
Quantum Field Theory

Set 6: solutions

Exercise 1

• If Vij = vaXa
ij then (ommitting the matrix indices)

V ′ = D(g)V D(g−1) = va

D(g)XaD(g−1)


= va


eiX

bαb

Xae−iXcαc

 (1)

We now use the Hadamard formula to write

eiX
bαb

Xae−iXcαc

= Xa + iαb[Xb, Xa]− αbαc

2!
[Xb, [Xc, Xa]] +    (2)

= Xa + αbfabcXc +
αbαc

2!
f cadf bdeXe +    (3)

where use was made of the Lie algebra.

Note that every term in the series is a nested commutator which, due to the Lie algebra, will always end up
in a single generator, as shown above for the rst few terms.

We can then write

V ′ =


va + αbf cbavc +

αbαc

2
f cedf bdave +   


Xa = v′aXa, (4)

where we swapped some indices to factor out Xa.

This shows that R(g) maps the vector space spanned by the generators to itself.

• Since R(g) acts on the generators, then its dimension is the number of generators N , i.e. the dimension of
the Lie group. In order for R(g) to indeed dene a representation it must faithfully represent the group
elements (and their properties) on a vector space. Since R(g) acts through left and right multiplication of
D(g) which is a generic representation we conclude that R(g) is also a representation.

Concretely,

1. Identity element.
R(e) : V  V ′ = D(e)V D(e−1) = V =⇒ R(e) = 1 (5)

2. Inverse element.

R(g−1) : V  V ′ = D(g−1)V D(g) = [D(g)]−1V [D(g−1)]−1 =⇒ R(g−1) = R(g)−1 (6)

3. Group product.

R(g1)R(g2) : V  V ′ = D(g1)D(g2)V D(g−1
2 )D(g−1

1 ) = D(g1g2)V D(g−1
2 g−1

1 ) (7)

= D(g1g2)V D((g1g2)
−1) =⇒ R(g1)R(g2) = R(g1g2) (8)

• Given v′i = Rij(g)vj and R(g(α)) = eiX̃
aαa

we nd to linear order

Rij = δij + iX̃a
ijα

a +    (9)

From eq. (4) we have
v′i = [δij + αafaij +    ] vj (10)

where we swapped the following indices in eq. (4): (a, b, c)  (i, a, j) and used the cyclic property f jai = faij .

Comparing the above two equations we read o

X̃a
ij = −ifaij  (11)



• We have already showed that R(g) is a representation. Therefore, its generators X̃ must satisfy the Lie
algebra. Let’s now check how this comes about explicitly.

We have
[X̃a, X̃b]ij = X̃a

icX̃
b
cj − X̃b

icX̃
a
cj = −faicf bcj + f bicfacj = −facif bjc − f bcif jac (12)

We now use the Jacobi identity
facif bjc + f bcif jac + f jcifabc = 0 (13)

to get
[X̃a, X̃b]ij = f jcifabc = fabcf cij = ifabc


−if cij


= ifabcX̃c

ij  (14)

Exercise 2

Consider rst j = 1. We have:

T 3 1⟩ = 1⟩ , T 3 0⟩ = 0, T 3 −1⟩ = − −1⟩ ,

T+ 1⟩ = 0, T+ 0⟩ = 1⟩ , T+ −1⟩ = 0⟩ 
We represent the states m⟩ as vector in R3 in the simplest way:

1⟩ =




1
0
0


 , 0⟩ =




0
1
0


 , −1⟩ =




0
0
1


 

To construct the matrices of the generators then we just compute their components. For instance for T 3

(T 3)mm′ ≡ ⟨mT 3m′⟩ = δmm′m =




1 0 0
0 0 0
0 0 −1


 

The others are computed similarly:

T+ =




0 1 0
0 0 1
0 0 0


 , T− = (T+)† =




0 0 0
1 0 0
0 1 0


 

=⇒ T 1 =
T+ + T−

√
2

=
1√
2




0 1 0
1 0 1
0 1 0


 , T 2 = i

T− − T+

√
2

=
1√
2




0 −i 0
i 0 −i
0 i 0


 

The same can be used for j = 32 and j = 2. For j = 32 we obtain:

T 3 =




32 0 0 0
0 12 0 0
0 0 −12 0
0 0 0 −32


 , T+ =




0


32 0 0

0 0
√
2 0

0 0 0


32
0 0 0 0


 = (T−)†

For J=2:

T 3 =




2 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 −1 0
0 0 0 0 −2




, T+ =




0
√
2 0 0 0

0 0
√
3 0 0

0 0 0
√
3 0

0 0 0 0
√
2

0 0 0 0 0




= (T−)†

Since T 3 is diagonal in this basis, we nd (exp[iϕ(T 3)])mm′ = eimϕδmm′ :

j = 1 − eiϕT
3

=




eiϕ 0 0
0 1 0
0 0 e−iϕ


 ,
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j = 32 − eiϕT
3

=




ei
3
2ϕ 0 0 0

0 ei
1
2ϕ 0 0

0 0 e−i 1
2ϕ 0

0 0 0 e−i 3
2ϕ


 ,

j = 32 − eiϕT
3

=




ei2ϕ 0 0 0 0
0 eiϕ 0 0 0
0 0 1 0 0
0 0 0 e−iϕ 0
0 0 0 0 e−i2ϕ






Exercise 3

The explicit form of the three matrices is:

T 1 =




0 0 0
0 0 −i
0 i 0


 , T 2 =




0 0 i
0 0 0
−i 0 0


 , T 3 =




0 −i 0
i 0 0
0 0 0


 

The group SO(3) is dened as

SO(3) =

R ∈ GL(3,R) RRT = RTR = 1, det(R) = 1



Parametrizing a general element of the group using the exponential function, R(α) = eiα
aTa

, one can translate
the constraints on the elements of the group to constraints on the generators:

1 = RRT = (1 + iαaT a)(1 + iαb(T b)T ) +O(α2) =⇒ T a = −(T a)T 

The Algebra of SO(3) is a vector space generated by 3(3 − 1)2 = 3 antisymmetric objects, together with the
usual commutator [, ]. The three matrices dened at the beginning are

• antisymmetric,

• independent,

• in number equal to the dimension of the space.

