Quantum Field Theory

Set 6: solutions

Exercise 1

o If V;; = v X} then (ommitting the matrix indices)

V/ — D(g)VD(g_l) =@ [D(g)XaD(g—l)] — {eixbabxae_ixcac} . (1)
We now use the Hadamard formula to write
Sxb b SyrC e ozbac
XTI = X ol (X7, X - = [X X X+ (2)
b.c
_ Xa + abfachc + a2(|y fcadfbdeXe 4. (3)

where use was made of the Lie algebra.

Note that every term in the series is a nested commutator which, due to the Lie algebra, will always end up
in a single generator, as shown above for the first few terms.
We can then write

b,.c
V/ _ va+abfcbavc+ a2a fcedfbdave_’_.“ X :,U/aXa’ (4)

where we swapped some indices to factor out X®.
This shows that R(g) maps the vector space spanned by the generators to itself.

e Since R(g) acts on the generators, then its dimension is the number of generators N, i.e. the dimension of
the Lie group. In order for R(g) to indeed define a representation it must faithfully represent the group

elements (and their properties) on a vector space. Since R(g) acts through left and right multiplication of
D(g) which is a generic representation we conclude that R(g) is also a representation.

Concretely,

1. Identity element.
R(e):V =V =D()VD(e ') =V. = R(e)=1. (5)

2. Inverse element.
R(g™):V = V'=D(gYVD(g) = [D(9)]'V[D(g~")] ™. = R(¢9") = R(g9)™". (6)

3. Group product.

R(g1)R(g2) : V = V' = D(g1)D(92)V D(95 ) D(g1 ") = D(9192)V D(95 97 ) (7)
= D(g192)V D((9192)""). = R(g1)R(g2) = R(g192)- (8)

e Given v'" = R(g)vi and R(g(a)) = ¢"X"®" we find to linear order
RY = +iX&a® + ... 9)
From eq. (4) we have _ - - _
V" =09 +af + ] (10)
where we swapped the following indices in eq. (4): (a,b,c) — (i, a, j) and used the cyclic property f7% = faiJ,
Comparing the above two equations we read off

X = —ife. (11)



e We have already showed that R(g) is a representation. Therefore, its generators X must satisfy the Lie
algebra. Let’s now check how this comes about explicitly.

[Xa,Xb]ij _ qucng _ Xzch([:lj _ _fawfbcy + beCfaC_] — _facsz]c _ fbczf]ac. (12)
We now use the Jacobi identity o o .
faclfbjc + fbczfjac + ijZfabc =0 (13)
to get o . g y _
[Xqub]ij _ f]wfabc _ fabCfC'L_'; _ ifabc (_Z'fcz]) _ ZfachZcJ (14)
Exercise 2
Consider first j = 1. We have:
Ny =), T°l0)=0, T°|-1)=—|-1),

TH|1) =0, Tt0) = 1), Tt |-1) =0).

We represent the states |m) as vector in R? in the simplest way:

1 0 0
=10, =1/, |-)=1|0
0 0 1

To construct the matrices of the generators then we just compute their components. For instance for 73

10 0
(T*) e = (M|T3|m') = 6ppom = 0 0 0
00 -1
The others are computed similarly:
010 00 0
=100 1|, T-=TH'=|1 0 0
00 0 010
_ 010 _ 0 —i 0
Tt +T 1 - -7t 1
— =L 2 01|, i 0 i
V2 V2 10 V2 2 i 0

The same can be used for j = 3/2 and j = 2. For j = 3/2 we obtain:

3/2 0 0 0 0 3/2 0 0
0 1/2 0 0 0 0 V2 0 -
T = , Tt = = (1)t
o 0 =12 0 0 0 0 /32 ()
0 0 0 —3/2 0 0 0 0
For J=2:
200 0 0 0 vV2 0 0 0
010 0 0 0 0 V3 0 0
™=(000 0 0|, T'=[0o 0o 0 Vv3 0 [=(@)
000 —1 0 0 0 0 0 V2
O 00 0 =2 0O 0 0 0 0

Since T° is diagonal in this basis, we find (exp[i¢(T)])mm: = €™Emm::

e’ 0 0
j=1 — = 0 1 0 |,
0 e~



- L 0 0
, 0 ¢3¢ 0 0
=3/2 — T = .
=3 ‘ 0 0 e o |
0 0 0 —iz¢
e 0 0 0 0
L 0 €% 0 0 0
j=3/2 — 9T = 0 0 1 0 0
0 0 0 e 0
0 0 0 0 e2¢
Exercise 3
The explicit form of the three matrices is:
00 0 0 0 i 0 —i 0
T =1 0 0 —i |, =1 0 0 0|, 5= i 0 0
0 i 0 —i 0 0 0 0

The group SO(3) is defined as

SO(3) = {R € GL(3,R)| RR" = R"R =1, det(R) =1}
Parametrizing a general element of the group using the exponential function, R(a) = e**"T"
the constraints on the elements of the group to constraints on the generators:

, one can translate

1=RRT = (14+ia®T*)(1 +ia®(T*)T) + O(a?) = T = —(T")7.

