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Series 2 – Brillouin zone, periodic potentials in one dimension (Kronig-Penney model) 

 

Exercise 1: Introduction to Brillouin zones 
1- Consider a square two-dimensional reciprocal lattice. Draw the first and the second 

Brillouin zone of this lattice. 

  

2- What is the number of first and second nearest neighbors of a square lattice in real 

space? 

 

3- Solve the same questions in the specific case of a two-dimensional hexagonal 

(honeycomb) lattice.  

 

Nota bene: The first Brillouin zone is delimited by the midperpendicular of the first points of 

the reciprocal lattice. Note that any point can be chosen to be the origin of this lattice. 

 

 

Exercise 2: Periodic potentials in one dimension (Kronig-Penney model). Problem 

adapted from Solid State Physics by N.W. Ashcroft and N.D. Mermin (Saunders College 

Publishing, Orlando, 1976). 

 

Consider a one-dimensional periodic potential U(x) where the ions reside at the minima of U, 

which we take to define the zero of energy. We choose to view the periodic potential as a 

superposition of potential barriers v(x) of width a, centered at the points x =  na (Fig. 1): 
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The term v(x-na) represents the potential barrier against an electron tunneling between the 

ions on opposite sides of the point na. For simplicity we assume that v(x) = v(-x), but we make 
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no other assumptions about v, so the form of the periodic potential U is quite general. The 

band structure of the one-dimensional solid can be expressed quite simply in terms of the  

 

properties of an electron in the presence of a single-barrier potential v(x). Consider therefore 

an electron incident from the left on the potential barrier v(x) with energy  = ħ2k2/2m (Note 

that in this problem the wave vector k is a continuous variable and has nothing to do with the 

reciprocal lattice). Since v(x) = 0 when x  a/2, in these regions the wave function l(x) will 

have the form (see Fig. 1): 
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l reex )( , x  - a/2, (2) 
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The transmission and reflection coefficients t and r give the probability amplitude that the 

electron will tunnel through or be reflected from the barrier. They depend on the incident 

wave vector k in a manner determined by the detailed features of the barrier potential v. 

However, one can deduce many properties of the band structure of the periodic potential U by 

appealing only to very general properties of t and r. Because v is even, r(x) = l(-x) is also a 

solution to the Schrödinger equation with energy . From (2) and (3), it follows that r(x) has 

the form: 
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Since l(x) and r(x) are two independent solutions to the single-barrier Schrödinger equation 

with the same energy, any other solution with that energy will be a linear combination of 

these two. In particular, since the crystal Hamiltonian is identical to that for a single ion in the 

region –a/2  x  a/2, any solution to the crystal Schrödinger equation with energy  must be 

a linear combination of l(x) and r(x) in that region: 

 

)()()( xBxAx rl   , x  a/2. (6) 

 

Now Bloch’s theorem asserts that  can be chosen to satisfy: 

 

)()( xeax iGa  ,  (7) 

 

for suitable G. Differentiating (7) we also find that ’ = d/dx satisfies: 

 

)()( xeax iGa  . (8) 

 

1. By imposing the conditions (7) and (8) at x = -a/2, and using (2) to (6), show that the 

energy of the Bloch electron is related to its wave vector G by: 
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Verify that this gives the right answer in the free electron case (v  0). 
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We write the complex number t in terms of its magnitude and phase: 

 

 
iett  . (10) 

 

More precisely, the real number  is known as the phase shift, since it specifies the change in 

phase of the transmitted wave relative to the incident one. In addition, electron conservation 

requires that the probability of transmission plus the probability of reflection be unity: 

 
22

1 rt  . (11) 

 

It is also possible to show that r must have the form: 

 
ierir  , (12) 

 

where  is the same as in (10). 

 

2. Show as a consequence of (9), (11) and (12) that the energy and wave vector of the 

Bloch electron are related by: 
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Since t is always less than one, but approaches unity for large k (the barrier becomes 

increasingly less effective as the incident energy grows), the left side of (13) plotted 

against k has the structure depicted in Fig. 2. For a given G, the allowed values of k (and 

hence the allowed energies
m

k
G

2
)(

22
 ) are given by the intersection of the curve in 

Fig. 2 with the horizontal line of height cos(Ga). Note that values of k in the 

neighborhood of those satisfying: 

 

 nka   (14) 

 

give 1/)cos(  tka  , and are therefore not allowed for any G. The corresponding 

regions of energy are the energy gaps. If  is a bounded function of k (as is generally the 

case), then there will be infinitely many regions of forbidden energy, and also infinitely 

many regions of allowed energies for each value of G. 

 

3. Draw the band diagram (qualitative picture) deduced from Fig. 2 (energy versus G). 

 

4. Suppose the barrier is very weak (so that 0,0,1  rt ). What is the width of the 

gap gap near 
a

n
k


  ? 
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5. Suppose now the barrier is very strong (so that 1,0  rt ). Show that the allowed 

bands of energies are then very narrow, with widths: )(minmax t . (15) 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Characteristic form of (13, left-hand side). Because t(k) is always less than 

unity, (13) will exceed unity in magnitude in the neighborhood of solutions to 

 nkka  )( . Equation (13) can be satisfied for real G if and only if the function is  

less than unity in magnitude. Consequently there will be allowed (unshaded) and 

forbidden (shaded) regions of G (and therefore of 
m

k
G

2
)(

22
 ). 
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