Therefore they form a basis for (a representation of) the algebra so(3). Having an explicit representation of the
generators of a Lie Algebra, one can compute the commutators between them and extract the structure constants.
The commutation relations which one obtains in this way are the same as in all the other representations, since
the structure of the algebra of course doesn’t depend on its explicit representation.
In the present case one has


T 1, T 2


=




0 0 0
0 0 −i
0 i 0






0 0 i
0 0 0
−i 0 0


−




0 0 i
0 0 0
−i 0 0






0 0 0
0 0 −i
0 i 0




=




0 0 0
−1 0 0
0 0 0


−




0 −1 0
0 0 0
0 0 0


 = i




0 −i 0
i 0 0
0 0 0


 = iT 3

Similarly one can explicitly compute


T 2, T 3


= iT 1,


T 1, T 3


= −iT 2,

and identify the structure constant of the group fabc = ϵabc. This is the Algebra of the angular momentum one
is used to deal with for example in quantum mechanics. The statement that a state s⟩ has angular momentum
J means that it belongs to a vector space on which acts a representation of the rotation group SO(3) (call this
representation j – we will see that representations can be labelled by an integer number). Under the action of the
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group, s⟩ transforms according to s⟩  eiαaT
(j)
a s⟩, where T

(j)
a are the generators of SO(3) in the representation

j.
Coming back to structure constants, it is also possible to extract the commutation relations using the implicit
form (T a)ji = −iϵaij :


T a, T b

k
i
= (T a)ji (T

b)kj − (T b)ji (T
a)kj = (−i)2ϵaijϵbjk − (−i)2ϵbijϵajk

= ϵabcϵcik = iϵabc(T
c)ki ,

where the last equality is a consequence of the identity ϵaijϵbjk + ϵajkϵbji + ϵabjϵjik = 0 (which in the end is the
Jacobi identity for the structure constants of so(3)).
One can show that a general element of the group SO(3) is a rotation acting on three dimensional vectors. To see
this one can consider the fundamental (or dening) representation, that is to say the explicit representation of the
group SO(3) on R3 that we have previously recalled. An element of the group depends on three parameters αa:
one can collect them in a vector and call n⃗ = α⃗α⃗ the direction of this vector and θ = α⃗ the modulus of the
vector. It’s easy to prove that the action of the element R(α) = eiα

aTa

on a vector x⃗ corresponds to a rotation of
this vector of an angle θ around the direction n⃗. One can rstly consider an innitesimal rotation (θ << 1)

R(α)ji xj ≃

1 + iθnaT a +O(α2)

j
i
xj ≃


δji + iθna(T a)ji+


xj = xi + θϵaijn

axj

=⇒ R(α) : x⃗ − x⃗+ θ x⃗ ∧ n⃗

One can verify that this is in accord with the usual way of representing a rotation: for example a rotation around
the 3rd direction by an angle θ produces a change in the 1, 2 plane according to




x1

x2

x3


 −




x1 cos θ + x2 sin θ
x2 cos θ − x1 sin θ

x3


 ≃




x1 + x2θ
x2 − x1θ

x3


 =




x1

x2

x3


+ θ




x1

x2

x3


 ∧




0
0
1


 ,

where we have expanded the trigonometric functions for small angles.
One can do more: exponentiating the generators one can obtain the explicit form of an element of SO(3) and
compare it with a generic nite rotation. It’s particularly easy to perform this computation in the simple case
where the rotation is around one of the axes: let’s take again the 3rd direction for concreteness. Recognizing that

(T 3)2n =




1 0 0
0 1 0
0 0 0


 ≡ A,

then

R(θn⃗3) = eiθT
3

= 1 + iθT 3 − 1

2
θ2(T 3)2 +   

= iT 3


θ − 1

3!
θ3 +

1

5!
θ5 +   


+ A


1− 1

2!
θ2 +

1

4!
θ4 +   


+ 1− A

=




0 sin θ 0
− sin θ 0 0

0 0 0


+




cos θ 0 0
0 cos θ 0
0 0 0


+




0 0 0
0 0 0
0 0 1


 =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 

One immediately recognizes the usual form of a rotation by an angle θ in the 1− 2 plane.

Note. The group SO(n), as well as other groups of linear transformations, is usually not dened in abstract
by characterizing its elements g, but specifying the properties of one particular representation (the fundamental
or defining representation): in the case of SO(3) the fundamental representation contains the 3 × 3 orthogonal
matrices with determinant = 1. This does not mean of course that the group has only that representation. For
example, a quantity which is invariant under rotations transforms according to a one dimensional representation
of SO(3) in which the generators are identically = 0, while an object with angular momentum j = 2 transforms
according to a ve dimensional representation, i.e. a representation in which the transformations are represented
by 5× 5 matrices.

