Exercises in preparation for the exam

A set of short exercises to train typical questions of the form that could appear in the exam.

Exercise 1: consider a Dirac field triplet ψ_i and a scalar triplet ϕ_i .

• Write the most general relativistic Lagrangian invariant under SO(3) up to terms with dimension $d \leq 4$. Does it change if we require invariance under O(3)?

Exercise 2: Consider a real neutral scalar field. The ladder operators satisfy:

$$[a(\mathbf{k}), a(\mathbf{p})] = (2\pi)^3 2E_k \delta^3(\mathbf{k} - \mathbf{p}).$$

Given the following state,

$$|\psi\rangle = \int d\phi d\theta \sin\theta \left(e^{2i\phi}\sin^2\theta \, a^{\dagger}(\mathbf{k}_{\theta,\phi})|0\rangle\right),$$

where $\mathbf{k}_{\theta,\phi} = |\mathbf{k}|(\sin\theta\cos\phi,\sin\theta\sin\phi,\cos\phi),$

• show that

$$J^3|\psi\rangle = 2|\psi\rangle$$
 and $J^iJ^i|\psi\rangle = 6|\psi\rangle$,

where $J^i = \frac{1}{2} \epsilon^{ijk} J^{jk}$ is the angular momentum operator:

$$J^{ij} = -i \int d\Omega_k \left[a^{\dagger}(\mathbf{k}) \left(k^i \frac{\partial}{\partial k^j} - k^j \frac{\partial}{\partial k^i} \right) a(\mathbf{k}) \right].$$

Hint: Notice that $e^{i\phi}\sin\theta = (k^1 + ik^2)/|\mathbf{k}|$.

Exercise 3: Given $T^i = \frac{1}{2} a^{\dagger}_{\alpha} \sigma^i_{\alpha\beta} a_{\beta}$ with the commutation relations

$$[a_{\alpha}, a_{\beta}^{\dagger}] = \delta_{\alpha\beta}, \qquad [a_{\alpha}, a_{\beta}] = 0$$

• Prove that $[T^i, T^j] = i\epsilon^{ijk}T^k$

Given $S^i = \frac{1}{2} b^\dagger_{\alpha} \sigma^i_{\alpha\beta} b_{\beta}$ with the anticommutation relations

$$\{b_{\alpha}, b_{\beta}^{\dagger}\} = \delta_{\alpha\beta}, \qquad \{b_{\alpha}, b_{\beta}\} = 0$$

• Prove that $[S^i, S^j] = i\epsilon^{ijk}S^k$

Exercise 4: Consider a SU(2) scalar doublet ϕ_{α} ($\alpha = 1, 2$) with Lagrangian

$$\mathcal{L} = \partial_{\mu} \phi_{\alpha}^{\dagger} \partial^{\mu} \phi_{\alpha} - V \left(\phi_{\alpha}^{\dagger} \phi_{\alpha} \right) .$$

The SU(2) charges are given by

$$Q_k = -i \int d^3x \left[\left(\partial_0 \phi_\alpha^\dagger \right) \frac{\sigma_{\alpha\beta}^k}{2} \phi_\beta - \phi_\alpha^\dagger \frac{\sigma_{\alpha\beta}^k}{2} \partial_0 \phi_\beta \right], \qquad k = 1, 2, 3.$$

- Compute the commutator $[Q_i, \phi_{\alpha}]$.
- Why is the Lagrangian invariant under this symmetry?
- Bonus question: use the Jacobi identities to compute $[Q_i, Q_j]$.

Exercise 5: Consider four different scalars ϕ_1 , ϕ_2 , ϕ_3 and ϕ_4 .

- Prove that $\varepsilon^{\mu\nu\rho\sigma}\partial_{\mu}\phi_1\partial_{\nu}\phi_2\partial_{\rho}\phi_3\partial_{\sigma}\phi_4$ is a total derivative.
- Write a Lorentz invariant term involving a the Levi-civita tensor $\varepsilon_{\mu\nu\rho\sigma}$ which is not a total derivative.

Exercise 6: Consider the following Lagrangian for a Dirac fermion ψ :

$$\mathcal{L} = iZ\bar{\psi}\gamma^{\mu}\partial_{\mu}\psi - M\bar{\psi}\psi - i\tilde{M}\bar{\psi}\gamma_{5}\psi.$$

- Find the equations of motion. What is the mass of the Dirac particle?
- Prove that the above Lagrangian can be recast in the standard Dirac form via a field redefintion of the kind $\psi \to e^{\alpha + i\beta\gamma_5}\psi$ with $\alpha, \beta \in \mathbb{R}$.