The Algebra of SO(3) is a vector space generated by 3(3 — 1)/2 = 3 antisymmetric objects, together with the
usual commutator [,]. The three matrices defined at the beginning are

e antisymmetric,
e independent,

e in number equal to the dimension of the space.

Therefore they form a basis for (a representation of) the algebra so(3). Having an explicit representation of the
generators of a Lie Algebra, one can compute the commutators between them and extract the structure constants.
The commutation relations which one obtains in this way are the same as in all the other representations, since
the structure of the algebra of course doesn’t depend on its explicit representation.

In the present case one has

00 0 0 0 i 0 0 i 0 0
[T, 1*]=1{ 0 0 —i 0 00|—-| 0 00 0 0
0 i 0 || —i 00 —i 0 0 0 i

0 0 0] 0 -1 0 0 —i 0
=/ -1 00|-| 0 0 O0|=i| i 0 0]=4dT3

0 0 0| 0 0 0 0 0 0

Similarly one can explicitly compute
[1%,7°] =4T",  [T",T°] = —iT?,

and identify the structure constant of the group f®¢ = egp.. This is the Algebra of the angular momentum one
is used to deal with for example in quantum mechanics. The statement that a state |s) has angular momentum
J means that it belongs to a vector space on which acts a representation of the rotation group SO(3) (call this
representation j — we will see that representations can be labelled by an integer number). Under the action of the
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group, |s) transforms according to |s) — eicaTs?) |s), where T are the generators of SO(3) in the representation
]

Coming back to structure constants, it is also possible to extract the commutation relations using the implicit
form (T%)] = —ieq;:

k . . X .
[T, 1) = (T () — ()T = (—i)easgeagn — (~i)ensseass
= €abc€cik = ieabc(Tcﬂjcv

where the last equality is a consequence of the identity €qij€pjr + €ajk€nji + €anj€jik = 0 (Which in the end is the
Jacobi identity for the structure constants of so(3)).

One can show that a general element of the group SO(3) is a rotation acting on three dimensional vectors. To see
this one can consider the fundamental (or defining) representation, that is to say the explicit representation of the
group SO(3) on R? that we have previously recalled. An element of the group depends on three parameters a®:
one can collect them in a vector and call @ = &/|@| the direction of this vector and 6 = |&| the modulus of the
vector. It’s easy to prove that the action of the element R(a) = €**"T" on a vector Z corresponds to a rotation of
this vector of an angle § around the direction 7. One can firstly consider an infinitesimal rotation (6 << 1)

R(a)] ;= (1 +i0nT* + O(on))z Tj o~ (53 + i@na(T‘l)z—F) xj = x; + Oeqijnix;
= R(a): ZT—TZ+0TAn.

One can verify that this is in accord with the usual way of representing a rotation: for example a rotation around
the 37¢ direction by an angle @ produces a change in the 1,2 plane according to

T x1 cosf + xosinf T + x00 T T 0
To — Tocosf — xqsinf ~ To — x10 = To +6 To A 01,
xIs I3 I3 T3 I3 1

where we have expanded the trigonometric functions for small angles.

One can do more: exponentiating the generators one can obtain the explicit form of an element of SO(3) and
compare it with a generic finite rotation. It’s particularly easy to perform this computation in the simple case
where the rotation is around one of the axes: let’s take again the 3" direction for concreteness. Recognizing that

1 0 0
(T3 = | 0 1 0| =A,
0 0 O
then
. 1
R(07%) = eT" = 1 +i0T® — ST +
) 1 1 1 1
_ .73 3 5 2 4
=T <9§9 Jrag +...>+A<159 +I(9 +...)+1A
0 sinf 0 cos 0 0 0 0 0 O cos sinf O
= —sin@ 0 0|+ 0 cosf 0 | + 00 0= —sinf cosf 0
0 0 0 0 0 0 0 0 1 0 0 1

One immediately recognizes the usual form of a rotation by an angle 6 in the 1 — 2 plane.