The rest of the exercise deals with another group, SU(2), and the relation between this group and the group of
rotations that we have analyzed in the rst part. To begin with, one can recall the denition of the group as

SU(2) =

U ∈ GL(2,C) UU+ = U+U = 1, det(U) = 1



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Then one can consider the representation of the group acting on the vector space V dened to be:

V =

M ∈ M(2,C) M = M+, Tr(M) = 0


,

that is to say the set of hermitian traceless matrices. One can verify that this vector space coincides with the one
that denes the Lie Algebra of SU(2). Indeed for innitesimal transformations

1 = U †U = (1− iαa(T a)†)(1 + iαbT b) +O(α2) =⇒ T a = (T a)†,

1 = det(eiαT ) = eiαTr(T ) =⇒ Tr(T ) = 0,

therefore the two vector spaces coincide. If one is able to nd a basis of V this will also be a basis of the Lie
Algebra of SU(2). A basis of the vector space V is given for example by the three Pauli matrices:

σ1 =


0 1
1 0


, σ2 =


0 −i
i 0


, σ3 =


1 0
0 −1




Having a basis of the Lie Algebra it’s possible to compute the commutation relations as we did for SO(3):


σ1,σ2


=


0 1
1 0

 
0 −i
i 0


−


0 −i
i 0

 
1 0
0 −1


= 2i


1 0
0 −1


= 2iσ3,


σ2,σ3


= 2iσ1,


σ1,σ3


= −2iσ2,

therefore the matrices τa ≡ σa2 satisfy the algebra of SU(2):

τa, τ b


= iϵabcτ

c,

which is exactly the same of that one of SO(3). This is something that happens frequently: given a Lie Group
one and only one Lie Algebra is associated to it, however the converse in not true; given a Lie Algebra there exists
unique a connected and simply connected Lie group associated to it, but there may exist other dierent groups
without these constraints associated to the same algebra.

To summarize, we are considering a representation of a Lie Group on its Lie Algebra; this particular representation
is called adjoint representation. The action of an element U of the group on an element M of the space V is as
follows:

U : M − M ′ = UMU †

The above action denes a good representation since

• It’s a linear application from V to V ; indeed (M ′)† = M ′ and Tr(M ′) = Tr(UMU †) = Tr(M) = 0.

• It respect the composition of the group transformations:

U1 : M − M ′ = U1MU †
1 , U2 : M ′ − M ′′ = U2M

′U †
2 ,

U2 ◦ U1 : M − (U2 ◦ U1)M(U2 ◦ U1)
† = U2U1MU †

1U
†
2 = M ′′

Any hermitian traceless matrix can be written as a linear combination of elements of the basis:

M =


y3 y1 − iy2

y1 + iy2 −y3


= yiσ

i

From the above equality one can argue that an element M can be associated to a thee-dimensional vector y⃗ =
(y1, y2, y3), which is the set of coordinates of the element M in the chosen basis. We know that a representation
of a group is dened as a mapping between the group and the matrices acting on a vector space. After having
chosen a basis one can also build the explicit form of the matrices associates to the element U of SU(2). Here
there is a scheme of the relations:

Ψ : Group − Matrices acting on V

: U − Rj
i

U : V − V

: M = yiσ
i − UMU † = ỹiσ

i

R : V − V

: yi − ỹi = Rj
i yj 
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In order to get the form of the matrix R associated to a given element U one can consider an innitesimal element
of SU(2) acting on M :

UMU † ≃ (1 + iαaτa)yiσ
i(1− iαbτ b) = yiσ

i +
i

2


σa,σi


αayi +O(α2)

= yiσ
i + i(i)ϵaicσ

cαayi = (yc − ϵcaiα
ayi)σ

c = ỹcσc

Therefore the matrix Rj
i associated to the element of the group U is a rotation of an angle θ = α⃗ around the

direction identied by α⃗. One has to notice an important feature of this relation: the element of the group U and
−U induce the same changing for the vector y⃗, therefore they have the same representative. The representation
map is not injective, even if it’s surjective.

To summarize, we have shown that the group SU(2) and SO(3) have the same Lie Algebra, even if they are
dierent groups. This implies that given a representation of the Algebra one has for sure a representation of
SU(2) (because is connected and simply connected) but not necessarily a representation of the group SO(3). It
may happen however that some vector space support both the representations, as we have seen. In particular the
adjoint representation of SU(2) (the one on it’s Lie Algebra that we have considered in this exercise) provides
automatically a representation of SO(3).

Exercise 4

Part 1

A spin 1 representation is made of three states 1⟩ , 0⟩ , −1⟩, on which the generators act as:

T 3 1⟩ = 1⟩ , T 3 0⟩ = 0, T 3 −1⟩ = − −1⟩ ,

T+ 1⟩ = 0, T+ 0⟩ = 1⟩ , T+ −1⟩ = 0⟩ ,
T− 1⟩ = 0⟩ , T− 0⟩ = −1⟩ , T+ −1⟩ = 0

Consider now the tensor product representation, i.e. the linear space formed by the vectors:

mi⟩(1) ⊗ mj⟩(2) = mi;mj⟩(1)⊗(2) , mi,mj = −1, 0, 1

Here the subscripts underline that the states belong to two dierent linear spaces. As showed in the previous set,
generators in the tensor product representation are written as:

T i
(1)⊗(2) = T i

(1) ⊗ 1(2) + 1(1) ⊗ T i
(2)

We omit the subscript (1)⊗ (2) in the following. It follows immediately that T 3 is diagonal in the tensor product
representation:

T 3 m1;m2⟩ = (m1 +m2) m1;m2⟩ ≡ M m1;m2⟩ 
We can thus classify states according to their eigenvalue of T 3. We nd:

• M = 2: 1; 1⟩ forming a 1d vector space,

• M = 1: 1; 0⟩ , 0; 1⟩ forming a 2d vector space,

• M = 0: 0; 0⟩ , 1;−1⟩ , −1; 1⟩ forming a 3d vector space,

• M = −1: −1; 0⟩ , 0;−1⟩ forming a 2d vector space,

• M = −2: −1;−1⟩ forming a 1d vector space.

