
Quantum Field Theory

Set 4: solutions

Exercise 1

In this exercise we will study the finite group S3. This is the group of permutations of three objects. Each element
of the group is a rearrangement of a given set of three objects. We can easily list all the possible rearrangements
of the set {1, 2, 3}

e : {1, 2, 3} → {1, 2, 3}, a1 : {1, 2, 3} → {2, 3, 1}, a2 : {1, 2, 3} → {3, 1, 2},
a3 : {1, 2, 3} → {2, 1, 3}, a4 : {1, 2, 3} → {1, 3, 2}, a5 : {1, 2, 3} → {3, 2, 1}.

The number of these rearrangements is the order of the group and it is usually denoted as |S3|. In our case this
is clearly

|S3| = 3! = 6.

It is easy to convince yourself that this is a group: any combinations of permutations is still a permutation, e is
the identity matrix and since every permutation is a bijection it is invertible and associativity holds. From the
basic definitions we just saw we can build the product table

× e a1 a2 a3 a4 a5
e e a1 a2 a3 a4 a5
a1 a1 a2 e a5 a3 a4
a2 a2 e a1 a4 a5 a3
a3 a3 a4 a5 e a1 a2
a4 a4 a5 a3 a2 e a1
a5 a5 a3 a4 a1 a2 e

We now want to find a representation of this group, that is an explicit realization of these 6 transformations using
matrices. The most obvious way to do it is to consider a basis of three vectors {1, 2, 3} and building matrices that
implement this rearranging. For example we can look for a matrices that implements the swap between the first
two basis vector and this will be a representation of the group element a3 on a vector space of dimension 3

D3[a3]1 = 2, D3[a3]2 = 1, D3[a3]3 = 3.

In matrix form this just corresponds to

D3[a3] =

 0 1 0
1 0 0
0 0 1

 .

We can do the same for the swap between 2 and 3 to find a representation of a4

D3[a4] =

 1 0 0
0 0 1
0 1 0

 .

The other matrices are then built by multiplying this two.

D3[a3]D3[a4] = D3[a1] =

 0 0 1
1 0 0
0 1 0

 , D3[a4]D3[a3] = D3[a2] =

 0 1 0
0 0 1
1 0 0

 ,

D3[a1]D3[a3] = D3[a5] =

 0 0 1
0 1 0
1 0 0

 .



Finally the identity element is obviously represented by

D3[e] =

 1 0 0
0 1 0
0 0 1

 .

We can represent groups with matrices with any dimension. In this case we chose 3×3 matrices for simplicity, but
we might wonder if there are smaller dimension representations. In other words we want to see if this representation
is reducible. To see this se need to find invariant subspace. There is an obvious invariant subspace given by the
vectors of the form

U = {u = α(1 + 2 + 3),∀α ∈ R}

since permuting any of the basis vectors maps u into itself. This is a 1-dimensional vector space, so there must be
another invariant subspace that is 2-dimensional and orthogonal to this. A basis vector for the U space is

u =
1√
3

 1
1
1

 .

The orthogonal space to this is given by

V = {v = α11 + α22 + α33),∀(α1, α2, α3) ∈ R3 and α1 + α2 + α3 = 0}.

This subspace is also invariant since the condition α1+α2+α3 = 0 is left invariant by permutations. We can pick
the following two orthogonal basis vectors for this space

v1 =
1√
2

 1
−1
0

 , v1 =
1√
6

 1
1
−2

 .

If we change the basis from our initial basis to this we will see that our 3× 3 matrices will become block diagonal.
The matrix that implements the change of basis is simply given by stacking these three basis vector as column of
a matrix

S =

 1/
√
3 1/

√
2 1/

√
6

1/
√
3 −1/

√
2 1/

√
6

1/
√
3 0 −2/

√
6


and we can use this to go to the new basis as follows

D′
3[g] = STD3[g]S.

D′
3 is another 3-dimensional representation and it’s equivalent to D3, since they are related by a similarity trans-

formation. This representation looks as follows

D′
3[e] =

 1 0 0
0 1 0
0 0 1

 , D′
3[a1] =

 1 0 0

0 −1/2 −
√
3/2

0
√
3/2 −1/2

 , D′
3[a2] =

 1 0 0

0 −1/2
√
3/2

0 −
√
3/2 −1/2

 ,

D′
3[a3] =

 1 0 0
0 −1 0
0 0 1

 , D′
3[a4] =

 1 0 0

0 1/2
√
3/2

0
√
3/2 −1/2

 , D′
3[a5] =

 1 0 0

0 1/2 −
√
3/2

0 −
√
3/2 −1/2

 .