Note. The group SO(n), as well as other groups of linear transformations, is usually not defined in abstract
by characterizing its elements g, but specifying the properties of one particular representation (the fundamental
or defining representation): in the case of SO(3) the fundamental representation contains the 3 x 3 orthogonal
matrices with determinant = 1. This does not mean of course that the group has only that representation. For
example, a quantity which is invariant under rotations transforms according to a one dimensional representation
of SO(3) in which the generators are identically = 0, while an object with angular momentum j = 2 transforms
according to a five dimensional representation, i.e. a representation in which the transformations are represented
by 5 x 5 matrices.

The rest of the exercise deals with another group, SU(2), and the relation between this group and the group of
rotations that we have analyzed in the first part. To begin with, one can recall the definition of the group as

SU(2) = {U € GL(2,0)| UU* = U*U =1, det(U) = 1}.
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Then one can consider the representation of the group acting on the vector space V defined to be:
V= {M eM(2,C)| M =M, Tr(M) = O}7

that is to say the set of hermitian traceless matrices. One can verify that this vector space coincides with the one
that defines the Lie Algebra of SU(2). Indeed for infinitesimal transformations

1=UU=(1—-ia (TH)(1 +iaT?) + 0(a?) = T*= (T,
1 = det(e®T) = ¢ TH™) — Ty(T) =0,

therefore the two vector spaces coincide. If one is able to find a basis of V' this will also be a basis of the Lie
Algebra of SU(2). A basis of the vector space V is given for example by the three Pauli matrices:

(o1 o [0 —i s [ 10
U‘[10’ A I L (B N

Having a basis of the Lie Algebra it’s possible to compute the commutation relations as we did for SO(3):

R B I | e B e | RN 1 R R

ol 02]
[02,03] 21 [01703] = —22'027

therefore the matrices 7* = ¢%/2 satisfy the algebra of SU(2):
[Ta7 Tb] = ieabcTC»

which is exactly the same of that one of SO(3). This is something that happens frequently: given a Lie Group
one and only one Lie Algebra is associated to it, however the converse in not true; given a Lie Algebra there exists
unique a connected and simply connected Lie group associated to it, but there may exist other different groups
without these constraints associated to the same algebra.

To summarize, we are considering a representation of a Lie Group on its Lie Algebra; this particular representation
is called adjoint representation. The action of an element U of the group on an element M of the space V is as
follows:

U: M — M =UMU!

The above action defines a good representation since

e It’s a linear application from V to V; indeed (M)t = M’ and Tr(M') = Te(UMU') = Tr(M) = 0.
e It respect the composition of the group transformations:

U : M— M =UMU}, Uy: M'— M" =U,M'U],

UyoUy : M —s (Uy o Uy))M(Usy 0 Uh)T = UyUy MUTUS = M.

Any hermitian traceless matrix can be written as a linear combination of elements of the basis:

M= Y3 Y1 — Y2

. = y,0°.
Y1+ 1y2 —Y3 Yi

From the above equality one can argue that an element M can be associated to a thee-dimensional vector i =
(y1, Y2, y3), which is the set of coordinates of the element M in the chosen basis. We know that a representation
of a group is defined as a mapping between the group and the matrices acting on a vector space. After having
chosen a basis one can also build the explicit form of the matrices associates to the element U of SU(2). Here
there is a scheme of the relations:
W : Group — Matrices acting on V
U — Rg
U:V—-V
‘M = y;ot — UMUT = §;0°
R:V —V
Ly — §i = Rly;.
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In order to get the form of the matrix R associated to a given element U one can consider an infinitesimal element
of SU(2) acting on M:

UMUT ~ (1 +ia®7)y;0' (1 — ia’7?) = yio’ + % [0, 0'] a®y" + O(a®)

= yio—i + i(i)eaico—caayi = (yc - Ecaiaayi)ac = gco_c.

Therefore the matrix Rg associated to the element of the group U is a rotation of an angle § = |@| around the
direction identified by @. One has to notice an important feature of this relation: the element of the group U and
—U induce the same changing for the vector ¥, therefore they have the same representative. The representation
map is not injective, even if it’s surjective.

To summarize, we have shown that the group SU(2) and SO(3) have the same Lie Algebra, even if they are
different groups. This implies that given a representation of the Algebra one has for sure a representation of
SU(2) (because is connected and simply connected) but not necessarily a representation of the group SO(3). It
may happen however that some vector space support both the representations, as we have seen. In particular the
adjoint representation of SU(2) (the one on it’s Lie Algebra that we have considered in this exercise) provides
automatically a representation of SO(3).