The highest weight technique consists in taking the maximum M eigenvector and applying lowering operators to
get a J = M representation. In this case this is just the state 1; 1⟩ with M = 2. Since there are no states with
bigger M , this must be part of a J = 2 representation. We hence call

2, 2⟩ ≡ 1; 1⟩ 
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Here the notation J,M⟩ means spin J representation with eigenvalue M of T3:

T⃗ 2 J,M⟩ = J(J + 1) J,M⟩ , T 3 J,M⟩ = M J,M⟩ 

The other vectors of the representation are obtained acting with T−. For instance

T− 2, 2⟩ = T− 1; 1⟩ = 0; 1⟩+ 1; 0⟩ =⇒ 2, 1⟩ = 1√
2
(0; 1⟩+ 1; 0⟩) 

The prefactor is obtained by requiring normalization. Iterating we obtain:

2, 0⟩ = 1√
6
(2 0, 0⟩+ 1,−1⟩+ −1, 1⟩) ,

2,−1⟩ = 1√
2
(0;−1⟩+ −1; 0⟩) ,

2,−2⟩ = −1;−1⟩ 

The representation of course stops here, indeed T− 2,−2⟩ = 0. As expected, in the J = 2 there is exactly
one vector for each M . We thus still need to understand how the remaining vectors organize themselves into
representations of SU(2).
In order to proceed, let us recall that in general a vector belonging to a representation J is an eigenvector of the
Casimir operator with eigenvalue J(J+1). Since the Casimir operator is diagonal and proportional to the identity
in any irreducible representation it follows that two vectors belonging to dierent representations are orthogonal.
We have arranged the only M = 2 state in a J = 2 representation. There is instead only one M = 1 vector (up
to normalization) which is orthogonal to 2, 1⟩, which is given by:

1, 1⟩ ≡ 1√
2
(1; 0⟩ − 0; 1⟩) 

It is easy to verify T+ 1, 1⟩ = 0, hence it must belong to a J = 1 representation. The other vectors in J = 1 are
obtained acting with T−:

1, 0⟩ = 1√
2
(1;−1⟩ − −1; 1⟩) ,

1,−1⟩ = 1√
2
(0;−1⟩ − −1; 0⟩) 

We used all M ̸= 0 vectors at our disposal. The only M = 0 vector left which is orthogonal to all the others thus
corresponds to a J = 0 trivial representation:

0, 0⟩ = 1√
3
(0; 0⟩ − 1;−1⟩ − −1; 1⟩) 

Finally using

T⃗ 2
(1)⊗(2) = T⃗ 2

(1) ⊗ 1(2) + 1(1) ⊗ T⃗ 2
(2) +

1

2


T+
(1) ⊗ T−

(2) + T−
(1) ⊗ T+

(2)


+ 2T 3

(1) ⊗ T 3
(2),

it is possible to check that the representations we constructed have the right eigenvalue of the Casimir.

Part 2

Consider the product of two vectors viwj . Under rotations this product obviously transform as:

viwj −


k,m

RikRjmvkwm

This is obviously a representations of SU(2). Hence we dene a 2-tensor Tij as an object which transforms under
rotation as

Tij −


k,m

RikRjmTkm
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Notice that if we think of T as a matrix, we can rewrite the transformation rule as:

T − RTRT 

Tij has 9 components, as the number of independent vectors in the previous part. We expect to be able to
decompose its components in three dierent representations: J = 0, 1, 2.
A J = 0 rep. simply corresponds to a quantity which is unchanged by rotations. It is easy to verify that this is
given by the trace:

Tr[T ] − Tr[RTRT ] = Tr[TRTR] = Tr[T ]

Notice now that simmetricity property are not changed by rotations. Dene

Aij =
1

2
(Tij − Tji) ,

Sij =
1

2
(Tij + Tji)− δijTr[T ],

T = S + A, ST = S, AT = −A

Then it is easy to check that also S′ = RSRT = S′T and A′ = RART = −A′T . Summing up everything we found
that the trace, the antisymmetric part and the traceless symmetric part of a tensor transform independently. We
already saw that Tr[T ] is a scalar. Since S has 5 independent components and A has 3 independent components,
these must form a spin 2 and a spin 1 representations.
Notice that to check that Aij transform as a usual vector, you can dene:

vi =


kl

ϵiklAkl

Then using ϵijk =


m,n,l RimRjnRklϵmnl, one can check that vi transforms in the usual way.

