
Quantum Field Theory

Set 9: solutions

Exercise 1

• By dimensional analysis we have the equation:

4 = [L] = 4[∂] + 2[η] + 3[ϕ] + [λ]

Since [ϕ] = [η] = 1 (due to the canonical kinetic terms) this implies that [λ] = −5

• The most obvious symmetry of the Lagrangian is the invariance under proper Poincaré transformations

xµ → x′µ = Λµ
νx

ν + aµ

ϕ(x) → ϕ′(x′) = ϕ(x) .

The symmetry is obvious since all the Lorentz indices in the Lagrangian are contracted, but let’s check
explicitly the Lorentz invariance for the last term, since the presence of the ϵ tensor makes things slightly
less trivial. The derivative transforms as

∂µ → ∂′
µ = Λν

µ∂ν .

Thus we have

(ηi(x)∂µηj(x))(∂νϕI(x)∂ρϕJ(x)∂σϕK(x))ϵijϵIJKϵµνρσ

→(η′i(x
′)∂′

µη
′
j(x

′))(∂′
νϕ

′
I(x

′)∂′
ρϕ

′
J(x

′)∂′
σϕ

′
K(x′))ϵijϵIJKϵµνρσ

=Λµ
αΛν

βΛρ
γΛσ

δ(ηi(x)∂αηj(x))(∂βϕI(x)∂γϕJ(x)∂δϕK(x))ϵijϵIJKϵµνρσ

=(ηi(x)∂αηj(x))(∂βϕI(x)∂γϕJ(x)∂δϕK(x))ϵijϵIJKϵαβγδ

where we have used the identity

Λµ
αΛν

βΛρ
γΛσ

δϵµνρσ = detΛϵαβγδ = ϵαβγδ ,

where the last step is only true for the proper subgroup of the Lorentz group.

• The largest internal symmetry group of this Lagrangian is SO(2)η × SO(3)ϕ:

ηi → Oi
jηj

ϕI → RI
JϕJ

where O and R are two independent 2-dimensional and 3-dimensional rotation matrices respectively. Indeed,
the kinetic terms are trivially invariant as being scalar products of two vectors, while the interaction term is
invariant because the Levi-Civita tensors are invariant tensors of SO(2) and SO(3):

RilRjmϵij = ϵlm

ThOILOJMOKN ϵIJK = ϵLMN

These relations can be proved at the infinitesimal level. Expanding at first order the previous equations in
the angles we would get respectively (in matrix notation):

ϵilϵim + ϵjmϵlj = 0

ϵPILϵIMN + ϵPJM ϵLJN + ϵPKN ϵLMK = 0

The first equation is trivially equivalent to the antisymmetry of the Levi-Civita tensor in 2 dimensions, while
the second one is equivalent to the Jacobi identity for the algebra of SO(3).



• The Noether currents will depend not only on the kinetic terms but also on the interaction coefficient λ, as
the interaction term also contains derivatives. (We do not report the explicit result here, but it would be a
good exercise for you to compute it)

• If the η are complex, with the Lagrangian given in the text, the symmetry group is enlarged to U(2)η×SO(3)ϕ.
The U(1) group (baryon number) arises because η only appears in complex-conjugate pairs. Notice that for
the Lagrangian to be real we multiplied the interaction by a factor of i.

• In the last case the symmetry group is SU(2)η×SO(3)ϕ, because, as mentioned in the text, ϵij is an invariant
tensor of SU(2):

U ilU jmϵij = ϵlm

At the infinitesimal level the previous equation is equivalent to (in matrix notation):

σT
i ϵ+ ϵσi = 0 (1)

which can be checked explicitly for every σi.

Exercise 2

Let us recall that the group SO(N) is defined as:

SO(N) = {O : OOT = 1, det(O) = 1}.

The case N = 1 corresponds to the trivial group and thus we get the most general Lagrangian with terms whose
dimension is less or equal than four:

L =
1

2
(∂ϕ)2 − m2

2
ϕ2 − g

3!
ϕ3 − λ

4!
ϕ4.

We did not write a linear term µ3ϕ since this can always be eliminated shifting Fϕ → ϕ − µ3/m2. Also, we did
not write total derivatives like n∂2ϕ.
For N ≥ 2, we can build invariants contracting the two invariant tensors of O(N):

δji , ϵi1...iN .

