
Quantum Field Theory

Homework : solutions

Exercise 1

Given the Lorentz transformation:

x′µ = Λµ
νx

ν ,

ψ′
L(x

′) = ΛLψL(Λ
−1x′) = e−

1
2 (iθ

i+ηi)σi

ψL(Λ
−1x′),

where θ, η are the parameters associated respectively to rotations and boosts, one can consider the bilinear
ψ†
Lσ̄

µψL, where as usual σ̄µ = (1, −σi). We recall the notation for spinorial indices:

ψLα, ψ†
L β̇
, (σ̄µ)β̇α,

since the † transforms undotted indexes in dotted ones and vice versa. Thus the transformation properties of the
bilinear are:

ψ′†
L β̇

(σ̄µ)β̇αψ′
Lα = ψ†

L γ̇(Λ
†
L)

γ̇

β̇
(σ̄µ)β̇α(ΛL)

δ
αψLδ.

We now recall that Λ†
Lσ̄

µΛL = Λµ
ν σ̄

ν to conclude that this bilinear transforms in the representation (1/2, 1/2).
This is the expected results since all the spinorial indices are contracted while one vector index is free (in practice
the σ̄µ represent the Clebsch-Gordan coefficient needed to pass from the (1/2, 0) ⊗ (0, 1/2) to the (1/2, 1/2)).
Let us consider now the left doublet ΨL and the right singlet ψR with transformation properties under SU(2) and
Lorentz given by:

Lorentz


x′µ = Λµ

νx
ν

(Ψ′
L)

a
α(x

′) = (ΛL)
β
α (ΨL)

a
β(Λ

−1x′)

(ψ′
R)

β̇(x′) = (ΛR)
β̇

δ̇
(ψR)

δ̇(Λ−1x′)

Isospin


x′µ = xµ

(Ψ′
L)

a
α(x

′) = Ua
b(ΨL)

b
α(x)

(ψ′
R)

β̇(x′) = (ψR)
β̇(x)

Hence the bilinear ψ†
RΨL = ψ†α

R ΨLα transforms as:

Lorentz: ψ′†α
R Ψ′

Lα = (ΛRψR)
†α(ΛLΨL)α = ψ†γ

R (Λ†
R)

α
γ (ΛL)

β
α ΨLβ = ψ† γ

R ΨLγ ,

since Λ†
R = Λ−1

L . Hence the latter is a scalar under Lorentz transformations. Note that we have omitted the x
dependence but clearly the complete relation would be:

ψ′†
R(x

′)Ψ′
L(x

′) = ψ†
R(Λ

−1x′)ΨL(Λ
−1x′),

which is the usual one for scalar quantities. Under SU(2) transformation one gets:

Isospin: ψ′†
RΨ

′a
L = ψ†

RU
a
bΨ

b
L = Ua

bψ
†
RΨ

b
L.

therefore the bilinear is an Isospin doublet. Still, this was expected since the spinor indices are all contracted
while, concerning SU(2), we are considering the product: 0⊗ 1/2 = 1/2.

Let’s consider finally the term Ψ†
Lσ

i ̸ ∂ΨL:

(Ψ†
L)α̇ b(σ

i)ba(σ̄
µ)α̇β∂µ(ΨL)

a
β ,



where by convention the † exchanges dotted with undotted indices and lowers the Isospin index. Then the two
transformations give:

Lorentz: (Ψ′†
L)α̇ b(σ

i)ba(σ̄
µ)α̇β∂′µ(Ψ

′
L)

a
β = (Ψ†

L)γ̇(Λ
†
L)

γ̇
α̇σ

i(σ̄µ)α̇βΛ ν
µ ∂ν(ΛL)

δ
β (ΨL)δ = Λµ

νΛ
ρ
µ Ψ†

Lσ
iσ̄ν∂ρΨL

= (Λ−1) µ
ν Λ ρ

µ Ψ†
Lσ

iσ̄ν∂ρΨL = Ψ†
Lσ

iσ̄ν∂νΨL,

Isospin: (Ψ′†
L)b(σ

i)ba ̸ ∂(Ψ′
L)

a = (Ψ†
L)c(U

†)cb(σ
i)ba ̸ ∂Ua

d(ΨL)
d = R(j=1)[U ]ij(Ψ

†
L)b(σ

j)ba ̸ ∂(ΨL)
a,

where we have made use of the relations:

(Λ†
L)

γ̇
α̇(σ̄

µ)α̇β(ΛL)
δ
β = Λµ

ν(σ̄
µ)γ̇δ,

(U†)cb(σ
i)baU

a
d = R(j=1)[U ]ij(σ

j)cd.