Optional: Sum of spins in group theoretic language

A particle with spin j is an object that under rotations transforms as a state of the representation j of the group
SU(2). If one chooses a spatial direction, the 3rd one for example, the representation j can be dened considering
the possible eigenvectors of the generator of rotation in this direction, τ3. These eigenvectors form a basis B of
the 2j + 1 dimensional vector space where the group is represented:

B = j,m⟩, m = −j, −j + 1, , j − 1, j 

The action of the generators on this vector space is given by

τ3j,m⟩ = mj,m⟩,

τ±j,m⟩ = 1√
2


j(j + 1)−m(m± 1)j,m± 1⟩,

3

i=1

(τ i)2j,m⟩ = j(j + 1)j,m⟩

Let us specialize to the j = 12 representation. The vector space in this case is 2-dimensional and a basis consists
simply of the two states 

1

2
,
1

2


,


1

2
,−1

2


,

and the generators are represented by the three matrices

τ3 =


12 0
0 −12


, τ+ =


0 1
0 0


, τ− =


0 0
1 0




Consider now two copies of the previous representation, corresponding for example to two distinct particles with
spin 12 each. If one wants to consider the spin of the bound state formed by these two particles one should use
the notion tensor product of two vector spaces.
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Here we are considering the tensor product of two 2-dimensional vector spaces on which the representation j = 12
of SU(2) acts. A complete basis for the tensor product space is given by the set

BV =


1

2
,
1

2


⊗


1

2
,
1

2


,


1

2
,
1

2


⊗


1

2
,−1

2


,


1

2
,−1

2


⊗


1

2
,
1

2


,


1

2
,−1

2


⊗


1

2
,−1

2

 


The tensor product is hence 4-dimensional. One can use the following notation for short:

BV = ⟩ , ⟩ , ⟩ , ⟩ 

From a previous exercise we know that the generators of the direct product are the ’sum’ of the generators of each
representation,

τ3V = τ3 ⊗ 1 + 1⊗ τ3,

τ+V = τ+ ⊗ 1 + 1⊗ τ+,

τ−V = τ− ⊗ 1 + 1⊗ τ−

One can verify that the elements of the basis of the tensor product space are still eigenvectors of the generator τ3V :

τ3V ⟩ = τ3 ⟩ ⊗ 1 ⟩+ 1 ⟩ ⊗ τ3 ⟩ = 1

2
⟩ ⊗ ⟩+ ⟩ ⊗ 1

2
⟩ = ⟩ ,

τ3V ⟩ = τ3 ⟩ ⊗ 1 ⟩+ 1 ⟩ ⊗ τ3 ⟩ = 1

2
⟩ ⊗ ⟩+ ⟩ ⊗ −1

2
⟩ = 0,

τ3V ⟩ = τ3 ⟩ ⊗ 1 ⟩+ 1 ⟩ ⊗ τ3 ⟩ = −1

2
⟩ ⊗ ⟩+ ⟩ ⊗ 1

2
⟩ = 0,

τ3V ⟩ = τ3 ⟩ ⊗ 1 ⟩+ 1 ⟩ ⊗ τ3 ⟩ = −1

2
⟩ ⊗ ⟩+ ⟩ ⊗ −1

2
⟩ = − ⟩ 

Hence the tensor product space contains eigenstates of τ3V relative to the eigenvalues 1, 0, 0,−1. The representations
we have started with were by construction two irreducible representation of the Algebra of SU(2), while in general
their tensor product is not an irreducible representation. However it is always possible to decompose it in direct
sum of irreducible representations D1⊗2 ≡ D1 ⊗D2 = Da ⊕Db.
Let’s now construct explicitly these two representations. In order to do so, one rst considers the basis BV and
takes its element with the largest eigenvalue of τ3V , in this case ⟩; this state is called the highest weight state in
the tensor product representation. The action of the raising operator on this state is

τ+V ⟩ = τ+ ⟩ ⊗ 1 ⟩+ 1 ⟩ ⊗ τ+ ⟩ = 0

Since τ3V ⟩ ≡ M ⟩ = ⟩, one can write this state in notation J,M⟩ as

⟩ ≡ J = 1,M = 1⟩ ,

where the fact that for this state J = M is due to the denition of highest weight state (remember Set5, where the
j labeling an irreducible representation was a shorthand notation for mmax). Thus we have just noticed that in
the tensor product of two representations j = 1

2 of SU(2) there is a representation J = 1. To build the remaining

part of the basis of this representation it is sucient to apply 2J = 2 times the lowering operator τ−V , and use the
explicit knowledge about the action of τ− on the states of the representations j = 1

2 .

τ−V ⟩ = τ− ⟩ ⊗ 1 ⟩+ 1 ⟩ ⊗ τ− ⟩

=
1√
2


12 (12 + 1)− 12 (12− 1) ⟩ ⊗ ⟩+ ⟩ ⊗ 1√

2


12 (12 + 1)− 12 (12− 1) ⟩

=
1√
2
(⟩+ ⟩)

≡ τ−V 1, 1⟩ =
1√
2


1 (1 + 1)− 1 (1− 1) 1, 0⟩ = 1, 0⟩ ,
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τ−V
1√
2
(⟩+ ⟩) =

1√
2
(τ− ⟩ ⊗ 1 ⟩+ 1 ⟩ ⊗ τ− ⟩)

