
Quantum Field Theory

Set 11: solutions

Exercise 1

Let us consider the expansion of a scalar field in terms of the ladder operators:

φ(~x, t) =

∫
d3k

(2π)32k0

[
a(~k, t) + a†(−~k, t)

]
ei
~k·~x.

• We want to show that this satisfies the Klein-Gordon equation:

(� +m2)φ(~x, t) = 0.

Indeed:

(� +m2)φ(~x, t) = (∂2
t − ∂2

i +m2)

∫
d3k

(2π)32k0

[
a(~k)e−ik0t+i

~k·~x + a†(~k)eik0t−i
~k·~x
]

=

∫
d3k

(2π)32k0

[
(m2 − k2

0 + |~k|2) a(k, t)e−ik0t+i
~k·~x + (m2 − k2

0 + |~k|2) a†(k, t)eik0−i
~k·~x
]

= 0,

where we used the mass shell condition k2
0 = |~k|2 +m2.

•

[φ(~x, t), φ(~y, t)] =

∫
d3~k

(2π)32k0

d3~q

(2π)32q0

(
[a(~k), a†(~q)]ei(q0−k0)tei

~k·~x−i~q·~y + [a†(~k), a(~q)]e−i(q0−k0)te−i
~k·~x+i~q·~y

)
=

∫
d3~k

(2π)32k0
d3~q

(
δ3(~k − ~q)ei(q0−k0)tei

~k·~x−i~q·~y − δ3(~k − ~q)e−i(q0−k0)te−i
~k·~x+i~q·~y

)
=

∫
d3~k

(2π)32k0

(
ei
~k·(~x−~y) − e−i~k·(~x−~y)

)
= 0

where the last line is 0 because integral over the whole space of momenta ~k of an odd function of ~k.

[φ(~x, t), φ̇(~y, t)] =

∫
d3~k

(2π)32k0

d3~q

(2π)32q0

(
iq0[a(~k), a†(~q)]ei(q0−k0)tei

~k·~x−i~q·~y − iq0[a†(~k), a(~q)]e−i(q0−k0)te−i
~k·~x+i~q·~y

)
= i

∫
d3~k

2(2π)3
d3~q

(
δ3(~k − ~q)ei(q0−k0)tei

~k·~x−i~q·~y + δ3(~k − ~q)e−i(q0−k0)te−i
~k·~x+i~q·~y

)
= i

∫
d3~k

2(2π)3

(
ei
~k·(~x−~y) + e−i

~k·(~x−~y)
)

= i

∫
d3~k

(2π)3
ei
~k·(~x−~y) = iδ3(~x− ~y)

• With a Lorentz boost we can simply bring the points x, y to be at the same time, where the commutator
vanishes according to the previous result. This microcausality condition is very important and means that a
measure performed at one point x cannot affect another measure performed at one point y such that x and
y are space-like separated, i.e. there is no superluminal propagation of information.

Exercise 2

Given a real free massive scalar field φ one can obtain the energy momentum tensor using Noether’s prescription
as usual:

Tµν = ∂µφ∂νφ− ηµνL.



In order to compute the Noether’s charge one needs

T00 = φ̇2 − L = H =
1

2

(
π2 + (∇φ)2 +m2φ2

)
,

T0i = π∂iφ.
(1)

The decomposition of the fields φ, π in terms of the operator a(~k) and a†(~k) reads:

φ(x) =

∫
d3k

(2π)32k0

[
a(~k, t) + a†(−~k, t)

]
ei
~k·~x,

π(x) =

∫
d3k

(2π)32k0
(−ik0)

[
a(~k, t)− a†(−~k, t)

]
ei
~k·~x,

where we have used the notation x ≡ (t, ~x). Therefore:

P0 =

∫
d3x T00 =

1

2

∫
d3x

∫
d3k

(2π)32k0

d3q

(2π)32q0

{
−k0q0

[
a(~k, t)− a†(−~k, t)

] [
a(~q, t)− a†(−~q, t)

]
+
(
−~k · ~q +m2

) [
a(~k, t) + a†(−~k, t)

] [
a(~q, t) + a†(−~q, t)

]}
ei(
~k+~q)·~x.