Exercise 4
Part 1

A spin 1 representation is made of three states {|1),]0),|—1)}, on which the generators act as:
Ty = (1), TP =0, T%-1) = |-1),
TH) =0, TH0o)=[1), TF|-1)=]0),
T- 1) = 0), T 0) = |-1), Tt |-1) = 0.
Consider now the tensor product representation, i.e. the linear space formed by the vectors:
|mi>(1) ® \mj>(2) = |mi§mj>(1)®(2) J mi,mj = —1,0,1.

Here the subscripts underline that the states belong to two different linear spaces. As showed in the previous set,
generators in the tensor product representation are written as:

Thee) = Th) @ Le) + 1) @ T(y.

We omit the subscript (1) ® (2) in the following. It follows immediately that T is diagonal in the tensor product
representation:
T3 |my;me) = (mq +ma) |mi;me) = M |my;ms) .

We can thus classify states according to their eigenvalue of T3. We find:

o M =2: |1;1) forming a 1d vector space,
e M =1: {|1;0),]|0;1)} forming a 2d vector space,
e M =0: {|0;0),|1;—1),|—1;1)} forming a 3d vector space,
o M =—1: {|]-1;0),]0; —1)} forming a 2d vector space,
o M = —2: |-1;—1) forming a 1d vector space.
The highest weight technique consists in taking the maximum M eigenvector and applying lowering operators to

get a J = M representation. In this case this is just the state |1;1) with M = 2. Since there are no states with
bigger M, this must be part of a J = 2 representation. We hence call

12,2) = [1;1).
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Here the notation |.J, M) means spin J representation with eigenvalue M of T5:
T2\, MYy = J(J+1)[J, M),  T*|J,M)=M|J,M).

The other vectors of the representation are obtained acting with 7~. For instance
1
T2 =T L) =00+ [L0) = [21) = —= (10:1) +]10).

The prefactor is obtained by requiring normalization. Iterating we obtain:

12,0) = —= (2]0,0) + [1, —1) + |-1, 1)),

-
V2
[2,-2) = |-1;-1).

=

2,-1) (10;=1) +1=1;0)),

The representation of course stops here, indeed T~ [2,—2) = 0. As expected, in the J = 2 there is exactly
one vector for each M. We thus still need to understand how the remaining vectors organize themselves into
representations of SU(2).

In order to proceed, let us recall that in general a vector belonging to a representation J is an eigenvector of the
Casimir operator with eigenvalue J(J+1). Since the Casimir operator is diagonal and proportional to the identity
in any irreducible representation it follows that two vectors belonging to different representations are orthogonal.
We have arranged the only M = 2 state in a J = 2 representation. There is instead only one M = 1 vector (up
to normalization) which is orthogonal to |2, 1), which is given by:

11) = = (11,0) - 0:1)).

It is easy to verify 77 |1,1) = 0, hence it must belong to a J = 1 representation. The other vectors in J = 1 are
obtained acting with 7'~:

1
—(|1;-1) —|—-1;1)),
75 (L-1) -1
1

V2
We used all M # 0 vectors at our disposal. The only M = 0 vector left which is orthogonal to all the others thus
corresponds to a J = 0 trivial representation:

|170> =

1, -1) (10; =1) = [=1;0)).

1
0,0) = 7 (10;0) = 1, =1) = |-151)) .
Finally using
. = - 1
2 — T2 2 + — - + 3 3
Thew =Th)®Lle +1a) @15 + 5 (T(l) ® T + T ® T@)) +2T3) @ T,

it is possible to check that the representations we constructed have the right eigenvalue of the Casimir.

Part 2

Consider the product of two vectors v;w;. Under rotations this product obviously transform as:

ViwW; —> E Rikijvkwm.

k,m

This is obviously a representations of SU(2). Hence we define a 2-tensor T;; as an object which transforms under
rotation as
Tij — ZRikijTkm~

k,m



Notice that if we think of T' as a matrix, we can rewrite the transformation rule as:
T — RTR".

T;; has 9 components, as the number of independent vectors in the previous part. We expect to be able to
decompose its components in three different representations: J =0, 1,2.
A J = 0 rep. simply corresponds to a quantity which is unchanged by rotations. It is easy to verify that this is
given by the trace:

Tr[T] — Tr[RTR"] = Tr[TRTR] = Tr[T).

Notice now that simmetricity property are not changed by rotations. Define

1
Aiy = 5 (T = Tia),
1
2
T—5+4, ST=5 AT =_A

Then it is easy to check that also S’ = RSRT = ST and A’ = RART = —A'T. Summing up everything we found
that the trace, the antisymmetric part and the traceless symmetric part of a tensor transform independently. We
already saw that Tr[T] is a scalar. Since S has 5 independent components and A has 3 independent components,
these must form a spin 2 and a spin 1 representations.