=
1

2


12 (12 + 1)− 12 (12− 1) ⟩ ⊗ ⟩+ ⟩ ⊗ 1

2


12 (12 + 1)− 12 (12− 1) ⟩

= ⟩

≡ τ−V 1, 0⟩ =
1√
2


1 (1 + 1)− 0 (0− 1) 1,−1⟩ = 1,−1⟩ ,

τ−V ⟩ = 0

Notice that the three elements in this basis, namely ⟩ ≡ 1, 1⟩, 1√
2
(⟩+ ⟩) ≡ 1, 0⟩ and ⟩ ≡ 1,−1⟩,

have the same symmetry properties under permutations of the two spins, i.e. the raising and lowering operators
don’t change the symmetry properties of the states they act on; the representation J = 1 of SU(2) is a symmetric
representation.
Note that this is a general statement: the highest weight representation (i.e. the representation containing the
highest weight state) in the decomposition of a tensor product of n identical representations of SU(2) is always
symmetric under permutations of the particles of the component representations. This is so because the highest
weight state is always of the form ja, ja⟩ ⊗ ja, ja⟩ ⊗ ⊗ ja, ja⟩ and the raising/lowering operators don’t modify
the symmetry of the states.
Since the vector space on which the representation 1

2 ⊗ 1
2 acts is 4-dimensional, and we have found that one of the

irreducible representations in which it decomposes is 3-dimensional, then only another irreducible 1-dimensional
representation of SU(2) can appear in the direct sum, and this is in fact the representation with J = 0 (and
consequently M = 0). A basis for this representation is build by considering the state with M = 0 in the
representation with J = 1 and nding a linear combination of the states ⟩ and ⟩ (the ones with M = 0)
orthogonal to 1, 0⟩:

0 =

⟨ ⊗ ⟨+ ⟨ ⊗ ⟨


A ⟩ ⊗ ⟩+B ⟩ ⊗ ⟩



= A ⟨  ⟩ ⟨  ⟩  
=0

+A ⟨  ⟩ ⟨  ⟩+B ⟨  ⟩ ⟨  ⟩+B ⟨  ⟩ ⟨  ⟩  
=0

= A+B

Therefore the state belonging to the J = 0 representation is the antisymmetric combination ⟩ − ⟩, and a
prefactor of 1√

2
ensures its correct normalization: 1√

2
(⟩ − ⟩) ≡ 0, 0⟩.

The advantage of performing such a decomposition is that now it is simple to write the action of the algebra on
this vector space: organizing the basis as follows

BV =


⟩ , ⟩+ ⟩√

2
, ⟩ ; ⟩ − ⟩√

2


,

and calling

⟩ =




1
0
0
0


 ,

⟩+ ⟩√
2

=




0
1
0
0


 , ⟩ =




0
0
1
0


 ;

⟩ − ⟩√
2

=




0
0
0
1


 ,

any vector v ∈ V will be written as

v =


vJ=1

vJ=0


,

where vJ=1 is a three dimensional vector while vJ=0 is one dimensional. Moreover the generators will have the
simple form

τ iV =




0
τ iJ=1 0

0
0 0 0 τ iJ=0


 ,

and the same will be for the representative of the group elements, so the representation matrices are in block-
diagonal form. This proves that the tensor product representation 1

2 ⊗ 1
2 is fully decomposed into the direct sum

1⊕ 0, and thus the vector space V is as well decomposed into a direct sum of a 3-dimensional and a 1-dimensional
invariant subspaces, V = VJ=1 ⊕ VJ=0, spanned respectively by the rst three and by the fourth element of BV .
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Let’s summarize the steps to be followed in order to decompose a tensor product representation.

1) Build a basis for the tensor product space with all the possible combinations of vectors of the bases of the
’component’ spaces (the spaces on which the ’component’ representations act).

2) Find the highest weight state in the basis: this is always possible because the action of τ3V on the tensor product
space is known in terms of the action of the τ3 on the ’component’ spaces. The representation containing the
highest weight state (whose eigenvalue of τ3V , called weight, is M) has J = M .

3) Build the representation J by acting 2J times with the lowering operator τ−V on the highest weight state.

4) Set aside the subspace associated to the spin J = M representation. Build, with the states in the basis of the
tensor product space, the combinations orthogonal to the basis of the spin J = M representation. Find among
these combinations the state with weight M − 1: this is the highest weight state of the representation J = M − 1.

5) Reiterate the procedure from point 2) until all the states are assigned to irreducible representations.

Strongly recommended reading: H. Georgi, Lie Algebras in Particle Physics, chapter 3.

Exercise 5

Lorentz transformations are dened as the linear transformations acting on the spacetime coordinates that leave
invariant the spacetime distance

s2 = c2t2 − x⃗ · x⃗ = xµxνηµν 

If one applies such a transformation to the four-vector xµ, namely xµ − Λµ
νx

ν , and imposes this to leave invariant
the above dened distance one gets the constraint

Λµ
ρηµνΛ

ν
σ = ηρσ, or ΛT ηΛ = η

This equation denes a relation between the set of 4× 4 real matrices that identies a group called

O(1, 3) =

Λ ∈ GL(4,R)  ΛT ηΛ = η


,

where η = diag(1,−1,−1 − 1). Geometrically the Lorentz group corresponds to the set of transformations that
preserve the generalized scalar product dened by the matrix η.
In order to identify the Lie algebra associated to the Lorentz group one can consider the innitesimal transformation
Λµ

ν = δµν + wµ
ν and plug it inside the constraint:


δµρ + wµ

ρ


ηµν (δ

ν
σ + wν

σ) = ηρσ + wµ
ρηµσ + ηνρw

ν
σ +O(w2) = ηρσ

=⇒ wρσ = −wσρ,

therefore the algebra consist of the antisymmetric 4 × 4 real matrices and thus it has dimension 4×3
2 = 6. One

would like to write the general element of the algebra as a linear combination of generators wµ
ν = −iwa(Ja)µν2.