In the end the latter bilinear is a Lorentz scalar while is an Isospin vector (that is to say it transforms in the j = 1
representation of SU(2)).

Exercise 2

SU(2)

• 1
2 ⊗ 1̄

2 = 0⊕ 1. Using the Pauli matrices σi we can explicitly decompose

uav
∗
a ∼ 0, σi

abubv
∗
a ∼ 1.

If U is an SU(2) matrix then U†U = 1, or U∗
baUbc = δac. The doublets transform as ua → Uacuc and

v∗b → U∗
bdv

∗
d. We can then check that the first term is indeed a singlet, while the second makes use of the

identity U†σiU = Ri
jσ

j (derive it), where R is in the 3 dimensional representation of SU(2), the vector irrep.

• 1
2 ⊗ 1

2 = 0⊕ 1. Noting that ϵabvb ∼ v∗b ∼ 1̄
2 we have

ϵabuavb ∼ u[avb] ∼ 0, σi
abϵacubvc ∼ u(avb) ∼ 1.

To derive the above we can simply replace v∗a → ϵabvb in the previous solution for 1
2 ⊗

1̄
2 , or directly transform

the above terms and see how they transform, as was done for 1
2 ⊗

1̄
2 . Alternatively, one can get the singlet as

the antisymmetric product of ua and vb since an antissymetric matrix in 2 dimensions only has 1 independent
component, and since symmetry (anti-symmetry) of a matrix is preserved under SU(2) transformations, that
is symmetric (anti-symmetric) tensors form an invariant subspace, the only possibility is for u[avb], which
has dimension 1, to be the singlet. The triplet comes from orthogonalizing with respect to the singlet, which
is nothing but the symmetric combination of the product of ua and vb. Symmetric matrices in 2 dimensions
have 3 independent components, matching the dimension of the triplet or vector irreducible representation,
and thus the only possibility is for the triplet to be the symmetrized product u(avb).

Lorentz

• ( 12 , 0)⊗ ( 12 , 0) = (0, 0)⊕ (1, 0). Use that ϵΛL = Λ∗
Rϵ (derive it) and Λ†

R = Λ−1
L to get

ϵαβψαϕβ ∼ ψ[αϕβ] ∼ (0, 0), σi
αβϵαγψβϕγ ∼ ψ(αϕβ) ∼ (1, 0);

• ( 12 ,
1
2 )⊗ ( 12 , 0) = (0, 12 )⊕ (1, 12 ). Noting that Aβδ ≡ σµ

βδAµ ∼ ( 12 , 0)⊗ (0, 12 ) we find

ϵαβψαAβδ ∼ ψ[αAβ]δ ∼
(
0,

1

2

)
, σi

αβϵαγψβAγδ ∼ ψ(αAβ)γ ∼
(
1,

1

2

)
;

• ( 12 ,
1
2 ) ⊗ ( 12 ,

1
2 ) = (0, 0) ⊕ (0, 1) ⊕ (1, 0) ⊕ (1, 1). Again write Bασ ≡ σν

ασBν ∼ ( 12 , 0) ⊗ (0, 12 ). Noting the
identities σ̄µσν + σµσ̄ν = ηµν and ϵ−1σµϵ = σ̄∗µ we find

ϵαβϵσδBασAβδ = ηµνAµBν = A ·B ∼ (0, 0).
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The remainder are found by following this procedure sistematically. However, note that Lorentz transfor-
mations preserve symmetry and anti-symmetry, meaning that the space of (anti-)symmetric matrices is an
invariant subspace. The same goes with the trace, which is invariant under Lorentz transformations. If we
take out the trace of symmetric matrices we end up with a 9 independent component vector space, the same
as dim(1, 1) = 3 × 3 = 9. This is no coincidence. You can show that the (1, 1) irrep only depends on the
projection of AµBν into this invariant subspace. Similarly, an antisymmetric tensor only has 6 independent
components, which we can identify with (1, 0)⊕ (0, 1) which has dimension 3+3 = 6. Therefore, one guesses

A(µBν) −
1

4
ηµνA ·B ∼ (1, 1), A[µBν] ∼ (1, 0)⊕ (0, 1).

More details on Lorentz

A generic tensor transforming in an irreducible representation (j/2, j̄/2) of the Lorentz group (or, more precisely,
of SL(2,C)), is an object with j and j̄ unprimed and primed indices which transforms as follows:

t
A′

1...A
′
j̄

A1...Aj
−→ (ΛL)

B1

A1
. . . (ΛL)

Bj

Aj
(ΛR)

A′
1

B′
1
. . . (ΛR)

A′
j

B′
j̄

t
B′

1...B
′
j̄

B1...Bj
.