Using the relation ∫
d3x ei(

~k+~q)·~x = (2π)3δ3(~k + ~q),

one can integrate over d3k and set ~k = −~q. In addition, k0 =

√
m2 + |~k|2 =

√
m2 + |~q|2 = q0. Thus:

P0 =
1

4

∫
d3q

(2π)32q0

{
−q0

[
a(−~q, t)− a†(~q, t)

] [
a(~q, t)− a†(−~q, t)

]
+

(
|~q|2 +m2

q0

)[
a(−~q, t) + a†(~q, t)

] [
a(~q, t) + a†(−~q, t)

]}
=

1

2

∫
d3q

(2π)32q0
q0

{
a(~q, t)a†(~q, t) + a†(~q, t)a(~q, t)

}
,

where in the last step we have used the fact that the measure and the extremes are invariant under ~q −→ −~q, so
a(−~q, t)a†(−~q, t) can be replaced by a(~q, t)a†(~q, t). Finally one can commute the operators to achieve the normal
ordered expression plus an irrelevant infinite constant:

P0 =

∫
d3q

(2π)32q0
q0 a

†(~q, t) a(~q, t) + const.

Similarly:

Pi =

∫
d3x T0i =

∫
d3x

∫
d3k

(2π)32k0

d3q

(2π)32q0

{
−k0qi

[
a(~k, t)− a†(−~k, t)

] [
a(~q, t) + a†(−~q, t)

]}
ei(
~k+~q)·~x.

Note that the minus sign in front of k0qi is due to the fact that ∂ie
i~q·~x = ∂ie

iqixi

= iqieiq
ixi

= −iqiei~q·~x. Again,
integrating first over d3x to generates the delta function on the momentum space and then integrating over one
of the momenta one gets:

Pi =
1

2

∫
d3q

(2π)32q0

{
−qi

[
a(−~q, t)− a†(~q, t)

] [
a(~q, t) + a†(−~q, t)

]}
=

1

2

∫
d3q

(2π)32q0
qi
{
a†(~q, t)a(~q, t)− a(−~q, t)a†(−~q, t)

}
+

1

2

∫
d3q

(2π)32q0
qi
{
a†(~q, t)a†(−~q, t)− a(−~q, t)a(~q, t)

}
=

∫
d3q

(2π)32q0
qi a

†(~q, t) a(~q, t) + const.

The second term in second line vanishes since the integrand is odd under q → −q: indeed ~q a(−~q, t) a(~q, t) →
−~q a(~q, t) a(−~q, t) = −~q a(−~q, t) a(~q, t), because a(~q, t) commutes with itself for any q. Finally in the last equality
of last equation we have used again aa† = a†a + const.
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Let us consider the Noether’s current associated to rotations and boosts; recalling the transformation properties
φ′(x) ' φ(x) + 1

2 (xρ∂σ − xσ∂ρ)φ(x)ωρσ, one can define ∆φ = (xρ∂σ − xσ∂ρ)φ(x)ωρσ and therefore

Mµρσ = ∂µφ(xρ∂σφ− xσ∂ρφ)− (xρηµσ − xσηµρ)L = xρTµσ − xσTµρ.

Notice that the Noether’s current is defined up to constant rescaling of the transformation parameter: in this case
we have considered ωρσ/2 as parameters. However, if the theory contains objects transforming according some
other representation of the Lorentz group, the definition of what the parameters are has to be consistent. In the
present case the Noether’s charge reads:∫

d3x M0ρσ =

∫
d3x {xρT0σ − xσT0ρ} .

In particular the generator of boosts can be extracted taking the timelike component of previous expression:

Ki =

∫
d3x M00i =

∫
d3x {x0T0i − xiT00} = t Pi −

∫
d3xH xi.