In order to write a compact expression for the generators it’s useful to make use of a dierent notation: instead
of a single index a = 1, 2, , 6 one can use a pair of indices α,β = 0, 1, 2, 3 and make the following identication:

a αβ
1 01
2 02
3 03
4 12
5 13
6 23

with Tαβ = −T βα

In this way the pairs of spacetime indices label exactly six generators. Now one is able to write a complete basis
for the Lie algebra:

B : (J µν)ρσ = i (ηµρδνσ − ηνρδµσ) ,
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where as already explained the indices inside the parenthesis label the six generators while the other two are the
proper indices of the matrix. Just to make an example, the matrix J 01 is of the form

(J 01)ρσ =




0 i 0 0
i 0 0 0
0 0 0 0
0 0 0 0


 

Note that the generators (J µν)ρσ are not antisymmetric matrices: only the (J µν)ρσ ≡ i (ηµρηνσ − ηνρηµσ) are.
Now that one has an explicit form for the generators it becomes possible to compute the commutation relations
and read out the structure constants:


J µν ,J αβ

γ
ρ
= (J µν)γσ(J αβ)σρ − (J αβ)γσ(J µν)σρ

= − (ηµγδνσ − ηνγδµσ)

ηασδβρ − ηβσδαρ


+


µ  α

ν  β




The result of the commutator has be a matrix with indices ( )γρ, therefore we try to reproduce this combination
in the r.h.s of the above expression:


J µν ,J αβ

γ
ρ
= −


ηµγηανδβρ  

1

− ηνβηµγδαρ  
2

− ηµαηνγδβρ  
3

+ ηνγηβµδαρ  
4




+


ηαγηµβδνρ  

4

− ηνβηαγδµρ  
2

− ηµαηβγδνρ  
3

+ ηβγηναδµρ  
1




= i

ηνα(J µβ)γρ − ηνβ(J µα)γρ − ηµα(J νβ)γρ + ηµβ(J να)γρ




Summarizing 
J µν ,J αβ


= i


ηναJ µβ − ηνβJ µα − ηµαJ νβ + ηµβJ να




Let us come back to the usual notation in which generators are labelled by a single index and dene

J i =
1

2
ϵijkJ jk, J jk = ϵjkiJ i,

Ki = J i0,

i, j, k = 1, 2, 3 and ϵ123 = 1

Note that J i, Ki are still 4× 4 matrices. One can rewrite the commutation relation in terms of the new quantities


J i, Jj


=

1

4
ϵiabϵjcd


J ab,J cd


=

i

4
ϵiabϵjcd


ηbcJ ad − ηbdJ ac − ηacJ bd + ηadJ bc



= − i

4
ϵiabϵjcd


δbcJ ad − δbdJ ac − δacJ bd + δadJ bc



= − i

4


ϵiabϵjbdϵadk − ϵiabϵjcbϵack − ϵiabϵjadϵbdk + ϵiabϵjcaϵbck


Jk

= i

δijδad − δidδaj


ϵadkJk = −iϵjikJk,


J i, Jj


= iϵijkJk

One immediately recognizes the algebra of SU(2): the above generators form a subalgebra of the Lorentz Algebra.
Indeed the Lorentz group contains the spatial rotations as a subgroup. The other commutation relations read


J i, Kj


=

1

2
ϵika


J ka,J j0


=

i

2
ϵika


ηajJ k0 − ηa0J kj − ηkjJ a0 + ηk0J aj



= − i

2
ϵika


δajJ k0 − δkjJ a0


= iϵijkKk,


Ki, Kj


=


J i0,J j0


= i


η0jJ i0 − η00J ij − ηijJ 00 + ηi0J 0j


= −iJ ij = −iϵijkJk

It’s important to underline the commutation rules of the generators of boosts Ki with those of rotations J i: it
states that the generators of boosts transform under rotation as a vector, that is to say according to the repre-
sentation J = 1 of SU(2). This becomes evident if one considers the adjoin representation of the Lorentz group
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acting on its algebra.
The fact that the commutator of two K’s is a J rather than another K can be guessed considering the parity trans-
formations (i.e. transformation under reection of spatial coordinates) of these vectors. The angular momentum
J is invariant under parity (indeed it is the vector product of position and momentum, two polar vectors), while
the boost generator K changes sign reecting the coordinates: thus a product of two K’s cannot be a proportional
to a K, and since the algebra has to close, it cannot but be some linear combination of J ’s.

Exercise 6

The explicit expression for J 10 is

J 10 =




0 −i 0 0
−i 0 0 0
0 0 0 0
0 0 0 0


 =


−iσ1 0
0 0


,

where in the right hand side every entry is understood to be a 2 × 2 block. In particular, σ1 =


0 1
1 0


is

one of the Pauli matrices, satisfying σ2
1 = 12 (this can be shown by explicit computation or using in general the

anticommutation relation σi,σj = 2δij). It is now possible to write the Lorentz transformation as a Taylor
expansion in η:

Λ = 14 − iηJ 10 +
(−iη)2

2!
(J 10)2 + · · ·

=


12 0
0 12


− η


σ1 0
0 0


− (−iη)2

2!


