





Scintillating Fibre Tracker (SciFi)


~ 12 layers of 250 µm scintillating fibers

- → Readout with SiPMs
- → 80 µm resolution
- → Replace straw tubes and silicon Outer Tracker
 - ◆ Slow drift time of tubes limit occupancy

AMS-02

Magnet bends in opposite directions charged particles/antiparticles

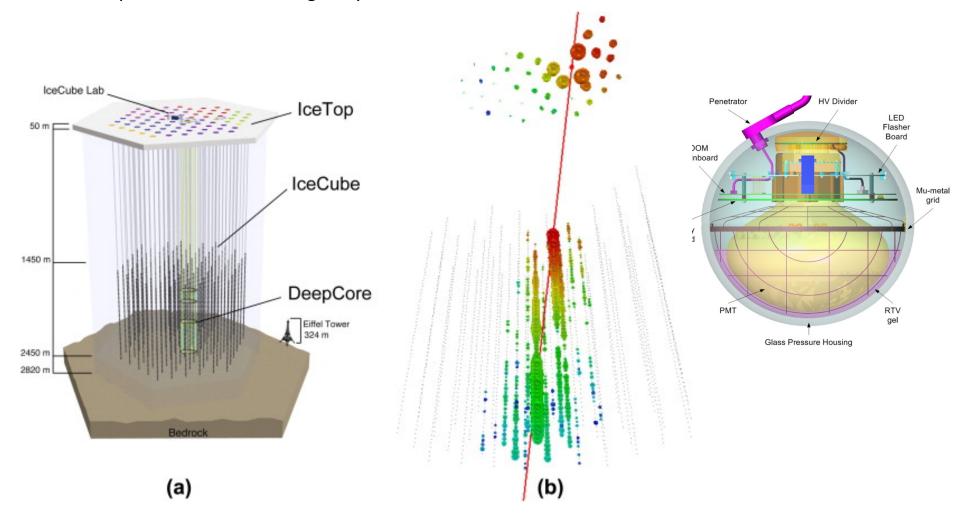
Transition Radiation Detector (TRD) identifies electrons and positrons among other cosmic-rays

Time-of-Flight System (ToF) warns the sub-detectors of the incoming of a cosmic-ray

Silicon Tracker (Tracker) detects the particle charge sign, separating matter from antimatter

Ring-Imaging Cherenkov Detector (RICH) measures with high precision the velocity of cosmic-rays

Electromagnetic Calorimeter (ECAL) measures energy of incoming electrons, positrons and γ -rays


Anti-Coincidence Counter (ACC) rejects cosmic rays traversing the magnet walls

Tracker Alignment System (TAS) checks the Tracker alignment stability

Star Tracker and GPS defines the position and orientation of the AMS-02 experiment

ICE cube

http://icecube.wisc.edu/gallery/view/140

Useful relations of relativistic Kinematics

$$\beta \equiv v/c$$
 $\gamma \equiv \frac{1}{\sqrt{1-\beta^2}}$ $m \equiv m_0 \gamma$ γ ; Lorentz boost

• Momentum
$$\vec{p} = m_0 \gamma \vec{v}$$

• Kinetic energy
$$E_{kin} = (\gamma - 1)m_0c^2$$

• Total energy
$$E = \sqrt{(pc)^2 + (m_0c^2)^2}$$
 Massless particles: $E = pc$

$$E = E_{kin} + m_0 c^2 = m_0 \gamma c^2 = mc^2$$
 $\gamma = E/(m_0 c^2)$

Units:

$$[E] = eV$$
 $[m] = eV/c^2$ $[p] = eV/c$

Natural Units

There are 4 primary SI units: three kinematical (meter, second, kilogram) and one electrical (Ampere¹)

kinematical units and, therefore, leaves us a free choice for one of the three kinematical units. The It is common in the realm of the elementary particle physics to redefine units so that speed of light and Plank's constant become equal to one: c=1 and \hbar =1. This imposes two constraints on the three units of electrical charge, also, can be and are redefined (see below). Such system of units is often referred to as Natural Units (natural for the elementary particle physics, that is). The kinematical unit of the choice is energy, E, and it is usually measured in eV (keV, MeV, GeV, TeV). Once we fixed c=1 and \hbar =1, all other kinematical units can now be expressed in terms of units of energy. E.g., one can easily see:

with c=1, units of mass and momentum are E $E^2 = m^2 c^4 + p^2 c^2;$ $\Psi = Ce^{-\left(\frac{Rt - pu}{\hbar}\right)};$

with $\hbar = 1$, units of time and length are 1/E

with $\dot{\hbar}$ =1, angular momentum is dimensionless $L_z = \hbar n$: In SI system, units of current and charge can be effectively defined by choosing the value of ϵ_0 in the Coulomb's Law:

$$F = \frac{qq}{r^2} \frac{1}{4\pi\epsilon_0}$$
, where $\epsilon_0 = 8.8 \times 10^{-12} \text{ C}^2 \text{m}^{-3} \text{kg}^{-1} \text{c}^2$

In the Natural Units, the units of charge are defined by choosing s₀=1. This automatically sets μ₀=1, since $c^2=1/(\epsilon_0\mu_0)$. Since the units of force and distance in Natural Units are E^2 and 1/E, the electric charge turns out to be dimensionless in these units. $\alpha = \frac{e^2}{4\pi\epsilon_0 \hbar c} = \frac{1}{137}$, where e is the elementary charge $e = 1.6 \times 10^{-19}$ C. In Natural The value of the fine structure constant, being dimensionless, is the same in all units. In SI units it has the following form:

Units, the fine structure constant becomes $\alpha = \frac{e^2}{4\pi} = \frac{1}{137}$. This clearly shows that an electric charge e

has no dimensions in the Natural Units and now equals to 0.303

Table. Units for major physical quantities in SI and Natural Units with conversion factors.

	Dime	Dimensions	
Quantity	IS	Natural	Conversions
	Units	Units	
mass	व्य	Ξ	$1 \text{ GeV} = 1.8 \times 10^{-27} \text{ kg}$
length	w	1/E	$1 \text{ GeV}^{-1} = 0.197 \times 10^{-13} \text{ m}$
time	S	1/E	$1 \text{ GeV}^1 = 6.58 \times 10^{-25} \text{ s}$
energy	${ m kg \cdot m}^2/{ m s}^2$	Ξ	1 GeV = 1.6×10^{-10} Joules
momentum	s/m·Sa	王	$1 \text{ GeV} = 5.39 \times 10^{-19} \text{ kg} \cdot \text{m/s}$
velocity	s/cu	none	$1 = 2.998 \times 10^8 \text{ m/s (c)}$
angular momentum	kg·m²/s	none	$1 = 1.06 \times 10^{-34} \text{J} \cdot \text{s} (h)$
cross-section	_z m	$1/E^2$	1 GeV ⁻² = $0.389 \text{ mb} = 0.389 \times 10^{-31} \text{ m}^2$
force	kg·m/s²	E^2	$1 \text{ GeV}^2 = 8.19 \times 10^5 \text{ Newton}$
charge	C=A·s	none	$1 = 5.28 \times 10^{-19} \text{ Coulomb; } e = 0.303 = 1.6 \times 10^{-19} \text{ C}$

Possible subjects for the presentations during the exercises 2020

Photo detectors:

- Comparison of PD, APD, SiPM
- Timing detectors comparison of SiPM, MCP and LGAD

Tracking detectors:

- Emulsion tracking detectors
- Spark Chamber (possible outreach detector)
- Gas detectors for tracking

Calorimeter:

Comparison of ECAL and HCAL

Detector systems and experiments:

- FASER vs SND@LHC
- Time of Flight PET
- 555

Presentation mode:

- 35' presentation, slides, material
- No marks, it is an occasion to present in front of the class and discuss!

Points to pay attention during the presentation:

- What is the detector principle?
- What type of particles at what energy range can be detected?
- What is the interaction type?
- Illustrate the detected signal and how much signal is expected, intrinsic gain or amplification?
- For experiments: What is the goal physics goal of the experiment? What are the achieved measurements in the past? What is the role of particular detectors in the system (for example the RICH detectors in LHCb are required to separate the hadronic particles at different energy ranges)?