Notice that for this tensor to belong to the specified irreducible representations all indices must be symmetrized.
Indeed any pair anitisymmetric of indices must be proportional to the tensors ϵAB or ϵA

′B′
, which are invariant

under SL(2,C) transformations.
A generic tensor with latin indices can be decomposed into irreducible representations explicitly via contraction
with the Pauli Matrices σµ

AA′ and σ̄µ A′A. For instance a vector Vµ belongs to a (1/2, 1/2) irreducible representation,
since it can be written as

VAA′ ≡ σµ
AA′Vµ

which transform as (recall that indices can be raised and lowered using ϵAB , ϵ
AB , ϵA′B′ , ϵA

′B′
)

VAA′ −→ (ΛL)
B
A (ΛR)

B′

A′ VBB′ .

Finally, since the algebra of SL(2,C) is isomorphic to the complexified sum of two independent SU(2) subalgebras,

sl(2,C) ≃ su(2)⊕C su(2),

tensor pruducts can be formally decomposed using the usual SU(2) rule both for j and j̄:

(j1, j̄1)⊗ (j2, j̄2) = (j1 ⊗ j2, j̄1 ⊗ j̄2)

= (|j1 − j2| ⊕ |j1 − j2|+ 1⊕ . . .⊕ j1 + j2, |j̄1 − j̄2| ⊕ |j̄1 − j̄2|+ 1⊕ . . .⊕ j̄1 + j̄2)

= (|j1 − j2|, |j̄1 − j̄2|)⊕ (|j1 − j2|+ 1, |j̄1 − j̄2|)⊕ . . .⊕ (j1 + j2, j̄1 + j̄2).

Here we formally wrote, abusing of notation, (ja ⊕ jb, j̄a ⊕ j̄b) to really mean (ja, j̄a)⊕ (jb, j̄a)⊕ (ja, j̄b)⊕ (jb, j̄b).

Let us now discuss two applications.

• Consider the product of a vector and a left handed spinor:

AµψA.

The tensor product decomposition can be computed formally as:

(1/2, 1/2)⊗ (1/2, 0) = (1/2⊗ 1/2, 1/2) = (0⊕ 1, 1/2) = (0, 1/2)⊕ (1, 1/2).

The two representations can be obtained explicitly considering

σµ
BB′VµψA = VBB′ψA ≡ ΦAB B′ .

Symmetrizing and antisymmetrizing indices the representations are obtained:

Φ(AB) B′ ≡ 1

2
(ΦAB B′ +ΦBA B′) ∼ (1, 1/2),

Φ[AB] B′ ≡ 1

2
(ΦAB B′ − ΦBA B′) =

1

2
ϵAB ΦB′ ∼ (0, 1/2).

where we defined ΦB′ ≡ ϵABΦAB B′ and we used the fact that any 2d antisymmetric tensor must be propor-
tional to ϵAB ; the 1/2 in the last equation is fixed contracting with ϵAB . Finally we use parenthesis ( ) for
symmetrization of indices, square parenthesis [ ] for antisymmetrization.
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• Consider now the product
AµBν .

Recalling that a vector belongs to (1/2, 1/2), the tensor product gives:

(1/2, 1/2)⊗ (1/2, 1/2) = (0, 0)⊕ (1, 0)⊕ (0, 1)⊕ (1, 1).

To write explicitly the tensor product decomposition one could proceed systematically, but there is a simpler
(and more instructive) way. Recall that Lorentz transformations preserve the symmetricity or antisym-
metricity of indices. Also, the trace of a tensor is trivially left unchanged by Lorentz transformations. Hence
we can divide the product AµBν into three tensors which transform independently:

Sµν ≡ A(µBν) −
1

4
ηµνA ·B

Aµν ≡ A[µBν]

T ≡ ηµνAµBν = A ·B.

These are, respectively, the traceless symmetric part, the antisymmetric part and the trace. Now we can
match with the decomposition we found before simply counting the components of these tensors. Indeed we
know from the theory of SU(2) that a (0, 0) representation (scalar) has just one component, the represen-
tations (1, 0) and (0, 1) have 3 each, while the representation (1, 1) has 3 × 3 = 9 components. Then, after
counting the components of the tensors, the only possible identifications are:

Sµν ∼ (1, 1), Aµν ∼ (1, 0)⊕ (0, 1), T ∼ (0, 0).