12 0
0 0


+ · · ·

≡


λ 0
0 12


,

with

λ = 12 − ησ1 +
η2

2!
12 −

η3

3!
σ1 + · · · 

Separating the terms proportional to 12 from the ones proportional to σ1, and remembering the Taylor series
cosh(x) = 1 + x22! + · · · and sinh(x) = x+ x33! + · · · , then one can rewrite λ as

λ = cosh(η)12 − sinh(η)σ1 =


cosh(η) − sinh(η)
− sinh(η) cosh(η)


,

which proves what required in the text. Moreover, given the standard form of a boost along x,

Λ =




γ −γβ 0 0
−γβ γ 0 0
0 0 1 0
0 0 0 1


 ,

one can immediately identify γ and β in terms of the rapidity as

β = tanh(η), γ = cosh(η)

For what concerns the composition of boosts one can write explicitely

ΛΛ′ =


λ 0
0 12


λ′ 0
0 12


=


λλ′ 0
0 12


,

where

λλ′ =


cosh(η) − sinh(η)
− sinh(η) cosh(η)


cosh(η′) − sinh(η′)
− sinh(η′) cosh(η′)



=


cosh(η) cosh(η′) + sinh(η) sinh(η′) − cosh(η) sinh(η′)− sinh(η) cosh(η′)
− cosh(η) sinh(η′)− sinh(η) cosh(η′) cosh(η) cosh(η′) + sinh(η) sinh(η′)



=


cosh(η + η′) − sinh(η + η′)
− sinh(η + η′) cosh(η + η′)


,
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and thus the composition of two boosts along x is a boost along x, its rapidity being the sum of rapidities of the
two single boosts. These computations have been performed for the particular direction x, but can of course be
extended to the other axes or to linear combination of them.
Note that the composition of rapidities could be proved without recursion to computations by considering that
the total transformation is ΛΛ′ = exp[−iηJ 10] exp[−iη′J 10] = exp[−i(η + η′)J 10], which actually conrms the
power and elegance of the exponential mapping.

More about SU(2) and SO(3)

The Pauli matrices have many properties: in addition to the fact that they satisfy the algebra of SU(2) we can easily
show that they satisfy a dierent algebra, that involves the anticommutators of two matrices A,B = AB+BA.
Indeed

σa,σb = 2δab

as one can directly verify. The above relation is called Cliord’s Algebra. Note that we are not claiming that
any representation of the algebra of SU(2) satisfy also the Cliord’s one. This is only a peculiarity of Pauli
matrices and therefore holds only when we consider the space of 2 × 2 hermitian traceless matrices, not general
representations.
Using the commutator and anticommutator one can easily write the product of two Pauli matrices in terms of one:

σaσb =
1

2
σaσb+ 1

2
[σaσb] = δab × 12 + iϵabcσ

c

The above expression allows one to exponentiate immediately an element of the SU(2) algebra and get the explicit
form of an element of the group:

i2n

22n(2n)!
αa1 αa2n σa1 σa2n =

i2n

22n(2n)!
αa1 αa2n σa3 σa2n(δa1a2 × 12 + iϵa1a2cσ

c)

=
i2nα⃗2
22n(2n)!

αa3 αa2n σa3 σa2n =
i2nα⃗2n
22n(2n)!

× 12,

i2n+1

22n+1(2n+ 1)!
αa1 αa2n+1 σa1 σa2n+1 =

i2n+1α⃗2n
22n+1(2n+ 1)!

αa2n+1σa2n+1 

Therefore an element of the group becomes

U(α) = eiα
aσa/2 = 1 + i

αa

2
σa − 1

8
αaαbσaσb +  = 12 ×


1− α⃗2

4 · 2! +   


+ iσa α

a

α⃗ ·
 α⃗

2
− α⃗3

8 · 3!   


= cos

 α⃗
2


× 12 + inaσa sin

 α⃗
2


≡ k0 × 12 + ikiσ

i

where na is the unitary vector pointing in the same direction as αa. One can see that the general element of the
group is a linear combination of the identity and of the Pauli matrices. The coecients of the linear combination
are not independent since they must respect the determinant constraint:

1 = det


k0 + ik3 ik1 + k2
ik1 − k2 k0 − ik3


= k20 + k21 + k22 + k23 

The above expression is the equation that denes the embedding of a 3-sphere into R4. This parametrization
shows that the group SU(2), thought of as a manifold, is equivalent to S3, which is a connected simply connected
manifold.
Coming back to the rst exercise one should recall that (the dening representation of) the group SO(3) coincides
with the adjoint representation of SU(2). This representation is not injective because it associates two distinct
elements of SU(2) (U and −U) to the same element of SO(3) (we say that SU(2) is the double covering of SO(3)).
This means that in order to visualize SO(3) as a manifold one can think about a sphere where we identify a point

with the opposite one: (α0,α1,α2,α3) ∼ −(α0,α1,α2,α3). The manifold obtained is usually denoted as S3

Z2
. This

manifold is locally equivalent to the sphere, in particular they have the same tangent space, and this reects the
fact that the Algebras of SO(3) and SU(2) are the same. However the identication of opposite points has a
crucial global consequence: this manifold is not simply connected (recall that a connected space is said simply
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connected if any closed curve can be continuously shrunk to a point). To see this, imagine a curve starting at the
North Pole and ending at the South Pole. Since the starting and ending points are identied this curve is close.
The considered curve however cannot be shrunk to a point without opening it, because as soon as we move one of
the Poles the curve stops to be closed. To summarize the relation between the two groups is

SO(3) =
SU(2)

Z2


For completeness we dene the group Z2, which is the pair −1, 1 together with the usual multiplication.
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