You can see that all the matrices are in block diagonal form, where the top-left block is always a 1 while the
bottom-right is a 2× 2 block. The first block is the trivial representation of S3 called D0, where we represent each
group element with the number 1, while the second block is a 2-dimensional representation of the group D2.

D0 is obviously irreducible. To show that D2 is also irreducible requires showing that it does not possess any
invariant subspace. Since it is a 2 dimensional representation the only non-trivial invariant subspace it can have
is 1-dimensional. A line is spanned by a single basis vector v. It can only be invariant if acting on v with any
matrix belonging to D2 gives another vector which is proportional to v, say λv with λ ̸= 0.

To be concrete, given
v = (α1, α2), (1)
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we want to show that for all g ∈ S3,
D(g)v = λv (2)

does not admit a solution for some α1 and α2.

Taking for example

D2(a3) =

(
−1 0
0 1

)
(3)

we find that it has the following eigenvectors, i.e. it solves eq. (2), for

v = (1, 0), or v = (0, 1). (4)

If we now take, for example,

D2(a1) =

(
−1/2 −

√
3/2√

3/2 −1/2

)
(5)

and test (2) on either of the v’s given in (4) we find that there is no λ ̸= 0 that satisfies it.

We conclude that there is no (non-trivial) invariant subspace. We therefore found the following decomposition of
D3 in irreducible representations

D3 = D0 ⊕D2.

The 2 × 2 matrix representation looks like rotation matrices of 60◦ angles. This is because the group S3 is
isomorphic to the group D3 that are the symmetries of the equilateral triangles (rotations + reflections).

Exercise 2

The following groups are the most common groups one can deal with in theoretical physics.

•
U(N) ≡

{
U ∈ GL(N,C)

∣∣UU† = U†U = 1N
}

This is the group of N × N complex unitary matrices. Clearly the inverse corresponds to the hermitian
conjugate. One can consider the associated algebra u(N) and take a complete basis T a of this vector space.
Here T a represents a basis of generators and the label a runs from 1 to dim(algebra). In order to identify
the structure of the algebra one can make use of the exponential map to write a generic element U of the
group in terms of the generator T a and some coordinate αa:

Uα = eiα
aTa

≃ 1N + iαaT a +O(α2).

The unitarity of U implies that

1N = UαU
†
α ≃ (1N + iαaT a)

(
1N − iαa(T a)†

)
≃ 1N + iαaT a − iαa(T a)†.

Therefore the generators are all the matrices that satisfy T = T †, that is to say the hermitian N × N
matrices. One can easily compute the dimension of this vector space counting the number of independent
parameters appearing in a generic hermitian matrix.

Tij = (T †)ij = (Tji)
∗ =⇒

 Elements on the diagonal are real: N components.
Elements symmetric w.r.t the diagonal are
complex conjugate: N(N − 1) components.

In the end the dimension of the algebra (equal to the dimension of the vector space of complex hermitian
matrices) is N2. A complete set of generators for the group U(N) is given by a complete basis of the complex
hermitian N ×N matrices.

•
SU(N) ≡

{
U ∈ GL(N,C)

∣∣UU† = U†U = 1N , det(U) = 1
}
.

The latter group is similar to the previous one but with an additional constraint: if in U(N) the determinant
of a matrix satisfies |det(U)| = 1, here we choose only det(U) = 1. This corresponds to considering only the
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subgroup of U(N) connected to the identity. The additional requirement can be translated to the algebra
using the relation

det(eA) = eTr[A].

Therefore the algebra is now composed by complex hermitian traceless N ×N matrices. The tracelessness
constraint consists in only one relation between the components of an hermitian matrix T since one already
knows that all diagonal elements are real. The dimension of the algebra is therefore:

dim(su(N)) = N2 − 1.

•
SO(N) ≡

{
R ∈ GL(N,R)

∣∣RRT = RTR = 1N , det(R) = 1
}
.