The first term is t times the generator of translation and has been already computed, while the second one involves
the Hamiltonian density. Let us compute this quantity:∫

d3xH xi =
1

2

∫
d3x

∫
d3q

(2π)32q0

d3k

(2π)32k0

{
−k0q0

[
a(~k, t)− a†(−~k, t)

] [
a(~q, t)− a†(−~q, t)

]
+
(
−~k · ~q +m2

) [
a(~k, t) + a†(−~k, t)

] [
a(~q, t) + a†(−~q, t)

]}
xie

i(~k+~q)·x̄.

Let us use the following relation:∫
d3xxi e

i(~k+~q)·~x =

∫
d3x i

∂

∂ki
ei(
~k+~q)·~x = i(2π)3 ∂

∂ki
δ3(~k + ~q).

We can then integrate by parts the derivative with respect to ki:∫
d3xH xi =

i

4

∫
d3q

(2π)32q0
d3k

∂

∂ki

{
q0

[
a(~k, t)− a†(−~k, t)

] [
a(~q, t)− a†(−~q, t)

]
−

(
−~k · ~q +m2

k0

)[
a(~k, t) + a†(−~k, t)

] [
a(~q, t) + a†(−~q, t)

]}
δ3(~k + ~q).

The only subtle point arises in the derivation of the fraction in parentheses:

∂

∂ki

(
−~k · ~q +m2

k0

)
= − q

i

k0
+ (−~k · ~q +m2)

(
− k

i

k3
0

)
,

and since the integral contains δ3(~k + ~q), after the integration on d3k it will be ~k = ~q, q0 = k0, and this term will
vanish. Therefore we neglect it from now on. Hence∫

d3xH xi =
i

4

∫
d3q

(2π)32q0
d3k

{
q0

(
∂

∂ki

[
a(~k, t)− a†(−~k, t)

]) [
a(~q, t)− a†(−~q, t)

]
−

(
−~k · ~q +m2

k0

)(
∂

∂ki

[
a(~k, t) + a†(−~k, t)

]) [
a(~q, t) + a†(−~q, t)

]}
δ3(~k + ~q),

and finally, integrating over d3k (and then setting ~k = ~q):∫
d3xH xi = − i

4

∫
d3q

(2π)32q0
q0

{(
∂

∂qi
[
a(−~q, t)− a†(~q, t)

]) [
a(~q, t)− a†(−~q, t)

]
−
(
∂

∂qi
[
a(−~q, t) + a†(~q, t)

]) [
a(~q, t) + a†(−~q, t)

]}
=

i

2

∫
d3q

(2π)32q0
q0

{
∂

∂qi
a(−~q, t) a†(−~q, t) +

∂

∂qi
a†(~q, t) a(~q, t)

}
= −i

∫
d3q

(2π)32q0
q0

(
a†(~q, t)

∂

∂qi
a(~q, t)

)
,
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where in the last step we have integrated the second term by parts and commuted the operators a† and ∂a in
the first. This is possible for the following reason: defining Ci(q) ≡ [a†(~q, t), ∂

∂qi a(~q, t)], it is easy to show that

[Ci(q), a(~p, t)] = [Ci(q), a
†(~p, t)] = 0, so Ci(q) is a C-number, that can be neglected for the purposes of this exercise,

as it has been done previously as well. Finally one can compute the generator of boosts:

Ki = t P i −
∫
d3xH xi =

∫
d3q

(2π)32q0
a†(~q, t)

(
tqi − iq0

∂

∂qi

)
a(~q, t).

In the same way one can compute the generators of rotations:

J ij =

∫
d3x M ij

0 =

∫
d3x

{
xiT j

0 − xjT i
0

}
.

