Quantum Field Theory

Set 9: solutions

Exercise 1

e By dimensional analysis we have the equation:
4 = [£] = 4[0] + 2[n] + 3[o] + [A]
Since [¢] = [n] = 1 (due to the canonical kinetic terms) this implies that [A] = —5
e The most obvious symmetry of the Lagrangian is the invariance under proper Poincaré transformations
ot — ' = A* Y + ot
p(z) = ¢'(a') = o(x).

The symmetry is obvious since all the Lorentz indices in the Lagrangian are contracted, but let’s check
explicitly the Lorentz invariance for the last term, since the presence of the e tensor makes things slightly
less trivial. The derivative transforms as

Oy — 3; =A10,.
Thus we have
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where we have used the identity
AHO‘AuﬁAvaa“e"”"" = det AP0 = P19
where the last step is only true for the proper subgroup of the Lorentz group.
e The largest internal symmetry group of this Lagrangian is SO(2),, x SO(3)4:
n; — Oln;
¢1r — Rhoy

where O and R are two independent 2-dimensional and 3-dimensional rotation matrices respectively. Indeed,
the kinetic terms are trivially invariant as being scalar products of two vectors, while the interaction term is
invariant because the Levi-Civita tensors are invariant tensors of SO(2) and SO(3):
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These relations can be proved at the infinitesimal level. Expanding at first order the previous equations in
the angles we would get respectively (in matrix notation):
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The first equation is trivially equivalent to the antisymmetry of the Levi-Civita tensor in 2 dimensions, while
the second one is equivalent to the Jacobi identity for the algebra of SO(3).



e The Noether currents will depend not only on the kinetic terms but also on the interaction coefficient A, as
the interaction term also contains derivatives. (We do not report the explicit result here, but it would be a
good exercise for you to compute it)

o Ifthe n are complex, with the Lagrangian given in the text, the symmetry group is enlarged to U(2), xSO(3).
The U(1) group (baryon number) arises because 1 only appears in complex-conjugate pairs. Notice that for
the Lagrangian to be real we multiplied the interaction by a factor of 4.

e In the last case the symmetry group is SU(2), x SO(3)4, because, as mentioned in the text, €/ is an invariant
tensor of SU(2):
ullu]mezj — 6l’m,

At the infinitesimal level the previous equation is equivalent to (in matrix notation):
aiT €e+eo; =0 (1)

which can be checked explicitly for every o;.

Exercise 2

Let us recall that the group SO(N) is defined as:
SO(N)={0: 00" =1, det(0) = 1}.

The case N = 1 corresponds to the trivial group and thus we get the most general Lagrangian with terms whose
dimension is less or equal than four:
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We did not write a linear term p3¢ since this can always be eliminated shifting F¢p — ¢ — p3/m?. Also, we did
not write total derivatives like nd?¢.
For N > 2, we can build invariants contracting the two invariant tensors of O(N):

5?7 Ei] ..AiN .
Contracting the first we get the invariants, with d < 4:
9,070 d, oo, (0TP)2

The epsilon tensor instead does not give non vanishing invariants. For instance €N ¢, ... ¢;, = 0 by antisym-
metry. Then we can write The SO(N) model Lagrangian:
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This Lagrangian is really invariant under O € O(N), i.e. also under transformations such that det(O) = —1.

Indeed the only requirement for ®7'® to be invariant is OTO = 1.

Now we want to build the most general Lorentz invariant Lagrangian of two scalars with terms up to dimension
4, that is symmetric under the following three transformations separately:

1. ¢1 = —¢1
2. g2 = —¢o
3. 1 < P

The first two transformations imply that we can only write terms which are separately quadratic in the fields.
Taking into account the last one, we conclude that the required Lagrangian can be written as
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Each of the three transformations above taken alone forms a group which is isomorphic to Zs. However combined
together they form a group which is different from Zy ® Zy ® Zs, since they do not commute with each other.
Consider for instance

(a)=(x)=0%) (o)=(%)=()

This is called the dihedral group D4 and describes the symmetry of a square.
Let us call Dy, Dy, D3 the action of the three transformations on the fields

n(a)=(a) »(5)-(%) »(5)-(%)

By combining the action of these, it is easy to see that the group is formed by eight elements. Indeed the most
general transformation of the field doublet takes the form

o1\ _ [ P10
(3)-(27). ven

Dy = {1, D1, Do, D3, D1 D3, D1 D3, Do D3, D1 Dy D3} .

We can write all the elements as

It is now easy to check that by taking different products one does not get new elements. For instance the following
hold
DDy = D3yDy, D3Dy = DyD3, D3Dy = D1Ds3,

D3D1Dy = D3DsD1 = D1 Dy D3, D1D3Dy = DyD3Dq = Ds.
We can build a matrix representation of this group, by looking at its action on the field doublet (¢1, ¢2)7:

-1 0 1 0 0 1
v ) me(0 5) me(0)
Then the most general element belonging to D, takes the form
+1 0 0 =+£1
D‘(o il) o D_(jzl 0)'
Finally the Lagrangian (3) reduces to (2) when Ay = 2A;, in which case the symmetry group is enhanced to
O(2) D Dy.

Exercise 3

Let’s first introduce some notation for delta functions, used also in next exercise.
/de R E = (27)36% (k),
/ &k 77 = (21)°6% (1),
/d% 83 () = /d% &3 (k) = 1.