Notice that to check that A;; transform as a usual vector, you can define:

v; = E ikt Api-
%l

Rim RjnRii€mni, one can check that v; transforms in the usual way.

Si‘ = (Tij + T]z) — (SZ'jTT[T],

Then using €;;5 = Y

m,n,l

Optional: Sum of spins in group theoretic language

A particle with spin j is an object that under rotations transforms as a state of the representation j of the group
SU(2). If one chooses a spatial direction, the 3rd one for example, the representation j can be defined considering
the possible eigenvectors of the generator of rotation in this direction, 73. These eigenvectors form a basis B of
the 25 + 1 dimensional vector space where the group is represented:

B= {ljam>7 m = _j7 _]+ 1aa] - 1) .7}
The action of the generators on this vector space is given by

Tslj’ m> = m|j,m>>

7*|j,m) = %m 1) —mmE D m£1),

3
S ()2l m) = 30 + Dl m).

Let us specialize to the j = 1/2 representation. The vector space in this case is 2-dimensional and a basis consists

simply of the two states
11 1 1
2 ) 2 ) 2 ) 2 )

and the generators are represented by the three matrices

(8 ) () -(12)

Consider now two copies of the previous representation, corresponding for example to two distinct particles with
spin 1/2 each. If one wants to consider the spin of the bound state formed by these two particles one should use
the notion tensor product of two vector spaces.



Here we are considering the tensor product of two 2-dimensional vector spaces on which the representation j = 1/2
of SU(2) acts. A complete basis for the tensor product space is given by the set

B—ll®11 11®11 11®11 11®11
V7202 2°2/7 (272 27 2/712° 2 2°2/7 127 2 27 2 '

The tensor product is hence 4-dimensional. One can use the following notation for short:

From a previous exercise we know that the generators of the direct product are the 'sum’ of the generators of each
representation,

w=rl+1e73,
T‘J,“:T+®l+1®r+,
v =T @1+1®7".

One can verify that the elements of the basis of the tensor product space are still eigenvectors of the generator 7¢:

1
Wi = eln+iner it =gt +inhes =,

B = e+ 1 e =2 el +iNe =0

N~ N~

BN =T e+ 1o = el + e s =0

B =P e+ e ) = T e+ e =1

Hence the tensor product space contains eigenstates of 7‘3/ relative to the eigenvalues 1, 0,0, —1. The representations
we have started with were by construction two irreducible representation of the Algebra of SU(2), while in general
their tensor product is not an irreducible representation. However it is always possible to decompose it in direct
sum of irreducible representations D'®? = D! @ D? = D, @ D,,.

Let’s now construct explicitly these two representations. In order to do so, one first considers the basis By and
takes its element with the largest eigenvalue of 75, in this case [11); this state is called the highest weight state in
the tensor product representation. The action of the raising operator on this state is

M =rtme1im) +1nert ) =0
Since 75 [11) = M |11) = [11), one can write this state in notation |J, M) as
M) =7 =1,M=1),

where the fact that for this state J = M is due to the definition of highest weight state (remember Set5, where the
j labeling an irreducible representation was a shorthand notation for m,,q,). Thus we have just noticed that in
the tensor product of two representations j = % of SU(2) there is a representation J = 1. To build the remaining
part of the basis of this representation it is sufficient to apply 2J = 2 times the lowering operator 7y,, and use the
explicit knowledge about the action of 7~ on the states of the representations j = %

i) = el -1 er )
= SVIRARFD-12G2-DI el + 1 e VIR ) -120/2-1D W)
= S+
=7, [1,1) = %\/1(1+1)71(1f1)|1,0>:|1,0>,



uwwww>:f%vww®uw+uw®fn»

-

= VIR I202- 1ol + e 3V/IZ02+ 1) - 1207211
= )

e - L T L1 |1

=7,[1,0) = \/5¢1(1+1) 00 —1)[1,-1) =[1,-1),

1Ly =0

Notice that the three elements in this basis, namely M) = |1,1), % (M) + 41)) = 11,0) and [{)) = |1, -1),
have the same symmetry properties under permutations of the two spins, i.e. the raising and lowering operators
don’t change the symmetry properties of the states they act on; the representation J = 1 of SU(2) is a symmetric
representation.

Note that this is a general statement: the highest weight representation (i.e. the representation containing the
highest weight state) in the decomposition of a tensor product of n identical representations of SU(2) is always
symmetric under permutations of the particles of the component representations. This is so because the highest
weight state is always of the form |ju, ja) ® |JasJa) @ ... ® |ja, Ja) and the raising/lowering operators don’t modify
the symmetry of the states.