Proceeding as before one has∫
d3xxiT j

0 =

∫
d3x

∫
d3q

(2π)32q0

d3k

(2π)32k0

{
−k0q

j
[
a(~k, t)− a†(−~k, t)

] [
a(~q, t) + a†(−~q, t)

]}
xiei(

~k+~q)·~x,

and integrating by parts the derivative with respect to ki (this time it’s straightforward since k0 simplifies):∫
d3xxiT j

0 = − i
2

∫
d3q

(2π)32q0
d3k

{
qj

∂

∂ki

[
a(~k, t)− a†(−~k, t)

] [
a(~q, t) + a†(−~q, t)

]}
δ3(~k + ~q).

Finally integrating over d3k gives:∫
d3xxiT j

0 =
i

2

∫
d3q

(2π)32q0
qj
{
∂

∂qi
[
a(−~q, t)− a†(~q, t)

]} [
a(~q, t) + a†(−~q, t)

]
.

In the end we have:

J ij =

∫
d3x M ij

0 =

∫
d3x

{
xiT j

0 − xjT i
0

}
=

i

2

∫
d3q

(2π)32q0

{[
qj

∂

∂qi
a(−~q, t)

]
a(~q, t)−

[
qj

∂

∂qi
a†(~q, t)

]
a†(−~q, t)

+

[
qj

∂

∂qi
a(−~q, t)

]
a†(−~q, t)−

[
qj

∂

∂qi
a†(~q, t)

]
a(~q, t)

}
− (i↔ j).

The antisymmetrization causes the first line to vanish, while the two terms in the second are identical (up to some
infinite constant). Indeed integrating by parts one can show that the former terms are symmetric in i, j:∫

d3q

(2π)32q0

(
qj

∂

∂qi
a(−~q, t)

)
a(~q, t)− (i↔ j) = −

(∫
d3q

(2π)3
a(−~q, t) ∂

∂qi

[
qj

2q0
a(~q, t)

]
− (i↔ j)

)
= −

(∫
d3q

(2π)32q0
a(−~q, t)qj ∂

∂qi
a(~q, t) +

∫
d3q

(2π)3
a(−~q, t)a(~q, t)

∂

∂qi

(
qj

2q0

)
− (i↔ j)

)
= −

(∫
d3q

(2π)32q0
a(−~q, t)qj ∂

∂qi
a(~q, t)− (i↔ j)

)
−
(∫

d3q

(2π)3
a(−~q, t)a(~q, t)

(
δij

2q0
− qiqj

2q3
0

)
− (i↔ j)

)
︸ ︷︷ ︸

symmetric=⇒=0

= −
(∫

d3q

(2π)32q0

(
qj

∂

∂qi
a(−~q, t)

)
a(~q, t)− (i↔ j)

)
= 0,

since we have shown that this term is equal to minus itself. In the last line we have commuted the operators and
changed sign to ~q. At the very end the generators J ij read:

J ij = i

∫
d3q

(2π)32q0
a†(~q, t)

(
qj

∂

∂qi
− qi ∂

∂qj

)
a(~q, t).

Finally one can show that these charges don’t depend on time, even if a(~q, t) = a(~q)e−iq0t does. Clearly in the
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product a†(~q, t)a(~q, t) the factors cancels. Therefore:

Pµ =

∫
d3q

(2π)32q0
qµ a†(~q, t)a(~q, t) =

∫
d3q

(2π)32q0
qµ a†(~q)a(~q),

Ki =

∫
d3q

(2π)32q0
a†(~q, t)

(
tqi − iq0

∂

∂qi

)
a(~q, t)

= −
∫

d3q

(2π)32q0
a†(~q)

(
iq0

∂

∂qi

)
a(~q) +

∫
d3q

(2π)32q0
a†(~q)a(~q)

(
tqi − iq0(−it) ∂

∂qi
q0

)
︸ ︷︷ ︸

=0

,

J ij = −i
∫

d3q

(2π)32q0
a†(~q)

(
qi

∂

∂qj
− qj ∂

∂qi

)
a(~q)−

∫
d3q

(2π)32q0
a†(~q)a(~q)

(
qi

∂

∂qj
− qj ∂

∂qi

)
(iq0t)︸ ︷︷ ︸

∝ qiqj−qjqi=0

.