Contracting the first we get the invariants, with d ≤ 4:

∂µΦ
T∂µΦ, ΦTΦ, (ΦTΦ)2.

The epsilon tensor instead does not give non vanishing invariants. For instance ϵi1...iNϕi1 . . . ϕiN = 0 by antisym-
metry. Then we can write The SO(N) model Lagrangian:

L =
1

2
∂µΦ

T∂µΦ− m2

2
ΦTΦ− λ

4
(ΦTΦ)2. (2)

This Lagrangian is really invariant under O ∈ O(N), i.e. also under transformations such that det(O) = −1.
Indeed the only requirement for ΦTΦ to be invariant is OTO = 1.

Now we want to build the most general Lorentz invariant Lagrangian of two scalars with terms up to dimension
4, that is symmetric under the following three transformations separately:

1. ϕ1 → −ϕ1

2. ϕ2 → −ϕ2

3. ϕ1 ↔ ϕ2

The first two transformations imply that we can only write terms which are separately quadratic in the fields.
Taking into account the last one, we conclude that the required Lagrangian can be written as

L =
1

2
(∂ϕ1)

2 +
1

2
(∂ϕ2)

2 − m2

2

(
ϕ2
1 + ϕ2

2

)
− λ1

(
ϕ4
1 + ϕ4

2

)
− λ2ϕ

2
1ϕ

2
2. (3)
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Each of the three transformations above taken alone forms a group which is isomorphic to Z2. However combined
together they form a group which is different from Z2 ⊗ Z2 ⊗ Z2, since they do not commute with each other.
Consider for instance(

ϕ1

ϕ2

)
3−→

(
ϕ2

ϕ1

)
2−→

(
ϕ2

−ϕ1

)
,

(
ϕ1

ϕ2

)
2−→

(
ϕ1

−ϕ2

)
3−→

(
−ϕ2

ϕ1

)
.

This is called the dihedral group D4 and describes the symmetry of a square.
Let us call D1, D2, D3 the action of the three transformations on the fields

D1

(
ϕ1

ϕ2

)
=

(
−ϕ1

ϕ2

)
, D2

(
ϕ1

ϕ2

)
=

(
ϕ1

−ϕ2

)
, D3

(
ϕ1

ϕ2

)
=

(
ϕ2

ϕ1

)
.

By combining the action of these, it is easy to see that the group is formed by eight elements. Indeed the most
general transformation of the field doublet takes the form

D

(
ϕ1

ϕ2

)
=

(
±ϕ1/2

±ϕ2/1

)
, D ∈ D4.

We can write all the elements as

D4 = {1, D1, D2, D3, D1D2, D1D3, D2D3, D1D2D3} .

It is now easy to check that by taking different products one does not get new elements. For instance the following
hold

D1D2 = D2D1, D3D1 = D2D3, D3D2 = D1D3,

D3D1D2 = D3D2D1 = D1D2D3, D1D3D2 = D2D3D1 = D3.

We can build a matrix representation of this group, by looking at its action on the field doublet (ϕ1, ϕ2)
T :

D1 =

(
−1 0
0 1

)
, D2 =

(
1 0
0 −1

)
, D3 =

(
0 1
1 0

)
.

Then the most general element belonging to D4 takes the form

D =

(
±1 0
0 ±1

)
or D =

(
0 ±1
±1 0

)
.

Finally the Lagrangian (3) reduces to (2) when λ2 = 2λ1, in which case the symmetry group is enhanced to
O(2) ⊃ D4.

Exercise 3

Let’s first introduce some notation for delta functions, used also in next exercise.∫
d3x eik⃗·x⃗ = (2π)3δ3(k⃗),∫
d3k eik⃗·x⃗ = (2π)3δ3(x⃗),∫
d3x δ3(x⃗) =

∫
d3k δ3(k⃗) = 1.

When k⃗ can assume only discrete values k⃗n = 2πn⃗/L, the Dirac delta becomes a Kronecker delta, since it has to
give 1 when summed, not when integrated, and the integral on momenta becomes a sum over numbers. Basically
the discrete case can be deduced from the continuous one making the following formal replacements.

δ3(k⃗) −→
(

L

2π

)3

δ3
n⃗,⃗0

,∫
d3k −→

(
2π

L

)3 ∑
n⃗∈Z3

,
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and in particular ∫
d3x eik⃗·x⃗ −→

∫
d3x eik⃗n·x⃗ = (2π)3

(
L

2π

)3

δ3
n⃗,⃗0

.