Since the vector space on which the representation % ® % acts is 4-dimensional, and we have found that one of the
irreducible representations in which it decomposes is 3-dimensional, then only another irreducible 1-dimensional
representation of SU(2) can appear in the direct sum, and this is in fact the representation with J = 0 (and
consequently M = 0). A basis for this representation is build by considering the state with M = 0 in the
representation with J = 1 and finding a linear combination of the states |1)) and |[{1) (the ones with M = 0)
orthogonal to |1,0):

= (e dl+ e u)(am el + Bl o)
=AQID@IDFAGID GO +BAIDE D +BEID I
———— ————

=0 =0
= A+ B.

Therefore the state belonging to the J = 0 representation is the antisymmetric combination |1}) — |{1), and a
prefactor of LQ ensures its correct normalization: %(H@ — 41 =10,0).

The advantage of performing such a decomposition is that now it is simple to write the action of the algebra on
this vector space: organizing the basis as follows

Bv={|TT> |N>}|H> 1y |N>\/§|H>}7

and calling

[+ 14) _ 1) = 1) _

1) = 7

) =

Vj=1
v=|—"],
VJj=0

where vj—1 is a three dimensional vector while v;_g is one dimensional. Moreover the generators will have the
simple form

o O o
o O = O
o= o O
_ o O O

any vector v € V will be written as

' 0
T = Tr=1 8 ,
0 0 0 | 7o

and the same will be for the representative of the group elements, so the representation matrices are in block-
diagonal form. This proves that the tensor product representation % ® % is fully decomposed into the direct sum
1®0, and thus the vector space V is as well decomposed into a direct sum of a 3-dimensional and a 1-dimensional

invariant subspaces, V = V;_1 ® Vj_¢, spanned respectively by the first three and by the fourth element of By .
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Let’s summarize the steps to be followed in order to decompose a tensor product representation.

1) Build a basis for the tensor product space with all the possible combinations of vectors of the bases of the
"component’ spaces (the spaces on which the ’component’ representations act).

2) Find the highest weight state in the basis: this is always possible because the action of 7% on the tensor product
space is known in terms of the action of the 73 on the ’component’ spaces. The representation containing the
highest weight state (whose eigenvalue of 75, called weight, is M) has J = M.

3) Build the representation J by acting 2.J times with the lowering operator 7, on the highest weight state.

4) Set aside the subspace associated to the spin J = M representation. Build, with the states in the basis of the
tensor product space, the combinations orthogonal to the basis of the spin J = M representation. Find among
these combinations the state with weight M — 1: this is the highest weight state of the representation J = M — 1.

5) Reiterate the procedure from point 2) until all the states are assigned to irreducible representations.

Strongly recommended reading: H. Georgi, Lie Algebras in Particle Physics, chapter 3.

Exercise 5

Lorentz transformations are defined as the linear transformations acting on the spacetime coordinates that leave
invariant the spacetime distance
SP=c -7 7= 2N,

If one applies such a transformation to the four-vector x#, namely x* — A* x¥, and imposes this to leave invariant
the above defined distance one gets the constraint

AE Ay = o, or ATpA = .
This equation defines a relation between the set of 4 x 4 real matrices that identifies a group called
O(1,3) = {A € GL(4,R) | ATpA =1},

where n = diag(1,—1,—1 — 1). Geometrically the Lorentz group corresponds to the set of transformations that
preserve the generalized scalar product defined by the matrix 7.

In order to identify the Lie algebra associated to the Lorentz group one can consider the infinitesimal transformation
A*, = §F, + w#, and plug it inside the constraint:

(5#p + w#p) Nuv (6Va =+ wyo) = Npo + wﬂpnua + nupwya + O(wz) = Tpo

= Wpo = —Wep,
therefore the algebra consist of the antisymmetric 4 x 4 real matrices and thus it has dimension % = 6. One
would like to write the general element of the algebra as a linear combination of generators w, = —iw®(J*)", /2.
In order to write a compact expression for the generators it’s useful to make use of a different notation: instead
of a single index a = 1,2, ...,6 one can use a pair of indices «, 8 = 0,1, 2,3 and make the following identification:

a apf
01
02
03 with T = —18e,
12
13
23

S UL W N~

In this way the pairs of spacetime indices label exactly six generators. Now one is able to write a complete basis
for the Lie algebra:
B (M), =i (75 — o).