Additional note

Instead of using the representation of the canonical fields φ(~x, t), π(~x, t) in terms of the ladder operators a(~k),

a†(~k), one could directly work with φ and π. Indeed, the following equation holds:

dQi
dt

=
∂Qi
∂t

+ i[H,Qi]

since H is the generator of time translations. Thus, just by using the commutation relations [φ(~x, t), π(~y, t)] =
iδ3(~x− ~y), one could check that the right-hand side of the previous equation vanishes. Notice that only the boost
generators Ki have an explicit time-dependence, ∂Ki

∂t 6= 0. For the other ones only the relation [H,Qi(t)] = 0
must be checked (which means that the Hamiltonian is invariant under the transformations generated by Qi, as
expected).

Exercise 3

Given the canonical commutation relation at equal time:

[φ(~x, t), π(~y, t)] = iδ3(~x− ~y),

we want to show that the Noether charges are the generators of the infinitesimal transformation in the following
sense: if a transformation acts on coordinates and fields as x′µ = xµ − εµi (x)αi, φ′(x) = φ(x) + ∆i(x)αi then:

[Qi, φ(x)] = i∆i(x).

In Solution8 we have shown the analogous of this expression for classical field theory, where the commutators are
replaced by Poisson brackets. One could start from the Noether’s charge

Qi =

∫
d3x

(
∂L
∂φ̇

∆i − ε0iL
)
,

and derive the result following the same steps, since the canonical commutation relation have the same form as
the Poisson brackets. Indeed, since the charges do not depend on time we can choose t in order to use equal time
commutation rules. For example:

[J ij , φ(~x, t)] =

∫
d3y [yiπ(~y, t)∂jφ(~y, t)− yjπ(~y, t)∂iφ(~y, t), φ(~x, t)]

=

∫
d3y

{
yi[π(~y, t), φ(~x, t)]∂jφ(~y, t)− (i↔ j)

}
= −i

∫
d3y δ3(~x− ~y)

{
yi∂jφ(~y, t)− (i↔ j)

}
= −i

(
xi∂j − xj∂i

)
φ(~x, t).
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Similarly:

[P i, φ(~x, t)] =

∫
d3y [π(~y, t)∂iφ(~y, t), φ(~x, t)]

=

∫
d3y[π(~y, t), φ(~x, t)]∂iφ(~y, t)

= −i
∫
d3y δ3(~x− ~y)∂iφ(~y, t) = −i∂iφ(~x, t).

From the Poincaré algebra [J ij , P k] = −i(δikδjn − δjkδin)Pn, we deduce

[[J ij , P k], φ(~x, t)] = −i(δikδjn − δjkδin)[Pn, φ(~x, t)]

= (δjkδin − δikδjn)∂nφ(~x, t)

=
(
xi∂j − xj∂i

)
∂kφ(~x, t)− ∂k

(
xi∂j − xj∂i

)
φ(~x, t)

= −[P k, [J ij , φ(~x, t)]] + [J ij , [P k, φ(~x, t)]].

Whihc is precisely the Jacobi identity.

Exercise 4

The commutation relations for the ladder operators ai, a
†
i are (in the normalization convention such that dΩk =

d3k
(2π)3/2

√
2ωk

):

[ai(~k), a†j(~q)] = δijδ
3(~k − ~q)

[ai(~k), aj(~q)] = [a†i (
~k), a†j(~q)] = 0

• From the above commutation relations, after simple algebraic manipulations one finds:

[a(~k), a†(~q)] = [b(~k), b†(~q)] = δ3(~k − ~q)

[a(~k), b(~q)] = [a†(~k), b(~q)] = [a(~k), b†(~q)] = [a†(~k), b†(~q)] = 0

This results can be simply interpreted as the fact that the creation operators a† and b† create two different
kinds of particles.

