Quantum Field Theory

Set 7: solutions

Exercise 1

Every irreducible finite-dimensional representation of the Lorentz group is defined by a couple (j_,jt) where jy
and j_ label the irreducible representation of the two commuting SU (2) subgroups of SO(3,1) ~ SU(2)1®SU(2)—
generated by
J+iK
Jy = 5 (1)

Notice that given representations D;, of SU(2) on vector spaces V4, the (j_, j4) representation act on the vector
space V_® V. as the tensor product representation of D;_ and D;, . Both J4 are in particular defined on V_®V,,
as the generators of such representations.

Consider now the (1/2,0) representation. In this case V_ is 2-dimensional and V, is 1-dimensional, with D;,
being the trivial representation. We can thus forget about V. in the product V_ ® V; and simply write

5 J+ = 62><2 (2)

where & is the vector of the three Pauli matrices, which furnish the spin-1/2 representation of SU(2). From this
the form of J and K in the (1/2,0) follows from eq 1 and 2

TR

(3)

Given a set of parameters & for rotations and another one 5 for boosts the explicit form of the elements of the
group representation is

D(1/2,o)(d', ﬁ) — ¢ i3 (a+zB) "
D1/2,0) acts on 2-dimensional complex vector with an index a such as

-,

Sa = [D(1/2,0)(d, B)] s (5)

Notice in particular that D /0)(d, E) is an invertible linear transformation with unit determinant, so that it
belongs to SL(2,C) (the universal covering group of SO(3,1)).

With a similar reasoning one obtains the explicit form of the (0,1/2) representation, which differs in the sign of
the boost generator K. Since D(1/2,9) and D g 1/2) are not equivalent, the latter representation acts on a different
set of indices. If we denote such indices as dotted one we have

-,

sa — [Do.1/2)(@, B)]*s (6)

The (1/2,1/2) representation is now readily constructed. Indeed, it is the direct product of the previous represen-
tations. One introduces an object with 2 kinds of indices, a dotted one, transforming in the (0,1/2) representation
and an un-dotted one transforming under the (1/2,0):

-,

Vaa = [D12,0)(@, B) D012 (@, B)] .’Ubb (7)

The object v is defined by 4 complex (8 real) parameters.

Note that the representation D(;, ; ) is not unitary. This is consistent with the fact that the Lorentz group, being
non-compact, does not admit finite-dimensional unitary representations (but it does admit infinite-dimensional
unitary representations, which are required to represent physical states).



Exercise 2

The implementation of a group on functions presents some subtleties. Let us review in general how the represen-
tation must be implemented. Consider a group G that acts on spacetime coordinates as follows:

G: 2 5 gi(x) I g2(01(@) = g20g1(z) = gs().

The action of G on the functions of spacetime coordinates is defined through the action of the inverse element
on coordinates. The reason for this is that we have defined a scalar function to be a map from events to real
numbers. A transformation of G on z* is just a relabeling of the same event in a different frame. This means that
@' (e) = ¢(e), i.e. every event is still mapped to the same number even after the transformation. Writing explicitly
the event e in the two different frames gives us:

Dy, : d(x) L5 ¢ (g1(x)) = d(x) = ¢/(z) = Dy, [8](z) = d(g7 ' (x)).

The correct implementation of the composition of transformations on the space of functions is thus the following:

Dy, : $(a) = ¢ (g3(2)) = d(x) = ¢ (2) = Dy [¢](x) = b((g2 0 1) (@)
Let us see how this applies to a transformation of the Poincaré group. The action on coordinates is defined as

(Ar,a1) (Az,a2)

P ot (A)F,x” 4 a" = Piay a0 () (A2)", (A1)Y, 2P + (A2)", a7 + af
P(Az,az) o P(Al,al)('r) = P(A3,a3)('1:)'

Thus the composition of the transformation (As, az) and (A1, a1) gives a third transformation with parameters
(As,a3) = (Ag2Aq, Asaq + a2).

We now verify that the implementation on functions presented in the text reproduces this composition rule (we
suppress spacetime indices for shortness):

(As,a3)
=,

Dirgap) : H(2) ¢'(A3z + a3) = ¢(2) = ¢ () = Diag.a9)[0](@) = S(AT AT ( — Asay — an))

and

D(A27a2)D(A17al) Dox) — ¢/(P(A2,a2) © P(Al,al)(x)) = ¢($)
- (bl(x) = D(AQ,a2)D(A1,a1)[¢]($> = ¢(P(7\117a1) © P(7\127a2)(m)> = ¢(A;1(A51($ - a2) - al))‘
Thus, with the rule ¢'(z) = ¢(A~(z — a)) one gets that the composition of transformations is respected, i.e.

acting on functions with Dy, q,) or With D(a, 4,)D(a,,a;) 18 the same, as it is acting on fourvectors with Py, 4,)
or with P(s, a,) © P(A,,a,)- Moreover, since the identity e corresponds to parameters (A = 14,a = 0), then

D0 ¢ o) — ¢'(lax +0) = ¢'(z) = ¢(x),

and so the identity has the correct representation (it does not change the functional form of ¢), proving that indeed
the transformations presented in the text of the exercise define the action of the Poincaré group on functions.