11



where as already explained the indices inside the parenthesis label the six generators while the other two are the
proper indices of the matrix. Just to make an example, the matrix J°! is of the form

0 i 00
o | i 0 00
T™%=10 00 0

000 0

Note that the generators (J#")?  are not antisymmetric matrices: only the (J#")P? =i (ntPn’® — n¥PnH?) are.

Now that one has an explicit form for the generators it becomes possible to compute the commutation relations
and read out the structure constants:

(L7, 7)), = (6T, = (T o (T,

— — (P JY — pYY S aocsB _ , Posa n o
(765 — 0" 6k) (N6 —n 6P)+(V<—>B)'

The result of the commutator has be a matrix with indices ( )7,, therefore we try to reproduce this combination
in the r.h.s of the above expression:

([\7#”7 jaﬁ])"’p = _ n/wnw(gg _ nVﬁnw(;g _ nuanw(;g _,_nvvnﬂuég
—_——— —— ——
1 2 3 4

+ ntwnuﬂ(gz _ 77’/577@75;; _ nuanﬁ”y(;; + nﬁ’vnua(;g
1 Ty Ty T
-3 (nua(juﬁ)vp _ nuﬁ(jua)'yp _ nua(jt/l?)vp + nuﬂ(jva)vp) )
Summarizing
(T4, JB) = i (o ghe — gvB gra — puagve 4 b gray).

Let us come back to the usual notation in which generators are labelled by a single index and define

Ji— leijkjjk7 Tk — ki i

Ki— %71‘0’

i,j,k=1,2,3 and €% =1.

Note that J?, K are still 4 x 4 matrices. One can rewrite the commutation relation in terms of the new quantities
[JZ, J]] _ Zezabejwl [jab7 jcd] — ZEmbe]cd (nbcjad _ nbdjac _ nacybd + nadjbc)
_ _ieiabejcd (5b5jad _ 5bdjac _ 5ac‘7bd + 5adjbc)
_ _i (Eiabejbdeadk _ 6iabejcbeack _ 6iabﬁjadebdk + 6iabejcaebck) Jk
=4 (5ij6ad o 5id5aj) eadk:Jk _ 7i€jika,
[J%, J7] = i€k k.

One immediately recognizes the algebra of SU(2): the above generators form a subalgebra of the Lorentz Algebra.
Indeed the Lorentz group contains the spatial rotations as a subgroup. The other commutation relations read

= —%ei’m (69970 — 6M 790) = ieF KF,
[Ki,Kj} — [jiovjjO] _ (anjiO . nOOjij . nijjOO + ninOj) _ _Z-jij — itk gk

It’s important to underline the commutation rules of the generators of boosts K® with those of rotations J%: it
states that the generators of boosts transform under rotation as a vector, that is to say according to the repre-
sentation J = 1 of SU(2). This becomes evident if one considers the adjoin representation of the Lorentz group
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acting on its algebra.

The fact that the commutator of two K’s is a J rather than another K can be guessed considering the parity trans-
formations (i.e. transformation under reflection of spatial coordinates) of these vectors. The angular momentum
J is invariant under parity (indeed it is the vector product of position and momentum, two polar vectors), while
the boost generator K changes sign reflecting the coordinates: thus a product of two K’s cannot be a proportional
to a K, and since the algebra has to close, it cannot but be some linear combination of J’s.

Exercise 6

The explicit expression for J1° is
o —iUl 0
o 0 0 )’

where in the right hand side every entry is understood to be a 2 x 2 block. In particular, o1 = ( 01 > is

o O O O
SO OO

10
one of the Pauli matrices, satisfying 2 = 15 (this can be shown by explicit computation or using in general the
anticommutation relation {o;,0;} = 26;;). It is now possible to write the Lorentz transformation as a Taylor
expansion in 7:
(—in)*

A — 14_i77u710+T(\710)2+"'

(120 o1 0 (=in)* (1, 0
= <o 12>_”<0 0>_ 2 Lo o)t
_ (A0
= Lo 1)
2 3

)\:12—ﬂ01+%12—%01+"' .

Separating the terms proportional to 1o from the ones proportional to o1, and remembering the Taylor series
cosh(z) =1+ 2?/2! + --- and sinh(z) = z + 23/3! + - - -, then one can rewrite A as

A = cosh(n)1ly — sinh(n)o; = ( _Czlsr?}(l?r)y) _(321:;1}(17(77)7) ) ’

with

which proves what required in the text. Moreover, given the standard form of a boost along =,

v =B 0 0

| = v 00
A= 0 0 1 0 |’

0 0 0 1

one can immediately identify v and S in terms of the rapidity as
B = tanh(n), ~ = cosh(n).