Now one can compute explicitly the required expression:∫
d3x

∑
n⃗∈Z3

1

L3/2
ϕn(t)∂i e

i 2π
L n⃗·x⃗

∑
m⃗∈Z3

1

L3/2
ϕm(t)∂i e

i 2π
L m⃗·x⃗ =

1

L3

(
i2π

L

)2 ∑
n⃗,m⃗∈Z3

n⃗ · m⃗ ϕn(t)ϕm(t)

∫
d3x ei

2π
L (m⃗+n⃗)·x⃗

=
1

L3

(
i2π

L

)2 ∑
n⃗,m⃗∈Z3

n⃗ · m⃗ ϕn(t)ϕm(t)L3δ3
n⃗+m⃗,⃗0

=

(
2π

L

)2 ∑
n⃗∈Z3

|n⃗|2|ϕn(t)|2.

where we used the fact that ϕ−n(t) = ϕ∗
n(t) since ϕ(x⃗, t) is real.

Exercise 4

Under a transformation parametrized by Lie parameter αi(x), the coordinates and field change (to linear order in
αi(x)) according to

xµ −→ x′µ = xµ − αi(x)ϵµi (x), (4)

ϕa(x) −→ ϕ′
a(x) = ϕa(x) + αi(x)∆ai(x), (5)

where ϵµi and ∆ai depend on the specific transformation. The difference with respect to what was done in class is
that αi = αi(x) is local.

We now compute the variation of the action due to the local transformation. To linear order we have

S′ =

∫
d4x′L

(
ϕ′
a(x

′), ∂′
µϕ

′
a(x

′)
)

(6)

=

∫
d4x

[
1− ∂µ(α

iϵµi )
] [
L (ϕ′

a(x), ∂µϕ
′
a(x))− αiϵµi ∂µL (ϕ′

a(x), ∂µϕ
′
a(x))

]
(7)

=

∫
d4x

[
1− ∂µ(α

iϵµi )
] [
L (ϕ′

a(x), ∂µϕ
′
a(x))− αiϵµi ∂µL (ϕa(x), ∂µϕa(x))

]
(8)

where in the last equality we made use of the fact that αiϵµi ∂µL (ϕ′
a(x), ∂µϕ

′
a(x)) = αiϵµi ∂µL (ϕa(x), ∂µϕa(x)) to

leading order in αi.

So for we only used the change of the coordinates, eq. (4). We now make use of the change of the field, eq. (5).
We have (again to linear order)

L (ϕ′
a(x), ∂µϕ

′
a(x)) = L (ϕa(x), ∂µϕa(x)) + αi(x)∆ai(x)

∂L
∂ϕa

+ ∂µ(α
i(x)∆ai(x))

∂L
∂(∂µϕa)

. (9)

Plugging into (8) we get (at linear order)

S′ =

∫
d4x

[(
1− ∂µ(α

iϵµi )
)
L (ϕa, ∂µϕa)− αiϵµi ∂µL (ϕa, ∂µϕa) + αi∆ai

∂L
∂ϕa

+ ∂µ(α
i∆ai)

∂L
∂(∂µϕa)

]
(10)

where for notational purposes we did not write the argument over x. At this point it should be clear that every
expression in the integrand is evaluated at x, in particular ϕa ≡ ϕa(x) and αi ≡ αi(x).

The variation of the action then reads

δS = S′ − S =

∫
d4x

[
−∂µ(α

iϵµi )L (ϕa, ∂µϕa)− αiϵµi ∂µL (ϕa, ∂µϕa) + αi∆ai
∂L
∂ϕa

+ ∂µ(α
i∆ai)

∂L
∂(∂µϕa)

]
(11)

=

∫
d4x

[
αi

[
∆ai

∂L
∂ϕa

+ ∂µ∆ai
∂L

∂(∂µϕa)
− ϵµi ∂µL (ϕa, ∂µϕa)− ∂µϵ

µ
i L (ϕa, ∂µϕa)

]
(12)

+ ∂µα
i

[
∆ai

∂L
∂(∂µϕa)

− ϵµi L (ϕa, ∂µϕa)

] ]
, (13)
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where we separated terms proportional to αi from terms proportional to ∂µα
i. This is because we are told that

the global transformation is a symmetry, i.e. δS = 0 for constant αi. In this case the second term drops, because
∂µα

i = 0, and if δS = 0 we have to conclude that the integral over the first term is zero. As with the derivation of
Noether’s theorem (see lecture notes) the integration region is arbitrary, therefore, not only the integral but the
integrand itself must vanish.