Exercise 3

Given a Lorentz transformation A : # — 2/ = Az, the transformation of a scalar field at fixed coordinate z is
#(xr) — ¢'(x). Since the field is scalar, it satisfies ¢'(2") = ¢(z), or ¢'(z) = ¢(A~'z), which is the representation
of the Lorentz transformation on functions. We can now expand for infinitesimal transformation:

Sod(z) = ¢/ (z) — ¢lx) = S(A™"2) — $(z) = d(z — wa) — d(z) = —wh, 2D () = %ww(x“ay — z"0")p(x).

This variation has to be identified with the infinitesimal action of the Lorentz generators on scalar fields, namely
i i
o) = exp |~ S D 6(2) = 9(0) = S L 0(0),
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which proves that
LM = q(2H9” — z¥ o)

is the representation of Lorentz generators on scalar fields. (Notice that the generators in this representation
have been denoted as L*¥, not as J"¥, since JH¥ are the generators in the defining representation). It’s now
straightforward to obtain the Lorentz algebra:
(LM L] = 2 [(xt0Y — ¥ 0M), (2P0 — x°0°)]
_ [(:L,,unupaa _ mpnyaav) 4 (xunuoap _ xonupap> _ (xunupaa _ xpnunap) _ (xunl/aap _ xonppauﬂ
= —[n"P(a*0% — x70") + M7 (x¥DP — 2PI”) + Y7 (P O* — 2 OP) + P (7Y — 2V 7))

i[n"P LI 4 gt LYP 4 PO LPF 4 P L]

Consider now translations  — 2/ = 2 4 a. The transformation of a scalar field at fixed coordinate is ¢(x) —
¢'(z), and since ¢'(z') = ¢'(z + a) = ¢(z), then ¢'(z) = ¢(x — a). Identifying

¢'(z) = explia P,)¢(z) = ¢(z — a) = exp[—a"0,]¢(x),

one immediately finds that the representation of the generators of translations on fields is given by

P, =1i0,.
Using this explicit representation, the commutators are
[P, PY] = *[0",0] =0,
[PF,LP7] = 20", 2P0° — x°0°] = —(**PO° — M7 9P) = i(n!P P7 — n"° PP).

These relations are general since the structure constants of course do not depend on the representation used to com-
pute the commutators. The above relations define thus the Poincaré algebra in any representation. Summarizing,
the commutation relations between Poincaré generators are:

(T8, 07 = AT T I e T,
[P/L’ jpa'] — i(n/LpPrr _ 77/1,0'})/))7
[PH,PY] = o

Note. To characterize the Poincaré representation on fields we have considered the variation at fized coordinate
x, namely dp¢(z), not the variation d¢(x) = ¢'(2') — $(x) = 0: this is because the transformation z — 2’ simply
corresponds to a change of reference frame, i.e. to expressing the position of a given point P, with coordinate x
according to observer O, in terms of the coordinates x’ of observer O’. In doing so, the point P is kept fixed,
so studying the variation d¢(x) corresponds to studying how a single degree of freedom (the value of the field at
fixed point P) changes under change of parametrization. The basis for this representation is thus one dimensional,
and since d¢(x) = 0 the generators in this representation are zero: this is called scalar representation. Conversely,
considering the variation keeping fixed the coordinate x, not the point P, means that we are comparing the field
at different points, i.e. the point P which is called z by observer O, and the point P’ which is called = by observer
O’; in this case the base space is the set of functions ¢(P), with P varying in space-time, thus this gives the infinite
dimensional representation of the Poincaré group on fields, which is what we were looking for.

A recommended reading on the Lorentz representation on scalar fields is: M. Maggiore, A Modern
Introduction to Quantum Field Theory, chapters 2.6.1 and 2.7.1.

Exercise 4

Consider a field ¢,(x) which belongs to a given representation M of the Poincaré group. A transformation acting
on coordinates as
ot — ' =AM zY + a,

where A is an element of the Lorentz group and a* is a spacetime translation, induces a transformation on the
field defined as follows:

Pa(r) — ¢ (2') = M(N),” 6v(z) = ¢,(x) = M(A),” ¢p(A™ ! (z — a)),

where the matrix M (A),? is the representative of the Lorentz transformation in the representation ¢, belongs to
and acts on the index a only. For example:



e In the scalar representation the Lorentz group is trivially represented and M (A),? = 1 for all A. Therefore
¢'(z) = ¢(A™ ' (z — a)).

e In the vector representation the field transforms like the coordinate four vector and therefore the represen-
tation of the group element is A itself:

¢ (x) = A*, ¢ (A" (z — a)).

e In the spinorial representation, considered in the previous exercise, the matrix M(A),” is a 2 x 2 matrix such
that, for pure rotations, it coincides with an SU(2) matrix.