This is the group of orthogonal real N ×N matrices. Still using the exponential map

Rα = eα
aTa

≃ 1N + αaT a +O(α2).

This time it’s better to define the generator without the i in the exponent: in this way, since R is real also
the T a are real instead of purely imaginary. The orthogonality implies:

1N = RαR
T
α ≃ (1N + αaT a)

(
1N + αa(T a)T

)
≃ 1N + αaT a + αa(T a)T ,

that is to say the algebra is formed by antisymmetric real matrices. The tracelessness is automatically
satisfied since antisymmetric matrices have all zero components in the diagonal. The number of components
of such a matrix are N(N − 1)/2, which corresponds to the dimension of the algebra so(N).

•
O(N) ≡

{
R ∈ GL(N,R)

∣∣RRT = RTR = 1N
}
.

The structure of the algebra is the same as the previous one since the removed constraint has no implication
at the algebra level. However the group is not the same: one can think about O(N) as SO(N) with additional
parities that invert an odd number of coordinates. For example O(3) can be thought as the rotation group
SO(3) together with the following matrices

Px =

 −1 0 0
0 1 0
0 0 1

 , Py =

 1 0 0
0 −1 0
0 0 1

 , Pz =

 1 0 0
0 1 0
0 0 −1

 .

The latter are discrete symmetries: composing a generic element of SO(N) with one of these, one can
generate the whole O(N). Note that in this case the exponential map doesn’t cover all the group since it’s
formed by several disconnected pieces: the one containing the identity is the subgroup SO(N) and one can
reach the others acting with the parities.

•
SL(N,C) ≡

{
V ∈ GL(N,C)

∣∣det(V ) = 1
}
.

This is the group of complex N × N matrices with unitary determinant. Using the exponential map one
obtains the constraint for the algebra:

det(V ) = 1 = eiα
aTr[Ta] ⇒ Tr[T a] = 0.

Since the tracelessness this time is a complex statement, it contains two independent constraints and the
dimension of the algebra is

dim(sl(N,C)) = 2N2 − 2 = 2(N2 − 1).

Exercise 3

Let us write with no loss of generality:

D =

(
D1 0
0 D2

)
, A =

(
A11 A12

A21 A22

)
.

Then [D,A] = 0, gives the constraints:{
[D1, A11] = 0

[D2, A22] = 0,

{
D1A12 −A12D2 = 0

D2A21 −A21D1 = 0.

Then first Schur lemma implies A12 = 0, A21 = 0, while second Schur lemma gives A11 = λ11 and A22 = λ21.
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Exercise 4

Given an algebra [
T a, T b

]
= ifabcT c ,

one can consider the following identity[
T a,

[
T b, T c

]]
+
[
T b, [T c, T a]

]
+
[
T c,

[
T a, T b

]]
=

T a
(
T bT c − T cT b

)
−
(
T bT c − T cT b

)
T a + T b (T cT a − T aT c)− (T cT a − T aT c)T b

+T c
(
T aT b − T bT a

)
−
(
T aT b − T bT a

)
T c = 0.

Substituting in the first line the result of each commutator one gets[
T a,

[
T b, T c

]]
+

[
T b, [T c, T a]

]
+
[
T c,

[
T a, T b

]]
=

∑
d

if bcd
[
T a, T d

]
+ if cad

[
T b, T d

]
+ ifabd

[
T c, T d

]
=

∑
d,f

−f bcdfadfT f − f cadf bdfT f − fabdf cdfT f .

The latter is a vanishing linear combination of generators that are a basis of the algebra, therefore the whole
coefficient has to be zero: ∑

d

(
fadff bcd + f bdff cad + f cdffabd

)
= 0.

This identity can also be used to show that the quantities fabc, called structure constants, provide themselves a
representation of the group. Let’s define a set of matrices {Aa} as

(Aa) c
b ≡ −ifabc.

Then the Jacobi identity can be rewritten as

fadff bcd − f bdffacd + f cdffabd = 0,

(Ab) d
c (Aa) f

d − (Aa) d
c (Ab) f

d = −ifabd(Ad) f
c ,[

Ab, Aa
]
= if badAd.

Thus the matrices satisfy the algebra and therefore provide a representation of the group. The vector space on
which these matrices act is the algebra itself. This is called adjoint representation.

5