• Since the Lagrangian is the sum of two pieces dependent separately on φ1, φ2, the same holds also for the
Hamiltonian:

H = HKG[φ1] +HKG[φ2]

In previous problems we found:

: HKG[φi] :=

∫
d3k ωkNi(~k), Ni(~k) = a†i (

~k)ai(~k)

where Ni(~k) is the number operator for particles of type i. After simple algebraic manipulations we can
express H as:

: H :=

∫
d3k ωk

(
Na(~k) +Nb(~k)

)
, Na(~k) = a†(~k)a(~k), Nb(~k) = b†(~k)b(~k)

• The total charge Q is:

Q = i

∫
d3x

(
φ̇†φ− φ†φ̇

)
After plugging in the expression for φ and some computational steps:

Q =

∫
d3k

(
Nb(~k)−Na(~k)

)
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where we used the representation for the δ function:
∫
d3x ei

~k·~x = (2π)3δ3(~k). It should be clear from the last
expression that the total charge is given by the number of particles of type b minus the number of particles
of type a. The particles created by a (b) therefore have positive (negative) charge, and their are said to be
the antiparticle to each other. In this example, the presence of particle and antiparticle arose naturally, but
it is a very fundamental property for the consistency of a quantum field theory that to each particle there it
should corresponding an antiparticle (look up CPT theorem if you are interested).

• It can be checked easily that Q|ψ〉 = (m− n)|ψ〉

Exercise 5

Since the potential depends only on the modulus of the field |φ| we can minimize it with respect to this variable:

∂V

∂|φ|
= 2m2|φ|+ λ|φ|3

• For m2 > 0 the only real solution is |φ| = 0, corresponding to φ = 0. Therefore, we can expand φ around
this minimum as φ = φ1+iφ2√

2
. In this parametrization the Lagrangian looks like:

L = ∂µφ1∂
µφ1 +

m2

2
φ2

1 + ∂µφ2∂
µφ2 +

m2

2
φ2

2 +
λ

16
(φ2

1 + φ2
2)2

representing two fields of mass m with an interaction term. The U(1) symmetry is simply manifested as a
rotation in the φ1,φ2 plane.

• Repeating the same steps above, but now setting m2 = −µ2 such that µ2 > 0, we find extrema at the

potential at |φ| = 0 and |φ| = v ≡
√

2µ2

λ . Taking the second derivative of one can check that the former is a

local maximum, while the latter is a minimum. This corresponds to a continuous line of values for φ in the
complex plane, which are all connected to each other by the U(1) symmetry. However the vacuum has to lie
in a particular value, say φ = v. It is said that the symmetry is spontaneously broken by the vacuum.

• With the parametrization φ = v + 1√
2
(φ1 + iφ2) the kinetic term reads:

∂µφ∂
µφ∗ =

1

2
∂µφ1∂

µφ1 +
1

2
∂µφ2∂

µφ2 .

and the potential:

V = −µ
4

λ
+

2µ2

2
φ2

1 +
λ

16
φ4

1 +
λ

16
φ4

2 +
λ

2

√
µ2

λ
φ3

1 +
λ

2

√
µ2

λ
φ1φ

2
2 +

λ

8
φ2

1φ
2
2 .

Thus, we see that the field φ1 has mass
√

2µ, while the field φ2 is massless (a quadratic term in φ2 is absent).
In this parametrization it is seems that the original symmetry is gone.

• By choosing the parametrization φ = v+h√
2
eiπ, the kinetic terms looks like:

1

2
∂µh∂

µh+
1

2
(v + h)2∂µπ∂

µπ

and contains interactions between the fields. On the contrary the potential depends only on h:

V =
m2

2
v2 +

λ

16
v4 +

m2

2
h2 +

λ

4
vh3 +

λ

16
h4

Notice how the field π appears only in combinations with derivatives (and of course it is massless). Therefore,
the Lagrangian in invariant under the transformation π(x)→ π(x) + c for any constant c, and the field π is
said to be a Goldstone boson. This shift symmetry for π is the manifestation of the original U(1) symmetry
after it is spontaneously broken.
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