We conclude that even if αi is taken to depend on space-time point, only the second term contributes and we have

δS =

∫
d4x ∂µα

iJµ
i (14)

where Jµ
i = ∆ai

∂L
∂(∂µϕa)

− ϵµi L (ϕa, ∂µϕa) is the Noether current associated with the global symmetry for which

αi = constant.

This is a good way to obtain the Noether current associated with the symmetry. Let us consider a complex scalar
field charged under U(1). The Lagrangian reads

L = ∂µϕ
†∂µϕ−m2ϕ†ϕ. (15)

Under the U(1) we have

ϕ → eiα(x)ϕ ≈ ϕ+ iα(x)ϕ, ϕ† → e−iα(x)ϕ† ≈ ϕ† − iα(x)ϕ†, (16)

so that ∆ϕ = iϕ and ∆ϕ† = −iϕ† and ϵµ = 0.

The Lagrangian will change as

L → L′ = ∂µϕ
†∂µϕ+ ∂µ(−iαϕ†)∂µϕ+ ∂µϕ

†∂µ(iαϕ)−m2ϕ†ϕ−m2(iαϕϕ† − iαϕϕ†) (17)

= ∂µϕ
†∂µϕ−m2ϕ†ϕ+ ∂µα

[
−iϕ†(∂µϕ) + i(∂µϕ†)ϕ

]
= L+ ∂µαJ

µ (18)

with
Jµ = i

[
(∂µϕ†)ϕ− ϕ†(∂µϕ)

]
. (19)

Exercise 5

• Let πa(x) → π′a(x) = πa(x) + iαiΘa
ibπ

b(x). We can now fix Θa
ib using the Poisson bracket, {πa(x), ϕb(y)} =

δabδ
3(x− y).

{πa(x), ϕb(y)} → {π′a(x), ϕ′
b(y)} = {πa(x), ϕb(y)}+ iαiΘa

ic{πc(x), ϕb(y)}+ iαiT b
ic{πa(x), ϕc(y)} (20)

= {πa(x), ϕb(y)}+ iαi(Θa
ib + T b

ia)δ
3(x− y). (21)

Since the Poisson bracket is invariant (it is a number) we must have Θa
ib = −T b

ia.

Recall from exercise 3 of last set,

Qi =

∫
d3x J0

i =

∫
d3x

(
πa ∆ai − ϵ0iL

)
= iT b

ia

∫
d3xπa ϕb (22)

where now ∆ai = iT b
iaϕb and ϵ0i = 0.

Therefore, we have

{Qi, π
a(x)} = iT c

ib

∫
d3y πb(y) {ϕc(y), π

a(x)} = −iT a
ibπ

b(x) (23)

where we made use of {πa(x), ϕb(y)} = δabδ
3(x− y) in the last step.

• The Jacobi identity for ϕa, Qi and Qj reads

{ϕa, {Qi, Qj}}+ {Qi, {Qj , ϕa}}+ {Qj , {ϕa, Qi}} = 0 (24)

we now use {Qi, ϕa} = iT b
iaϕb on the second and third terms to get

{ϕa, {Qi, Qj}} = (T c
ibT

b
ja − T c

jbT
b
ia)ϕc = [Ti, Tj ]

c
aϕc = ifijkT

c
kaϕc = fijk{Qk, ϕa} = −fijk{ϕa, Qk} (25)

which for arbitrary ϕa implies
{Qi, Qj} = −fijkQk. (26)
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• We can now confirm the above result by computing the Poisson bracket {Qi, Qj} explicitly. Using (22) we
find

δQi

δπa(z)
= iT c

iaϕc(z),
δQj

δϕa(z)
= iT a

jbπ
b(z), (27)

and, similarly, we find

{Qi, Qj} =

∫
d3z

[
δQi

δπa(z)

δQj

δϕa(z)
− δQj

δπa(z)

δQi

δϕa(z)

]
= −[Ti, Tj ]

c
b

∫
d3z ϕc(z)π

b(z) = −fijkQk. (28)
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