Let’s consider a general action
S / dtdz £[6](),
and consider the transformation acting on coordinates and fields:

r— 2 = f(x), z=f1 (),

$(a) — ¢' () = Mlgl(x) = Mlg](f7' (@), o(x) = M~ ¢'|(f(2)).

One can then implement the transformation on z as the usual change of coordinates in an integral, and in addition
express the field ¢ as a function of the transformed one:

S= / d'z Ll6)(x) = / dha! T\ LM B () = / a2 L) (o).

A group of transformation is said to be a symmetry of a theory if the equations of motion have the same structure
in terms of transformed quantities. A sufficient condition for this to happen is that the dependence on ¢’ of the
functional £’ be exactly the same dependence on ¢ of £. The form of the Lagrangian has to be the same once we
express it in terms of transformed field, i.e. £ = £’ as a function, or

if SE/d4x Llg)(x) :/d4x’£[¢’](x') —> symmetry.

Notice that in the right hand side of last equation the function is £, not £’ as in the previous equation (if it
were L' then there would be no symmetry, but simply a trivial renaming of quantities). If this is the case the
Euler-Lagrange equation of motion will have the same structure in terms of the transformed fields and therefore
the dynamics will be unchanged.

One can verify that this is the case for Poincaré transformations in scalar field theory and electromagnetism. The
Lagrangian density for a real scalar field reads

1
Llgl(x) = 50.9(z) 0"9(z) — Vg](x).
In order to check the invariance of the above Lagrangian density one can write the action in terms of the transformed
fields and coordinates and see if the functional form of the Lagrangian is the same as in terms of the untransformed
quantities:

s= [atetiole) = [ (3.0 000 - Viol(o))

[ k191 (500 0t @pens’, - VS

[t (3008w 34 e - Vi)
[ i),



In writing last equations we have used the following properties:
¢'(a") = ¢(x),
ax/l/

8ﬂ¢(x) = 67)'“‘

oxr

|J| = det (8 ’B) =det (AyY) =1 by definition of SO(1, 3),
x

0,¢' (") = A", 0,4/ (2),

AaNABpUW _ naﬁ.

Therefore the functional dependence of the Lagrangian upon the quantities ¢ and z* is the same as the one upon
the transformed quantities, i.e. the Lagrangian remains the same function after the transformation. The Poincaré
group is hence a symmetry of this theory.

One can repeat the argument for the Lagrangian of the electromagnetic field

1 v
E - _ZFHVF’“ .

At variance with the scalar field, A, (z) transforms in the vector representation of the Lorentz group, therefore:

Ap(x) = ANpA:L(x/%
aMAZI (l’) = ApuAaua;/)A/U (I/)a
Fu(x) = APA7F, ().

As before, the Lagrangian has the same functional dependence upon the primed quantities as upon the untrans-
formed ones and this implies that the Poincaré group is indeed a symmetry of the theory:

S= / d*z (—iFW(x)FW(m)) = / d*a’ <—iFl;V(x’)F’W(x')> :

A note on Lorentz transformations

The Lorentz Group is defined by the matrices satisfying the relation
VAN O, Up __ VO
Au, Ap 77 - 77 ’

and normally one defines the transformation of a vector with lower index (covariant vector) as v, — A v,. How-
ever, introducing the vector (contravariant vector) with upper index as v® = 78 vg, one obtains the transformation
law for this vector as v* — A” v”, where by definition

A = n"pnw,Apa,

and it can easily shown that it defines a Lorentz transformation as well:
AP AP =i

This equation together with the first of this section can be used to express the form of the inverse of a Lorentz
transformation:

-1\ a,vo -1\ « v o « o
(A7), 0" = (A7), A A" = 6,0A
= (A71),* =A%,
and
(A = (A7) A AP = 67, A%n"° (8)
S (A’l)vﬂ =A. (9)

Using a matrix notation defining A* ¥ = A - x, (where A¥*, is the element of the pth row and vth column) the
statement that A is an element of the Lorentz group

AH(XAUBTIHV = TapB (10)
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can be phrased as
AT . p-A=n (11)

where 1 = diag(1, —1, —1, —1). Multiplying both sides of eq. 11 by A~! on the right and 7 on the left one gets
At =n ATy (12)

where 7 - 7 = 1 has been used.