For what concerns the composition of boosts one can write explicitely
;A0 N0 _ (AN 0
A= ( 0 19 0 1, /] 0 15 )’

r cosh(n)  —sinh(n) cosh(n’)  —sinh(n)
A= < —sinh(n)  cosh(n) > ( —sinh(n’)  cosh(n’) )
< cosh(n) cosh(n') + sinh(n) sinh(n’)  — cosh(n) sinh(n’) — sinh(n) cosh(n’) )
— cosh(n) sinh(n’) — sinh(n) cosh(n’)  cosh(n) cosh(n’) + sinh(n) sinh(n’)

cosh(n+1n') —sinh(n+7')
—sinh(n+n')  cosh(n+n') )’

where
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and thus the composition of two boosts along x is a boost along x, its rapidity being the sum of rapidities of the
two single boosts. These computations have been performed for the particular direction x, but can of course be
extended to the other axes or to linear combination of them.

Note that the composition of rapidities could be proved without recursion to computations by considering that
the total transformation is AA’ = exp[—inJ %] exp[—in’ T'°] = exp[—i(n + ') T Y], which actually confirms the
power and elegance of the exponential mapping.

More about SU(2) and SO(3)

The Pauli matrices have many properties: in addition to the fact that they satisfy the algebra of SU(2) we can easily
show that they satisfy a different algebra, that involves the anticommutators of two matrices {A, B} = AB+ BA.
Indeed

{0%, ot} = 259,

as one can directly verify. The above relation is called Clifford’s Algebra. Note that we are not claiming that
any representation of the algebra of SU(2) satisfy also the Clifford’s one. This is only a peculiarity of Pauli
matrices and therefore holds only when we consider the space of 2 x 2 hermitian traceless matrices, not general
representations.

Using the commutator and anticommutator one can easily write the product of two Pauli matrices in terms of one:

1 1 ,
o’ = §{J“ab} + §[aaab] = 6% X 1y + i€qpe0.

The above expression allows one to exponentiate immediately an element of the SU(2) algebra and get the explicit
form of an element of the group:

i2n Z'Qn )
maal...aa2" o™M...o% = m@al.-.aazn g% ..o (6a1a2 x 1g + 'Lea1azcgc)

21| 7|2 2n | 2|2n
¢ |a| a a a a ¢ |a|

= ———a".a"g®. 0" = ——— X 1o
221 (2n)! 2n(an)l Y

1’2n+1 i2n+1|d"2n
a aan a asn _ a2n Qa2n

Therefore an element of the group becomes

Cwa a 1 P a ~ =13
Ula) =€ 7 /2:1+i%0“f§a“abaaab+...:12>< <140f|2! +) tiot . <%| |a\ )

|a ||

= cos (7|> X 1g +1n%c?sin (7> = ko x 1o + ik;o’.

where n® is the unitary vector pointing in the same direction as a®. One can see that the general element of the
group is a linear combination of the identity and of the Pauli matrices. The coefficients of the linear combination
are not independent since they must respect the determinant constraint:

ko +iks iky + ko

1.2 2 2 2
iky — ko ko —iky | Mo TRUH R AR

1 =det [
The above expression is the equation that defines the embedding of a 3-sphere into R*. This parametrization
shows that the group SU(2), thought of as a manifold, is equivalent to S®, which is a connected simply connected
manifold.
Coming back to the first exercise one should recall that (the defining representation of) the group SO(3) coincides
with the adjoint representation of SU(2). This representation is not injective because it associates two distinct
elements of SU(2) (U and —U) to the same element of SO(3) (we say that SU(2) is the double covering of SO(3)).

This means that in order to visualize SO(3) as a manifold one can think about a sphere where we identify a point
with the opposite one: (g, a1, @z, a3) ~ —(ag, a1, @z, az). The manifold obtained is usually denoted as ;—Z. This
manifold is locally equivalent to the sphere, in particular they have the same tangent space, and this reflects the
fact that the Algebras of SO(3) and SU(2) are the same. However the identification of opposite points has a

crucial global consequence: this manifold is not simply connected (recall that a connected space is said simply
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connected if any closed curve can be continuously shrunk to a point). To see this, imagine a curve starting at the
North Pole and ending at the South Pole. Since the starting and ending points are identified this curve is close.
The considered curve however cannot be shrunk to a point without opening it, because as soon as we move one of
the Poles the curve stops to be closed. To summarize the relation between the two groups is

SO(@3) = S;Q).

For completeness we define the group Zs, which is the pair {—1,1} together with the usual multiplication.
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