When k can assume only discrete values En = 277/ L, the Dirac delta becomes a Kronecker delta, since it has to
give 1 when summed, not when integrated, and the integral on momenta becomes a sum over numbers. Basically
the discrete case can be deduced from the continuous one making the following formal replacements.
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and in particular
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Now one can compute explicitly the required expression:
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where we used the fact that ¢_,,(t) = ¢ (t) since ¢(Z,t) is real.

Exercise 4
Under a transformation parametrized by Lie parameter «;(z), the coordinates and field change (to linear order in
a;(x)) according to

ot — 2t =t — o ()l (), (4)

¢a($) — QS;(I) = ¢a(x) + ai(x)Aai(I)v (5)

where €/ and A,; depend on the specific transformation. The difference with respect to what was done in class is
that a; = a;(z) is local.

We now compute the variation of the action due to the local transformation. To linear order we have

5= [dta'e (¢, 0,6, (6)
= [t 1= 0u(atel)] [£(642). 0,0 () — 'O, (6} (). 0, ()] (7)
= -/d4‘r [1 - aﬂ(aief-b)] [ﬁ (d);(m), 3#(;5;(%)) - Oéiﬁfauﬁ (¢a($)7 auﬁba(x))} (8)

where in the last equality we made use of the fact that a'e!'d, L (¢, (), .9, (7)) = a'€d, L (¢o(z), Dpuda(x)) to
leading order in «;.

So for we only used the change of the coordinates, eq. (4). We now make use of the change of the field, eq. (5).
We have (again to linear order)

oL i (x or
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Plugging into (8) we get (at linear order)
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where for notational purposes we did not write the argument over x. At this point it should be clear that every
expression in the integrand is evaluated at z, in particular ¢, = ¢, (x) and «; = a;(x).

S = /d4a: [(1 — 3H(ozief)) L (pa:Opda) — aiefauﬁ (¢a, 0putba) + a'Ag; (10)

The variation of the action then reads
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where we separated terms proportional to o from terms proportional to Bﬂai. This is because we are told that
the global transformation is a symmetry, i.e. §S = 0 for constant . In this case the second term drops, because
9,0 =0, and if §S = 0 we have to conclude that the integral over the first term is zero. As with the derivation of
Noether’s theorem (see lecture notes) the integration region is arbitrary, therefore, not only the integral but the
integrand itself must vanish.

We conclude that even if of is taken to depend on space-time point, only the second term contributes and we have
08 = /d4x duat Jt (14)
where J!' = Am—% — €L (¢q,0u¢q) is the Noether current associated with the global symmetry for which
. n¥a
a' = constant.

This is a good way to obtain the Noether current associated with the symmetry. Let us consider a complex scalar
field charged under U(1). The Lagrangian reads

L=0,0'0"p—m?¢'¢. (15)
Under the U(1) we have
¢ = Do x ¢ tia(a)p, ¢ = el x ot —ia(z)dl, (16)
so that Ay = i¢ and Ay = —ig! and € = 0.

The Lagrangian will change as

L= L =0,0"0")+ 0, (—iad! )" ¢ + 0,0T 0" (iag) — m>plp — m? (iage’ — iapp’) (17)
= 0,0'0"¢ —m*¢'¢ + 0 [—ip! (0") +i(0"9) 9] = L + I ™ (18)

with
Jh=1i[(0"")¢ — ¢T(0"9)] . (19)

Exercise 5

o Let m(z) — 7'%(x) = 7%(z) +ia'O% 7°(x). We can now fix ©% using the Poisson bracket, {m, (), ¢p(y)} =

6ab53 (.’IJ — y)
{7 (@), 6 (1)} = {7 (). $4 (1)} = {7*(2), (1)} + i’ O {7 (), S (1)} + i T {m" (), pe(y)}  (20)
= {7"(2), ()} + ia" (05, + T},)8% (x — y). (21)
Since the Poisson bracket is invariant (it is a number) we must have 0% = —T7.
Recall from exercise 3 of last set,
Qi = / Bz J) = / Pz (1" Agi — €)L) =T}, / 37 ¢y (22)
where now A,; = iT% ¢, and €) = 0.
Therefore, we have
{Qiym(2)} = fz)/dgy?rb(y) {e(), 7" (2)} = —iTjm" () (23)

where we made use of {7%(z), ¢p(y)} = dap0>(x — y) in the last step.
o The Jacobi identity for ¢, Q; and Q; reads
{¢a,{Qi, Qs}} +{Qi, {Qj, ¢a}} +{Q), {00, Qi}} =0 (24)
we now use {Qi, ¢} = iT},¢p on the second and third terms to get
{0, {Qi, Q;}} = (TG}, — T5T0) e = (T3, Tilote = i fijeTiade = fije{Qrs ba} = — fijn{da: Qu}  (25)

which for arbitrary ¢, implies

{Qi,Qj} = —[ijrQk- (26)
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e We can now confirm the above result by computing the Poisson bracket {Q;, Q;} explicitly. Using (22) we

find
0Qi e j a
s = Titelo) = it (z), (27)

and, similarly, we find

o [, 09 0G5 Q5 0Qi | i e (B (rb(s) — —f
{QmQJ} /d {57#1(2) 5¢a(2) 57Ta(z) 5¢a(2’)} [TszJ]b/d ¢C( ) ( ) fz]ka- (28)