This means that Sµν can be written as a tensor SA′B′

AB , Aµν as AABϵ
A′B′

+AA′B′
ϵAB and T is a scalar. To

be more explicit, we can define SA′B′

AB as:

σµ
AA′σ

ν
BB′Sµν ≡ SAB A′B′ ∼ (1, 1).

To write the antisymmetric part, we notice that the only two objects at our disposal to convert an antisym-
metric tensor in latin indices to (0, 1) and (1, 0) representations are

(σµν) B
A =

1

4
(σµσ̄ν − σν σ̄µ)

B
A , (σ̄µν)A

′

B′ =
1

4
(σ̄µσν − σ̄νσµ)

A′

B′ .

Then we can define

(σµν) B
A Aµν ≡ A B

A ∼ (1, 0), (σ̄µν)A
′

B′Aµν ≡ AA′

B′ ∼ (0, 1).

Exercise 3

The action for a free massless scalar field in d dimension is

S =
1

2

∫
dtdd−1x ∂µϕ(x)∂

µϕ(x).

We consider the scale transformation labelled by the parameter λ ∈ R and defined as

x′µ = eλxµ,

ϕ′(x′) = ekλϕ(x) = ekλϕ(e−λx′).

Expanding for infinitesimal parameter one gets

x′µ ≃ xµ + λxµ +O(λ2) =⇒ ϵµ = −xµ,
ϕ′(x) = (1 + kλ+O(λ2))ϕ(x− λx+ ..) ≃ (1 + kλ+O(λ2))(ϕ(x)− λxµ∂µϕ(x) +O(λ2))

≃ ϕ(x) + kλϕ(x)− λxµ∂µϕ(x) +O(λ2) =⇒ ∆(x) = kϕ(x)− xµ∂µϕ(x).
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Here the usual indices a, i labeling different fields and parameters have disappeared since they assume only the
value a = i = 1. In order to define a symmetry of the theory these transformation must leave invariant the action:

x′ = eλx ddx′ = edλddx ∂′µ = e−λ∂µ,

∂′µϕ
′(x′) = ekλ∂′µϕ(x) = e(k−1)λ∂µϕ(x),

1

2

∫
ddx∂µϕ(x)∂

µϕ(x) −→ 1

2

∫
ddx∂µϕ(x)∂

µϕ(x)e(2k−2+d)λ

=⇒ (2k − 2 + d)λ = 0 =⇒ k = 1− d

2
.

In last equation we have discarded the solution λ = 0, which corresponds to the identical transformation, which
is always an uninteresting symmetry.
In four dimension, k = −1 and the Noether’s current reads

Sµ =
∂L

∂(∂µϕ)
∆− ϵµL = − (ϕ+ xν∂νϕ) ∂

µϕ+
1

2
xµ (∂νϕ(x)∂

νϕ(x))

= −ϕ∂µϕ− xν∂νϕ∂
µϕ+

1

2
xµ∂νϕ∂

νϕ.

Recalling the definition of the energy momentum tensor associated to this Lagrangian

Tµ
ρ =

∂L
∂(∂µϕ)

∂ρϕ− δµρL = ∂ρϕ∂
µϕ− 1

2
δµρ (∂νϕ∂

νϕ) ,

one has

Tµ
µ = ∂µϕ∂

µϕ− 4

2
∂νϕ∂

νϕ = −∂νϕ∂νϕ .

One can consider an improved energy momentum tensor Kµ
ρ adding the terms

Kµ
ρ = Tµ

ρ +Aδµρ□ϕ
2 +B∂ρ∂

µϕ2.

The choice of the constant A, B is fixed by the requirement that the above expression be conserved (as the original
energy-momentum tensor) and in addition traceless:

∂µK
µ
ρ = ∂µT

µ
ρ + (A+B)∂ρ□ϕ

2 = 0 =⇒ A+B = 0 ,

Kµ
µ = Tµ

µ + 4A□ϕ2 −A□ϕ2 = 0.

Using the identity
□ϕ2 = 2∂µϕ∂

µϕ+ 2ϕ□ϕ,

and making use of the equation of motion □ϕ = 0, we can write the trace of the improved energy momentum
tensor as

Kµ
µ = Tµ

µ + 6A∂µϕ∂
µϕ = (−1 + 6A)∂µϕ∂

µϕ = 0 =⇒ A =
1

6
.

At the end the improved energy momentum tensor reads

Kµ
ρ = ∂ρϕ∂

µϕ− 1

2
δµρ (∂νϕ∂

νϕ) +
1

6

(
δµρ□ϕ

2 − ∂ρ∂
µϕ2

)
.