Exercise 7: consider the following Lagrangian for a scalar field ϕ :

$$\mathcal{L} = \frac{1}{2} (\partial \phi)^2 - \lambda (\partial \phi)^2 \Box \phi$$

- What is the dimensionality of λ ?
- Find the equations of motion. Can you identify the symmetries of the equations of motion?

Exercise 8: consider two scalars ψ_I and ϕ_I , I = 1, 2, 3 transforming as triplets under an internal SU(2), called Isospin.

- Decompose the product $\psi_I \phi_J$ into irreducible representations of SU(2).
- Given a third scalar χ_{IJ} , what constraint should it satisfy for it to correspond to Isospin 2?
- Write the most general Lagrangian for ϕ_I , ψ_I and χ_{IJ} (satisfying the above constraints) involving only terms with dimension $d \leq 4$.

Exercise 9: Consider N left-handed fermions ψ_L^a and N right-handed fermions ψ_R^a , $a=1,\ldots,N$ with Majorana and Dirac mass matrix

$$\mathcal{L} = i(\psi_L^a)^{\dagger} \bar{\sigma}^{\mu} \partial_{\mu} \psi_L^a + i(\psi_R^a)^{\dagger} \sigma^{\mu} \partial_{\mu} \psi_R^a - \left[(\psi_L^a)^{\dagger} m_{ab} \psi_R^b + h.c. \right] - \frac{1}{2} \left[(\psi_R^a)^T i \sigma_2 M_{ab} \psi_R^b + h.c. \right]$$

- Show that the Lagrangian is Lorentz invariant
- For the last term to be non-vanishing, should M_{ab} be symmetric or anti-symmetric?
- Find the equations of motion. What happens if $m_{ab} = 0$?

Remark: when deriving the the equations of motion you should consider the fields and their variation as anticommuting variables. For instance given two anti commuting variables χ_1 and χ_2 we have $\delta(\chi_1\chi_2) = \delta\chi_1\chi_2 + \chi_1\delta\chi_2 = \delta\chi_1\chi_2 - \delta\chi_2\chi_1$.

Exercise 10: Given two scalar fields H_{α} and ϕ_{α} both transforming as doublet under an internal SU(2), prove that

- $-H_{\alpha}^{*}H_{\alpha} \equiv H^{\dagger}H$ $-\phi_{\alpha}^{*}\phi_{\alpha} \equiv \phi^{\dagger}\phi$ $-H_{\alpha}^{*}\phi_{\alpha} \equiv H^{\dagger}\phi$ $-H_{\alpha}\epsilon_{\alpha\beta}\phi_{\beta} \equiv H^{T}\epsilon\phi \qquad \epsilon = i\sigma_{2}$ are SU(2) singlets,
- $-H^{\dagger}\sigma^{i}H$ $-H^{T}\epsilon\sigma^{i}H$ are SU(2) triplets,
- finally decompose explicitly into irreducible representations the following SU(2) tensors

$$- (H^{\dagger} \sigma^{i} H)(H^{\dagger} \sigma^{j} H) = \mathbf{2} \oplus \mathbf{0}$$
$$- (H^{\dagger} \sigma^{i} H)(\phi^{\dagger} \sigma^{j} \phi) = \mathbf{2} \oplus \mathbf{1} \oplus \mathbf{0}$$

Exercise 11: Given a Dirac spinor field ψ ,

• study the transformation properties of the following bilinears

$$\bar{\psi}\psi$$
, $\bar{\psi}\gamma^{\mu}\psi$, $\bar{\psi}\gamma^{\mu}\gamma^{\nu}\psi$

under the field tranformation $\psi \to e^{i\alpha+i\beta\gamma_5}\psi$, with $\alpha, \beta \in \mathbb{R}$.

Exercise 12: Consider the action

$$S = \int d^4x (i\bar{\psi}_j \gamma^\mu \partial_\mu \psi_j - m_{ij}\bar{\psi}_i \psi_j), \quad i = 1, 2$$

• Under which condition is it invariant under the transformation

$$\psi_j \to U_{jk} \psi_k$$

where U is an unitary 2×2 matrix?

• What are the conserved currents associated to this symmetry?