We can write the dilatations current Sµ in terms of the above improved energy momentum tensor

Sµ = −xνKµ
ν − ϕ∂µϕ+ xρ

1

6

(
δµρ□ϕ

2 − ∂ρ∂
µϕ2

)
.

The invariance of the theory under scale transformations implies the vanishing of ∂µS
µ and therefore

0 = ∂µS
µ = −Kµ

µ − xν∂µK
µ
ν − ∂µϕ∂

µϕ+
1

6
(4□ϕ2 −□ϕ2)

=⇒ Kµ
µ = 0
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where we have again expanded □ϕ2 and used the equation of motion □ϕ = 0 and the conservation of Kν
µ. The

invariance of the theory under dilatations forces the improved energy momentum tensor to be traceless. For free
theories we already know that this is the case sinceKµ

ν has been constructed in such a way as to have this property.
However one could extend the definition of K for a more general theory with a potential

Kµ
ρ = ∂ρϕ∂

µϕ− δµρ

(
1

2
∂νϕ(x)∂

νϕ(x)− V

)
+

1

6

(
δµρ□ϕ

2 − ∂ρ∂
µϕ2

)
,

and it is possible to check that the tracelessness of Kµ
ν represents a non trivial constraint on the potential V .

The addition of a potential of the form cnϕ
n brings an additional constraint between k and d which can fix

definitively the dimension. In order to have an invariant theory one needs:∫
ddx′ϕ′n(x′) = edλ+nkλ

∫
ddxϕn(x) =

∫
ddxϕn(x) =⇒

{
d+ nk = 0
k = 1− d

2 .

The solution for the above system of equation doesn’t exist for n = 2. Instead:

For n = 3 ⇒ d = 6,

For n = 4 ⇒ d = 4.

The dimensions in energy of the parameters appearing in the potential are then:

[Action] = E0, [ddx] = E−d, [L] = Ed,

[∂] = E, [ϕ] = E
d
2−1,

[m] = E, [β] = E3− d
2 , [α] = E4−d.

Therefore the couplings α, β are both adimensional in the dimension in which the Lagrangian is invariant under
scale transformation. This is not unexpected because the scale transformation deforms lengths and energies as
well. The invariance of the theory under such transformation means that the dynamics is the same at all energy
scales. In order for this to be true there mustn’t be any reference scale in the theory. Therefore in a scale invariant
theory only dimensionless parameters are allowed in the potential. This also explains why there is no solution for
the term m2ϕ2: the dimension of m doesn’t depend on the dimension d, hence it always introduces a reference
scale which is the indeed the mass of the field.

Exercise 4

Consider a symmetry defined by the transformation acting on fields:

x′ = x,

ϕ′a(x
′) = R b

a ϕb(x) ≃ ϕa(x) + iαA(TA) b
a ϕb(x),

where (TA) b
a are the generators of the symmetry in the appropriate representation and satisfy the Lie algebra

with the ordinary commutator: [TA, TB ] = ifABCTC . One can easily compute the conserved Noether’s charge:

QA =

∫
d3x

(
∂L
∂ϕ̇a

∆a(x)

)
= i

∫
d3xπa(TA) b

a ϕb(x).

Therefore the Poisson brackets between two charges give:

{QA, QB} =

∫
d3z

(
δQA

δπc(z)

δQB

δϕc(z)
− δQA

δϕc(z)

δQB

δπc(z)

)
.

Since

δQA

δπ(z)c
= i

∂
(
πa(TA) b

a ϕb
)

∂πc
(z) = i(TA) b

c ϕb(z),

δQB

δϕ(z)c
= i

∂
(
πa(TB) b

a ϕb
)

∂ϕc
(z) = iπa(z)(TB) c

a ,
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hence:

{QA, QB} =

∫
d3z πa

[
TA, TB

] b

a
ϕb = ifABC

∫
d3zπa(TC) b

a ϕb = fABCQC .

One can finally define QA = −iQ̃A so that

{Q̃A, Q̃B} = ifABCQ̃C .

There is however a shorter way to obtain the commutation rules for the charges and it involves the Jacobi identity;
recall indeed that the Poisson brackets, as all the Lie products, satisfy the Jacobi relation:

{{QA, QB}, ϕa}+ {{QB , ϕa}, QA}+ {{ϕa, QA}, QB} = 0.

Since the charges are the generators of the transformation:

{QA, ϕa} = ∆A
a = i(TA) b

a ϕb,

then, applying two times this definition one gets

{{QA, QB}, ϕa} = −(TB) c
a (T

A) b
c ϕb + (TA) c

a (T
B) b

c ϕb = ifABC(TC) b
a ϕb = fABC{QC , ϕa} = {fABCQC , ϕa}.
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